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ABSTRACT

Granger's (1969) concept and definitions of causality, feedback, and instantaneous
causality and Akaike final prediction error criterion and extended by Chan (1982) to
fit a multivariate autoregressive model are used. The objective of the paper is to
distinguish between simple, feedback and instantaneous causality. The notion of feedback
between endogenous and exogenous variables in the bivariate AR model and its extension
to the tri-variate AR models are presented. As an application to these causality notions,
the paper aimed to reach the optimal lag structure in forecasting some monetary variables
in the Egyptian economy from Q12005 to Q42018. Variables selected were “current
deposits of local currency”, “loan totals” and “quasi-money”. The three variables were
correlated, and each variable was used as an endogenous function of itself lagged and the
other two variables as exogeneous. The study also aimed to test if prediction is improved
if current values and previous values are used in the prediction equation. The simple
causal model showed that a) “current deposits” is best predicted lagged 7, lag one for
“Total Loans”, and current value of “ Quasi-Money”; b) “Total Loans” is best predicted
using ““ Current deposit’s” current value, “Total Loans” lagged 6,, and  “ Quasi-
Money” lagged 1; and c) “current Quasi-Money” is best predicted from the current value
of “ Current Deposits” and “Total Loans”, and from “ Quasi-Money” lagged 4. The
instantaneous causal model showed that : a) “current deposits” is best predicted lagged
7, current values for “Total Loans”, and current value of “ Quasi-Money”; b) “Total
Loans” is best predicted using “ Current deposit's” current value, “Total Loans” lagged
6,, and current value of “ Quasi-Money”; and c) “current Quasi-Money” is best predicted
from the “ Current Deposits” lagged 2, and “Total Loans”, lagged 1 and from * Quasi-
Money” lagged 4.. The analysis showed that a one-way simple causal model exists from
“loans total” to “current deposits of local currency”, and from “quasi-money” to “loans
total”. Instantaneous causality and feedback occur between the three variables.

Keywords

Final Prediction Error (FPE); Autoregressive Modelling; Granger
Causality, Lag Structure; Auto-Regressive Distributive Lag; ARDL,;
AIC criterion, Akaike criterion; Full model; Reduced Model; simple
causal model; Dynamic model. Bivariate feedback, tri-variate feedback.
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1. Introduction

Analysis of economic data has been approached with two different
philosophies: that is of time series analysis and that is of classical
econometrics. If the endogenous and exogenous  variables are
distinguishable, and if prior information on them is available then the
economy could be represented by some dynamic simultaneous equations
model. But if theories are inexact, the time series techniques have the
advantage of avoiding spurious and false restrictions. However, it is
common practice in time series to develop models having long lag
structure or models with lags chosen arbitrarily. The most common type
of structured infinite distributed lag model is the geometric lag, also known
as the Koyck lag (Koyck,1954; Gasparrini,2014; and Lutkepohl,1980) .
The distributed lag model is a dynamic model in which the regressor x on y
occurs over time, and could be given (Romer, 2012) as:

w
ye=a+ B+ pe=at+) foxes+p  (1-1D)

s=0

Where u; is a stationary error term. Model (1-1) is estimated without
having a firm idea about the optimal lag structure or the possibility of
any feedback between the variables. When too lengthy lags are chosen,
the prediction will suffer from shortage of degrees of freedom,
multicollinearity, biased or at least inefficient estimates and from
specification error (Fey and Jain; 1982). Several studies have discussed
several alternative to determine lag structures; Sims (1977) argues the
advantage of treating all variables as endogenous and estimated an
unconstrained vector autoregressive model (VAR) model in the first stage
and then formulated a hypothesis testing procedure in a second stage. Fey
and Jain (1982) suggested the estimation of a sequence of AR models,
beginning with one lag and continuing with a higher orders of AR process
until the likelihood function for a given sample attains a maximum, however
the resulting model was over-specified in the order of AR process. Auto
Regressive Distributed Lag (ARDL) models were used in fields other than
economics; Nothdurftand Engel, (2020) have used it to evaluate the effects
of species mixing on productivity and climate-related resistance via tree-ring
width measurements from sample cores; Hierarchical Distributed-Lag
Models have been used by Baek et al (2020) to exploring varying geographic
scale and magnitude in associations between the built environment and
health; Geda and Kwong (2021) have used Bayesian inference approach to
parameter estimation of distributed lag models for forecasting used product
returns for remanufacturing. Heaton and Peng (2012) treat the
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maximum lag as an additional parameter and estimate it by sampling from
its posterior distribution. Belloumi (2013) applied The ARDL model to
study the relationship between trade, FDI and economic growth in Tunisia.
Also ARDL models have been used in hydraulic data (Rushworth et al,
2013), in attributable risk (Gasparrinietal 2014, Aboubakrietal (2019) and
in climate sensitivity ( 2020).

Akaike (1976) introduces the AIC criterion, which enables to compare
increasing model parameters, andthe optimal lag is chosen as the order of
the model having the minimum value of AIC. This criterion minimizes the
sum of squares of error after correction for the degrees of freedom. Hsiao
(1979) used this criterion in autoregressive modeling of Canadian money
and income data, variables used were M1, M2 and GNP. Fey and Jain
(1982) apply this AIC criterion to univariate models of money supply (M1),
income (GNP) and prices. Also, Fey and Jain (1982) applied this criterion to
two bivariate models, one model for money and income, and the other for
income and prices; Hsiao (1981) had applied Granger causality and AIC
criterion to bivariate seasonally adjusted quarterly stock and nominal GNP
from 1947 to 1977 using M1 and M2 as alternative measure of stock
variables.

The purpose of this paper is to analyze and determine the lag structures
in forecasting models. Specifically, to determine the optimal lag structure
in forecasting current deposits of local currency, loans total (guaranteed and
not guaranteed) and quasi-money when using the three above variables as
endogenous function of the same variable lagged, and the other two
variables as endogenous. The paper also aims to discover the existence or
non-existence of causality and feedback among the variables of each data
set and whether there is instantaneous causality (Granger, 1965), that s if a
model that uses current, past and future values of x and current and past
values of y to predict y has smaller forecast error than a model than only
uses current and past values of x and current and past values of y.

Section 1, of this paper gives Granger's causality and Granger's
definitions of causality, feedback and instantaneous causality, and the
Akaike (1969) Final prediction error (FPE) criterion. Section 2 gives the
strategy of fitting a multivariate AR model; Section 3 is the data analysis
segment, that shows how to interpret results when fitting the multi-variate
model to time series of variables selected for the analysis; and section 4
gives conclusions and suggestions for future work in multivariate fitting of
AR models.
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2. Granger Causality and definitions

Inrecent years Granger causality has received considerable attention and use
iIn many areas of research. Granger causality is only relevant to time series
variables. Given two time series variables: { X; , Y; }; the variable X", is
“Granger cause Y;” if Y, can be better predicted using the historic of both X,
and Y, than it by using Y; alone. In such a system, each variable depends
on all other variables. Granger (1969) gave a definition of causality that does
not depend on economic laws (Caines and Chan, 1975; Pierce and Haugh,
1977; Sims, 1972). Causality is defined by Granger (1969) as “incremental
predictability”, that examines whether the forecasts of the future values of
Y can be improved if the current and lagged values of X are taken into
consideration.

Granger considered a stationary stochastic process and let: x, {x,:S <
T} i.e., representsthe set of pastvalues and x,* {x;: S < T} i.e., contains
the set of pastand present values, and similarly y, and y,*.

Let o%(y,|Y)is the mean squares of the error of predicting y, given all
information in the population of interest; Granger gave the following
definitions:

Definition 1:

if 02(y,|Y,X) < o?(y.|Y) thenwe say tis causing Y denoted
asX=>Y

Definition 2;

if o%@,|Y,X) <o?@,|Y) ando?(x,|Y,X) <o?(x]X) then
we say feedback is occurring, denoted X &Y

Definition 3

if o2(,|V,X") <o?(y,|Y) where x,*{x,:S <T} we say
instantaneous causality exists; meaning that current values of the
endogeneous variable Y is better predicted when lagged endogenous
variable, present and past exogeneous variable are included in the forecasting
model.

3. Strategy for fitting a Multivariate Autoregressive Model

We assume a vector stationary time series Y consists of three components
(X,Y, Z). Under general conditions a regular full rank stationary process
X,Y,Z posses an autoregressive (AR) model as follows (Masani, 1966):
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Where:

(L) is the lag operator and Ly =y: 4
Y ;L) =XE i,

Ut Up, Wy are white noise innovations with constant variance (.

Least square can be applied to each equation of model (2-1), the estimated
will be consistent, unbiased and asymptotically normally distributed,;
however, the model is extremely sensitive to the order of the chosen lags
(Hsiao, 1979, a, b). To determine the lags (m) in ;; Akaike (1969) gave
FPE criterion to each equation. In the bivariate case as:

FPE, =E(y, — $,)* = SSE (2-2)

And 7, is the predicted value of y,. In the tri-variate case, Chan et al (1982)
gave a generalization of Akaike FPE criterion as follows:

FPEyt(m,n,r)z%xg (2-3)
Where,
~ ~ m ~ m ~ m
Ve=A+ VP13 Dy + Y1, Wxe+3 Wz (2—-4)

and, m,n,r denote the order of the lags in ,,(L) ,¥;,and

tﬁllm, vﬁlzm,lﬁwm and A are the coef ficients when we treat the
observations from (-m+1) to (0) as fixed, ie, {t=-m+
1,....012...T},mynr,< M.

Whenr = 0 in Equation (2-3) the FPE criterion balances the risk of
choosing a lower order and the risk of selecting a higher order when using
the specifications that give the smallest FPE (Hsiao (1978). Shibata (1976)
and Bhansali (1996) have derived the asymptotic distribution and reached
that the probability of choosing too low order using (2-3) approaches zero
very quickly as the sample size increases; and the probability of selecting
too high an order does not approach zero, but it vanishes out quickly.
Bhansali (1988) and Bhansali and Downham (1977) showed that the
probability of selecting too low an order is not significant in finite samples,
but the cost of over-fitting is less than the cost of under-fitting. Gweke and
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Mess (1979), Quandt and Trussell (1979) agree that the criterion has good
properties as a fundamental criterion to select the order of an AR process.

Inmodel (2 — 1) If we let every variable to influence every other
variable, with the same lag length, then the number of parameters grows
very large and exhausts the degrees of freedom. So, in a tri-variate case,
when the order of lags = M, there will be (M + 1)3combinations of

Y,(L), Y,,(L), Y,3(L) for y, alone. Toreduce computational burden
to less than 3M, Hsioa (1979, a) made use of Granger causality's
definitions of causality and feedback, suggested the following sequential
procedure for fitting a multivariate AR process (in this section, variable is
denoted * if variable is not in the equation). For the y equation, proceed as
follows:

1. Considerthaty is the only output of the system, determine the one-
dimensional AR process for y, i.e., endogenous variable y as a
function of lagged exogeneous variable y. Using FPE criterion
(Equation 2-2), determine the order of the AR process that gives
the smallest FPE, say that order is s.

2. Introduce the first manipulated variable, say X, now compute the
FPE to determine the order of the lag of ,,, say m, taking into
consideration the order of the lag operator of y, obtained in (1)
above.

3. Now, compare the FPE criterion in (1) and (2) above, i.e., compare:

FPE,(m,xx) with FPE,(m,n,x) as follows:
a) If FPE,(m,xx) < FPE,(m,n,*)
then X # y and thus ¥,,(L) = 0in Model (3—1)
b) If FPE,(m,*,x) > FPE,(m,n,x)
then X = y and thus ,,(L) =nim Model (3 —1)
4. Introduce Z as the second manipulated variable, use FPE criterion
(3-3) to determine the order of 3, say, r.
Then compare: FPE,, (m,n,x) with FPE, (m,n, r) as follows:
c) If FPE,(m,n,*) < FPE,(m,n,7)
thenZ # y and thus Y,3(L) = 0in Model (2 — 1)
d) If FPE,(m,n,*) > FPE,(sm,n,1)
thenZ = y and thus ,3(L) =r in Model (2 —1)
5. Identify the equation Y lagged m, X lagged n and Z laged r
6. Repeat steps 1 to 5 for the X variables (and for the Z variable)
treating the other two as manipulated variables.
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4. Data Analysis

In this section, the above strategy is applied to a two data sets, where possible
causation and feedback exist among the variables within each data set. The
analysis aims to answer the following: a) what is the optimal lag structure
for the AR process? b) do exogeneous variables cause simply or
instantaneously the endogenous variable? C) is there feedback between the
variables? And d) what is the best-chosen AR model for each variable within
a set?

Variables include: Current Deposits of local currency (D), Loans Total (L),
and quasi-money (Q). Data were obtained as quarterly data from 2001 | to
2018 1V (Central Bank of Egypt, Yearbooks 2001 to 2018). However, data
from the years 2011 to 2014 were excluded from the analysis (Due to the
economic instability during that period). Thus, data used for the analysis
were for 56 quarters. Results were compiled from the output of R package,
which was used for the analysis.

Data showed a seasonal pattern (not shown), and the seasonal variations
showed increase over time. To free data from trend and seasonality
variations, a logarithmic transformation was performed to the time series,
and then the first difference of the logarithmic values is taken (Bowerman
and Occonnell;1987, p.82).

3.1 Testing for simple Causality

The FPE of treating each variable as a one-dimensional AR is presented in
Table 1, for a maximum lag being set at 10. The smallest FPE for “Current
Deposits (D)”, “Loans (L)” and “Quasi-Money (Q)” are 7, 6, and 4
respectively.

Table 1: FPE for a one-dimensional AR Process

Order of Lags D x 1073 Lx1073 Q x1073
1 8.2659 8.6086 3.6437
2 8.4746 5.2033 3.5264
3 5.7870 5.2623 3.5744
4 6.0481 4.4710 3.3029*
5 5.7976 5.5433 3.5062
6 6.0552 4.1435* 3.5376
7 5.7140* 4.1924 3.4961
8 6.1538 4.3330 3.7324
9 6.4783 4.4082 3.9148
10 6.6525 4.6161 4.1989
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R2(L) R2%(7) =.7024 R?(6) =..4923 R2(4) = 4482
Standard error  .0049 .0036 .0030

The intercorrelation of the three variables were:r, , =.20 1,4, = —.13

11 = -33. Thus, the first manipulated variable is chosen to be the one with

the strongest correlation coefficient. The FPE of the controlled variables are
obtained by varying the order of lags from 1 to 10, orders that gives the
smallest FPE are given in Table 2.

Table 2: The optimum lag of first manipulated variable

Controlled Ist Manipulated _3 2

variable variable FPE x 10 R T
D(7) Q@ 5.9413 .7037 48
L(6) Q@ 4.0723 .5233 49
Q(4) L(1) 3.3394 4643 51

Lags are denoted as: D for “current deposits”, L for “Loans Total” and Q for
“quasi-money) and variable not in the equation is denoted as “*”. From
Table 2, it 1s found that, adding *“ quasi-Money” (lag 1) to current deposits(
Lag7) did not reduce the FPE, since FPE(7,xx)=
5.714 from Table 1 and FPE (7, ,1) =

5.9413 from Table 2,and thus, FPE(7,x,) < FPE (7% ,1). Using
Hsiao (1979a) along with Granger causality definition, we conclude that “
Quasi-Money does not cause “ Current Deposits”,i.e. Q # D, and 1,5 In
model (3-1) could be assumed to equal zero.

Also, since FPE (x,6,1) from Table (2)is more than FPE (x
,6,%) (Table 1),,thenitis concludedthat., L = Q and 1,5 = 0 ; same for
the quasi money variable where FPE (x
,1,4) fromTable (2)is more than FPE (x,* ,4) (Table 1), then it is
concludedthat ,Q = L and 5, = 0, and feedback exists between “ Loans
Totals” and “ Quasi-money.

The FPE(s) of the controlled variable are then obtained, holding the
autoregressive operator of the controlled variable and the first manipulated
variable to the order of lags chosen in previous steps. The order that gives
the smallest FPE of the three- dimensional model is presented in Table 3.
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Table 3: Optimal lags of fitting the three-dimensional AR process.

Controlled  1st 2nd FPE

variable Manipulated  manipulated x 1073 R?
variable variable

D(7) Q (1) L(1) 5.8508 7211

L(6) Q (1) D (1) 4.1854 5307

Q(4) L (1) D (1) 3.1747 4652

From Table 3, it is found that FPE (7,1,1) is less than FPE (7,* ,1) from
Table 2, which means that “Loans total” causes “ current deposits”, , i.e.,
L=D,ie., Y, =0.Also, FPE (1,6,1) is > FPE(x,6,1) which means
that D # L . Also, FPE (x,1,4) is > FPE(1,1,4) which means that D #
Q.

Similarly, comparing the FPE’s from Tables 1,2 and 3. For the other two
controlled variables, it is found that:

Quasi Money = Loan Totals, Current Deposits
# Loan Totals

Loan Totals # Quasi Money Current Deposits
# Quasi Money

And thus: Yoz 70 , Pp1 = YP31= P3,=0

But,since L= D but D # L thenno feedback occurs betweenthose two
variables. Also, no feedback exists between “Current Deposits” and “Quasi-
Money™.

Comparing models using the R? values from Tables (1), (2), and (3) using
the equation (Draper and Smith,1998):

2 _R2
R full R®reduced

— (k2 —k1) _
Foe, -k k1) = (1=R? py)/(T—k3 -1 3=1)

Where R?f,,;; is the R* value from the full model and R? ., g;,ceq is the R?
value from the reduced model; T, k, and k, are the number of observations,
number of parameters in the full model and the number of parameters in the
reduced model, respectively. Thus, we are comparing the following models:

Model 1: Dy = a+ X]_,b; X D;_; R? =.7024
Model 2: Dy =a +X7_1bj X D¢_j +¢ X Q¢4 R2 =.7037
M0d9| 3 Dt =a + 2;=1b] X Dt—j + c X Qt—l + dt X Lt—l R2 = .7211

Model 4: L, = a+ X% ,d; X L¢_; R? = 4923
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Model 5: Ly = a + X9_ d;j X Li_j +¢ X Q¢4 R? = 5233
MOdeI 6: Lt =a-+ Z]6=1d] XLt—j +c X Qt—l +b X CDt—l RZ = .5307
Model 7 Q; =a+ X% ¢j X Q¢ R? = 4482
Model 8:Q; = a + X7_; ¢jxQe—j +d X Li_q R? =
4643

Model 9:Q, = a+ X7, ¢; X Qe—j +d X L—y +bx CD;y R?=.4652

And the resulted F-ratios using (4 — 1) are as follows:
Model (1) vs Model(2) F=.1625
Model(2) vs Model (3) F=.2.32
Model(4) vs Model(5) F=2.40
Model(5) vs Model(6) F=.616
Model (7) vs Model (8) F=1.27
Model (8) vs Model(9) F=.0723

None of the obtained F-ratios is significant. Thus, if we had to use the
F-ratios alone, we would have chosen model (1), (4) and (7) to represent a
simple equation for each variable. However, since Hsiao (1979a) and
Granger (1969) definitions are adopted in this paper, and following Masani's
(1966) definition , the following system of equations is identified:

(1-LLogDp] [¥',@ ¥*,@D 0 (1—L)LogD
(1—L)LogL|= 0 Yo, (W) ' (WA -L)LogL|+
(1-L)LogQ 0 0 Y W|[l(A-LLlogQ

Ht
[Ut] 3-2)
W

Where: wijk is the variable lagged k and u;,v, and w, are residuals
error for each time series.

Full, information estimates and their corresponding standard error (given
in parenthesis below each estimate) for each of the single equation of the first
difference of log (D), Log (L), and log( Q) are presented below( * denotes
significance coefficients ( P,q;y < .05)):

D,= —.006 — .8662 D*,; —.9182 D*., — 1.0592 D*, 5 — .6573 D*,,
(1.66) (.2036) (.2292) (.2640)

—.5296 D*, 5 —.2477 D*, ¢ ) —.2562 D*,,+.2716 L* 4
(.2283) (.2014) (.1498) (.1787)
RZ= 7211  SE .0048 T = 48
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L,= —.007— .8133 L*_, —.8311 L*_,— .6078 L*_; —.3340 L., -.2073L,.s
(.1500) (.1843) (.2019) (.1988) (.1559)

—.1203 L,¢ —.2241Q, 4
(.1179)  (.1455)

R? = 5301 SE .0035 T =49

Q=—.001 — 8188 Q*_, — .4570 Q* _,— .3987 Q* , — .3214 Q* |,
(.1419) (.1725) (1711)  (.1403)

R? = 4652 SE = .003 T =51

3.2 Testing for Instantaneous Causality

Granger (1969) gave the definition of instantaneous causality as given
in definition (3) above. In addition, Granger gave a representation for the
bivariate case, which is extended and simplified to fit the three- variable case
(D, L, Q) as follows:

dtz ] 1 ]dt]+Z 1B]1t ]+1+Z] 1Y]qt ]+1+€d

Ly = 11 o de— 1+1+Z 1B]t]+21 1YjQe-j+1 1 &

Z dt ]+1+ZB]1Xt ]+1+ ZYJQt ]+€

Rerunnlng the same data to test for instaneous causality and feedback,
Table 4 gives the FPE values for the optimal lags for the controlled variable
and for the first manipulated variable ( a two- dimensional AR Model).Table
5, gives The FPE values for the three-dimensional AR Model.

Table 4: Two-Dimensional Instantaneous causality AR Model the FPE for D, L and Q

Optimal Lags
Controlled 1st  Manipulated | FPE * 1073
Variable variable
D (7) Q) 5.5474
L (6) Q1) 3.8491
Q (4 L (1) 3.0252

Comparing FPE’s of Tables (1), (4) and (5) we find that:

for the Current deposits variable:
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FPE (7,%,x) > FPE (7, 1,%)thus L=D,i.e.yl2 =0,
FPE (7,1,%) > FPE (7,1,1)thus Q = D,i.e. y13 #0.
For the Total Loans variable:
Q=Land D =L,i.e.y21 #0and w23 =0
For the Quasi — Money variable:

L=Qand D =Q.
Table 5: Three-Dimensional Instantaneous causality AR Model the FPE for D, L and Q

Optimal Lags
s i 2nd - )
\C;;Jrr;;gi(laled \1/;riabll\élampulated Manipulated FPE * 107
variable
D (7) Q@) L (1) 5.1582
L (6) Q) D (1) 3.7239
Q (4) |L() D (2) 2.999

Thus, instantaneous causality and feedback occur between the three
variables. This is evident, also, when comparing the MSE resulted from the
simple causal model (Table 3) and the instantaneous causal model (Table 5)
asgiven in Table 6, for each of the three variables, where “0” means “ Current
values at time t”, MSE for the instaneous causal model is less than that of

the simple causal model (definition (3) above).
Table 6: Mean Squared Errorfor the Simple and Instaneous causal models.

Simple causal Instaneous causal

Dep. Variable m In Ir IR MSE [m|n|r [R? MSE

Current Deposits | 7 1 0 7211 | .0048 |7 (0|0 7541 | .00425
Total Loans 0 6 1 5301 [.0036 [0 |60 |.5825 |.0032
Quasi-Money 0 0 |4 4652 | .0030 [2 |[1]4 |.5564 |[.0026

Table 6, shows that, the R? values are larger and MSE is smaller for the
instantaneous model than that of the simple causal model. The previous
conclusion agrees with Granger’s view (1969, P.427):

“whether or not a model involves some group of economic variables can
be a simple causal model depends on what one considers to be the speed
with which information flows through the economy and on the sampling
period of the data used. It might be true that when quarterly data are
used, for example, a simple causal model is not sufficient to explain the
relationships between the variables”.

The resulting full information instantaneous causal model equations (in
first difference of the logs) and their corresponding standard error is given
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below each coefficient, and * denotes significance coefficients ( P,y <
.05).

D,= —.0062- .8930 D*,_; — .8935 D*,, — 1.0548 D* _; — .7536 D*,_4 — .6269 D*,
(.1422) (.1901) (.2198) 2447y (.2147)

—3159 D*s —.2788D%_;+3549 L* —.3374 Q*,
(.1858 )  (.1408) (.1381) (. 1569)

R? = .7541 SE .0043 T =48
L,=-.0061+.8133 D* — .7140 L* _, — .7628 L*_,— .5724 L* 3 — .3496 L,
— 2681 L5
(.0472 ) (.1481) (.1754) (.1921) (.1900) (
1481 )
—.1599 Lig +3302 Q
(.1032) (.1270)
R? = .5825 SE= .0043 T =49
Q= —.0001 — .1712 D*,  —.1263 D*_; + .2780 L* — .7181 Q*_, — .4596 Q*_,
(.1419 ) (.1725) (.1712) (.1403) (.1613)
—4165Q* , - 3361 Q%
(.1602) (.1322)
R? = 5564 SE = .0026 T=51

4. Conclusions

In this paper, we have tried to fit a multivariate autoregressive process that
could be used as an initial step for model identification. The standard
technique is to let every variable in the equation with the same length. The
investigation of causality and feedback cut down on running an algorithm
several times. Thus, if we know that the process involves a one-way causality
or if the variables are unrelated, we could fit a univariate ARIMA model
(Box and Jenkins, 1970). The multivariate approach is applied to a time
series that consists of 56 quarters of some monetary variables of the Egyptian
economy; these variables were Current deposits in local currency, Loan
Total (guaranteed and unguaranteed), and Quasi-money. It is found that:
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a)

b)

d)

Current deposits of local currency is better predicted using it previous
seven quarters volume, and “Loan Totals” lagged only one quarter.
However, prediction is improved when current volume of: Loans
Totals” and current quasi-money are added to the : current deposits of
local currency” lagged 7 quarters.

Loans total are affected significantly by its previous 6 quarters volume
and by “Quasi-money” volume of one previous quarter. However,
prediction is improved when “current deposits” and “current “quasi-
money” are included in the equation. “Loans Total “, i.e., no past
values of these two exogeneous variables.

Quasi-money is uni-dimensional, prediction of current values is good
from its four previous quarters values. However, prediction is
improved when current and past values of “current deposits” and
“Loans Total” are included in the prediction equation.

Instantaneous causality and instantaneous feedback occur among all
three variables. A one-way simple causal relation exists from “Loans
Total” to “current deposits of local currency” and from “quasi-money
to “Loans total”.
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