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ABSTRACT 

Granger s̀ (1969) concept and definitions of causality, feedback, and instantaneous 

causality and Akaike final prediction error criterion and extended by Chan   (1982)   to 
fit a multivariate autoregressive model are used. The objective of the paper is to 
distinguish between simple, feedback and instantaneous causality. The notion of feedback 
between endogenous and exogenous variables in the bivariate AR model and its extension 

to the tri-variate AR models are presented. As an application to these causality notions, 
the paper aimed to reach the optimal lag structure in forecasting some monetary variables 
in the Egyptian economy from Q12005 to Q42018. Variables selected were “current 
deposits of local currency”, “loan totals” and “quasi-money”. The three variables were 

correlated, and each variable was used as an endogenous function of itself lagged and the 
other two variables as exogeneous. The study also aimed   to test if prediction is improved 
if current values and previous values are used in the prediction equation. The simple 
causal model showed that   a) “current deposits” is best predicted  lagged 7, lag one for 

“Total Loans”, and current value of “ Quasi-Money”; b) “Total Loans” is best predicted  
using “ Current deposit s̀”   current value,   “Total Loans” lagged 6,, and     “ Quasi-
Money” lagged 1; and c) “current Quasi-Money” is best predicted  from the current value 
of “ Current Deposits” and “Total Loans”, and  from “ Quasi-Money” lagged 4. The 

instantaneous causal model showed that : a) “current deposits” is best predicted  lagged 
7, current values for “Total Loans”, and current value of “ Quasi-Money”; b) “Total 
Loans” is best predicted  using “ Current deposit s̀”   current value,   “Total Loans” lagged 
6,, and current value of “ Quasi-Money”; and c) “current Quasi-Money” is best predicted  

from the   “ Current Deposits” lagged 2, and “Total Loans”, lagged 1 and  from “ Quasi-
Money” lagged 4..   The analysis showed that a one-way simple causal model exists from 
“loans total” to “current deposits of local currency”, and from “quasi-money” to “loans 
total”. Instantaneous causality and feedback occur between the three variables.    

Keywords 

Final Prediction Error (FPE); Autoregressive Modelling; Granger 
Causality, Lag Structure; Auto-Regressive Distributive Lag; ARDL; 
AIC criterion, Akaike criterion; Full model; Reduced Model; simple 
causal model; Dynamic model. Bivariate feedback, tri-variate feedback. 
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 ملخص

اتبع هذا البحث طريقة تتابعية بهدف الوصول الي النوذج المبطأ وفترات التأخير 
للسببة البسيطة والتبادلية والفورية وعلي  Grangerاعتمد البحث علي تعريف المثلي . 

في    Chan et alوقام  1969في عام   Akaikeمعيار  خطأ التنبؤ النهائي الذي قدمه 
بتطويره ليشمل المتغيرات المتعددة. يهدف البحث التفرقة بين الأنواع المختلفة  1982عام 

في  Endogenousوالمتغيرات  الداخلة   Exogeneous  للسببية  للمتغيرات الخارجة
المتغيرات الثنائية  وإمتدادها الي المتغيرات  متعددة المتغيرات . تم التطبيق علي متغيرات 

، وشملت المتغيرات  2018الي  2005نقدية من الإقتصاد المصري  في السنوات من 
و " أشباه النقود". واتضح وجود ارتباطات   "الودائع الحالية للعملة المحلية " ، "جملة القروض"

بسيطة للثلاث متغيرات. استخدم كل متغير كمتغير داخل مبطأ والمتغيرات الآخرين 
وجود أو عدم وجود علاقات تبادلية  و فورية  كمتغيرين خارجيين . اهتمت الدراسة بمعرفة

بطأه أم لا ؟  وتوصلت بين الثلاث متغيرات ، وهل يتحسن التقدير إذا تم استخدام فترات م
الدراسة الي  انه في العلاقات السببية البسيطة  يمكن التنبؤ بحجم الودائع بسبع فترات 
تأخير في ذات المتغير وفترة تأخير واحدة في إجمالي القروض والقيمة الحالية لأشباه النقود 

ع و ستة فترات تأخير . يمكن التنبؤ  بقيمةإجمالي القروض الحالية  من القيمة الحالية للودائ
في متغير " اجمالي القروض"  وفترة تأخير واحدة في متغير " أشباه النقود ، ويمكن التنبؤ 
بمتغير " أشباه النقود"  من القيم الحالية لمتغيري " حجم الودائع " و " إجمالي القروض " 

ية الفورية ،  يمكن واربعة فترات إبطاء في متغير " أشباه النقود" . أما في العلاقات السبب
التنبؤ بحجم الودائع بسبع فترات تأخير في ذات المتغير  القيمة الحالية في متغيري " 
إجمالي القروض" و " أشباه النقود " ،  ويمكن التنبؤ  بقيمة "إجمالي القروض  "الحالية  

،   من القيمة الحالية "حجم الودائع و ستة فترات تأخير في متغير " اجمالي القروض"
وأيضا يمكن التنبؤ بمتغير " أشباه النقود"  من قيم " حجم الودائع " بفترتين إبطاء و فترة 
إبطاء واحدة لمتغير " إجمالي القروض " واربعة فترات إبطاء في متغير " أشباه النقود" . 
توصلت الدراسة الي وجود علاقة سببية بسيطة في   إتجاه واجد من إجمالي القروض الي 

لودائع بالعملة المحلية ومن أشباه النقود الي إجمالي القروض، وايضا وجود علاقة حجم ا
 سببية تبادلية فورية بين الثلاث متغيرات.
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1. Introduction 

Analysis of economic data has been approached with two different 
philosophies: that is of time series analysis and that is of c la s s ica l  
econometrics. If the endogenous and   exogenous   variables    are 
distinguishable, and if prior information o n  them is available then the 
economy could be represented by some dynamic simultaneous equations 
model.  But if theories are inexact, the time series techniques h a v e  the 

advantage o f  avoiding  spurious  and  false  restrictions. However, it is 
common practice   in time series to develop   models   having long lag 
structure or models   with lags chosen arbitrarily. The most common type 
of structured infinite distributed lag model is the geometric lag, also known 
as the Koyck lag (Koyck,1954; Gasparrini,2014; and  Lutkepohl,1980) . 

The distributed lag model is a dynamic model in which the regressor 𝑥 on 𝑦 
occurs over time, and could be given (Romer, 2012) as: 

𝑦𝑡 = 𝛼 + 𝛽(𝐿)𝑥𝑖 + 𝜇𝑡 = 𝛼 + + ∑ 𝛽𝑠 𝑥𝑡−𝑠

𝜔

𝑠=0

 + 𝜇𝑡         (1 − 1) 

Where 𝜇𝑡 is a stationary error term. Model (1-1) is estimated w i t h o u t  
having a firm idea about the optimal la g  structure or the possibility of 
any feedback between· the variables.  When too lengthy lags are chosen, 
the prediction  will suffer   from  shortage   of  degrees   of  freedom, 
multicollinearity,  biased·  or at  least  inefficient   estimates   and from 
specification error (Fey and Jain; 1982). Several studies have discussed 
several alternative to determine lag structures; Sims (1977) argues the 
advantage of treating all variables as endogenous and estimated an 
unconstrained vector autoregressive model (VAR) model in the first stage 

and then formulated a hypothesis testing procedure in a second stage. Fey 
and Jain (1982) suggested the estimation of a sequence of AR models, 
beginning with one lag and continuing with a higher orders of AR process 
until the likelihood function for a given sample attains a maximum, however 
the resulting model was over-specified in the order of AR process.  Auto 
Regressive Distributed Lag (ARDL) models were used in fields other than 
economics;  Nothdurft and   Engel, (2020) have used it to evaluate the effects 
of species mixing on productivity and climate-related resistance via tree-ring 

width measurements from sample cores; Hierarchical Distributed-Lag 
Models have been used by Baek et al ( 2020) to exploring varying geographic 
scale and magnitude in associations between the built environment and 
health; Geda and Kwong (2021) have used  Bayesian inference approach to 
parameter estimation of distributed lag models for forecasting used product 
returns for remanufacturing. Heaton and Peng (2012) treat the 

https://scholar.google.com.eg/citations?user=EmW2GYwAAAAJ&hl=en&oi=sra
https://link.springer.com/article/10.1007/s10342-019-01234-x#auth-Arne-Nothdurft
https://link.springer.com/article/10.1007/s10342-019-01234-x#auth-Markus-Engel
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maximum lag as an additional parameter and estimate it by sampling from 
its posterior distribution.  Belloumi  (2013)  applied The ARDL model to 

study the relationship between trade, FDI and economic growth in Tunisia. 
Also ARDL models have been used in hydraulic data (Rushworth et al, 
2013), in attributable risk (Gasparrini et al 2014,  Aboubakri et al (2019)  and  
in climate sensitivity ( 2020).  

            Akaike (1976) introduces the AIC criterion, which enables to compare 
increasing model parameters, and the optimal lag is chosen as the order of 
the model having the minimum value of AIC. This criterion minimizes the 
sum of squares of error after correction for the degrees of freedom. Hsiao 

(1979) used this criterion in autoregressive modeling of Canadian money 
and income data, variables used were M1, M2 and GNP.  Fey and Jain 
(1982) apply this AIC criterion to univariate models of money supply (M1), 
income (GNP) and prices.  Also, Fey and Jain (1982) applied this criterion to 
two bivariate models, one model for money and income, and the other for 
income and prices; Hsiao  (1981) had applied Granger causality and AIC 
criterion to bivariate seasonally adjusted quarterly stock and nominal GNP 
from 1947 to 1977 using M1 and M2 as alternative measure  of stock 

variables. 

     The purpose of this paper is to analyze and determine the lag structures 
in forecasting models. Specifically, to determine the optimal lag structure 
in forecasting current deposits of local currency, loans total (guaranteed and 
not guaranteed) and quasi-money when using the three above variables as 
endogenous function of the same variable lagged, and the other two 
variables as endogenous. The paper also aims to discover the existence or 
non-existence of causality and feedback among the variables of each data 

set and whether there is instantaneous causality (Granger, 1965), that is if a 
model that uses current, past  and future values of x and current and past 
values of y to predict y has smaller forecast error than a model than only 
uses current and past values of x and current and past values of y.  

         Section 1, of this paper gives Granger`s causality and Granger`s 
definitions of causality, feedback and instantaneous causality, and the 
Akaike (1969) Final prediction error (FPE) criterion.  Section 2 gives the 
strategy of fitting a multivariate AR model; Section 3 is the data analysis 

segment, that shows how to interpret results when fitting the multi-variate 
model to time series of variables selected for the analysis; and section 4 
gives conclusions and suggestions for future work in multivariate fitting of 
AR models.  
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2. Granger Causality and definitions 

In recent years Granger causality has received considerable attention and use 
in many areas of research. Granger causality is only relevant to time series 

variables. Given two time series variables: { 𝑋𝑡  , 𝑌𝑡 } ; the variable  𝑋”𝑡  is 

“Granger cause 𝑌𝑡” if 𝑌𝑡 can be better predicted using the historic of both 𝑋𝑡  
and  𝑌𝑡 than it by using   𝑌𝑡 alone. In such a system, each variable depends 
on all other variables. Granger (1969) gave a definition of causality that does 
not depend on economic laws (Caines and Chan, 1975; Pierce and Haugh, 
1977; Sims, 1972). Causality is defined by Granger (1969) as “incremental 
predictability”, that examines whether the forecasts of the future values of 

𝑌 can be improved if the current and lagged values of 𝑋 are taken into 
consideration. 

 Granger considered a stationary stochastic process and let: 𝑥𝑡  {𝑥𝑠 ∶ 𝑆 <
𝑇}  i.e., represents the set of past values and   𝑥𝑡

∗ {𝑥𝑠 ∶ 𝑆 ≤ 𝑇}  i.e., contains 

the set of past and present values, and similarly 𝑦𝑡 and 𝑦𝑡*. 

Let 𝜎2(𝑦𝑡|𝑌)is the mean squares of the error of predicting 𝑦𝑡 given all 
information in the population of interest; Granger gave the following 
definitions: 

Definition 1:  

                   if  𝜎2(𝑦𝑡|𝑌, 𝑋) < 𝜎2(𝑦𝑡|𝑌)  then we say t is causing Y denoted 

as 𝑋 ⇒ 𝑌 

Definition 2: 

              if  𝜎2(𝑦𝑡|𝑌, 𝑋) < 𝜎2(𝑦𝑡|𝑌)     and 𝜎2(𝑥𝑡|𝑌, 𝑋) < 𝜎2(𝑥𝑡|𝑋)  then 

we say feedback is occurring, denoted  𝑋 ⇔ 𝑌 

Definition 3 

              if  𝜎2(𝑦𝑡|𝑌, 𝑋∗) < 𝜎2(𝑦𝑡|𝑌)     where  𝑥𝑡
∗ {𝑥𝑠 ∶ 𝑆 ≤ 𝑇} we say 

instantaneous causality exists; meaning that current values of the 

endogeneous variable Y is better predicted when lagged endogenous 
variable, present and past exogeneous variable are included in the forecasting  
model. 

3. Strategy for fitting a Multivariate Autoregressive Model 

We assume a vector stationary time series Y consists of three components 

(𝑋, 𝑌, 𝑍). Under general conditions a regular full rank stationary process 

𝑋, 𝑌, 𝑍  posses an autoregressive (AR) model as follows (Masani, 1966): 
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[
𝑦𝑡
𝑥𝑡

𝑧𝑡

] = [
𝜓11(𝐿) 𝜓12(𝐿) 𝜓13(𝐿)

𝜓21(𝐿) 𝜓22(𝐿) 𝜓23(𝐿)

𝜓31(𝐿) 𝜓32(𝐿) 𝜓33(𝐿)
] [

𝑦𝑡
𝑥𝑡

𝑧𝑡

] + [
𝜇𝑡
𝜐𝑡

𝜔𝑡

]                          (2 − 1) 

Where: 

               (𝐿) is the lag operator and 𝐿𝑦𝑡
= 𝑦𝑡−1 

              𝜓𝑖𝑗(𝐿) = ∑ 𝜓𝑖𝑗,𝐿
𝑀
𝑖=1    

𝜇𝑡 , 𝜐𝑡 , 𝜔𝑡  𝑎𝑟𝑒 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 Ω. 

Least square can be applied to each equation of model (2-1), the estimated 
will be consistent, unbiased and asymptotically normally distributed; 
however, the model is extremely sensitive to the order of the chosen lags 

(Hsiao, 1979, a, b). To determine the lags (m) in   𝜓𝑖𝑗  Akaike (1969) gave 

FPE criterion to each equation. In the bivariate case as: 

                                     𝐹𝑃𝐸𝑦𝑡
= 𝐸(𝑦𝑡 − 𝑦𝑡)2 = 𝑆𝑆𝐸                         (2 − 2) 

And 𝑦𝑡 is the predicted value of 𝑦𝑡. In the tri-variate case, Chan et al (1982) 
gave a generalization of Akaike FPE criterion as follows: 

                        𝐹𝑃𝐸𝑦𝑡
(𝑚, 𝑛, 𝑟 ) =

𝑇+𝑚+𝑛+𝑟−1

𝑇−𝑚−𝑛−𝑟−1
×

𝑆𝑆𝐸

𝑇
                            (2 − 3) 

Where,  

𝑦𝑡 = 𝐴 +   �̂�11

𝑚
(𝐿)𝑦𝑡 +  �̂�12

𝑚
(𝐿)𝑥𝑡 + �̂�13

𝑚
(𝐿)𝑧𝑡               (2 − 4) 

and,      𝑚, 𝑛, 𝑟 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑔𝑠 𝑖𝑛  𝜓11(𝐿) , 𝜓12 and  𝜓13 

  �̂�11

𝑚
,  �̂�12

𝑚
,�̂�13

𝑚
  𝑎𝑛𝑑 𝐴  are  𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 when we treat the 

observations from (-m+1) to (0) as fixed, i.e., {𝑡 = −𝑚 +
1, … . .0,1,2 … . 𝑇}, 𝑚, 𝑛, 𝑟, ≤ 𝑀. 

𝑊ℎ𝑒𝑛 𝑟 = 0 in Equation (2-3) the FPE criterion balances the risk of 
choosing a lower order and the risk of selecting a higher order when using 
the specifications that give the smallest FPE (Hsiao (1978). Shibata (1976) 
and Bhansali (1996) have derived the asymptotic distribution and reached 

that the probability of choosing too low order using (2-3) approaches zero 
very quickly as the sample size increases; and the probability of selecting 
too high an order does not approach zero, but it vanishes out quickly. 
Bhansali (1988) and Bhansali and Downham (1977) showed that the 
probability of selecting too low an order is not significant in finite samples, 
but the cost of over-fitting is less than the cost of under-fitting. Gweke and 
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Mess (1979), Quandt and Trussell (1979) agree that the criterion has good 
properties as a fundamental criterion to select the order of an AR process.  

𝐼𝑛 𝑚𝑜𝑑𝑒𝑙 (2 − 1)  If we let every variable to influence every other 
variable, with the same lag length, then the number of parameters grows 
very large and exhausts the degrees of freedom. So, in a tri-variate case, 

when the order of lags = M, there will be (𝑀 + 1)3combinations of  

  𝜓11(𝐿),   𝜓12(𝐿),   𝜓13(𝐿) for 𝑦𝑡  alone. To reduce computational burden 
to less than 3M, Hsioa (1979, a) made use of Granger causality`s 
definitions of causality and feedback, suggested the following sequential 
procedure for fitting a multivariate AR process (in this section, variable is 
denoted * if variable is not in the equation). For the y equation, proceed as 
follows: 

1. Consider that y is the only output of the system, determine the one-
dimensional AR process for y, i.e., endogenous variable y as a 
function of lagged exogeneous variable y. Using FPE criterion 

(Equation 2-2), determine the order of the AR process that gives 
the smallest FPE, say that order is s. 

2. Introduce the first manipulated variable, say X, now compute the 
FPE to determine the order of the lag of   𝜓12, say m, taking into 
consideration the order of the lag operator of y, obtained in (1) 

above.   
3. Now, compare the FPE criterion in (1) and (2) above, i.e., compare: 

     𝐹𝑃𝐸𝑦(𝑚,∗,∗)  𝑤𝑖𝑡ℎ  𝐹𝑃𝐸𝑦(𝑚, 𝑛,∗) as follows: 

a) If 𝐹𝑃𝐸𝑦(𝑚,∗,∗) < 𝐹𝑃𝐸𝑦(𝑚, 𝑛,∗)  

𝑡ℎ𝑒𝑛 𝑋 ⇏ 𝑦 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠   𝜓12(𝐿) = 0 𝑖𝑛 𝑀𝑜𝑑𝑒𝑙 (3 − 1) 
b) If 𝐹𝑃𝐸𝑦(𝑚,∗,∗) > 𝐹𝑃𝐸𝑦(𝑚, 𝑛,∗) 

 𝑡ℎ𝑒𝑛 𝑋 ⇒ 𝑦 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠   𝜓12(𝐿) = 𝑛 𝑖𝑚 𝑀𝑜𝑑𝑒𝑙 (3 − 1) 
4. Introduce Z as the second manipulated variable, use FPE criterion 

(3-3) to determine the order of   𝜓13, say, r.  

Then compare: 𝐹𝑃𝐸𝑦(𝑚, 𝑛,∗)  𝑤𝑖𝑡ℎ  𝐹𝑃𝐸𝑦(𝑚, 𝑛, 𝑟) as follows: 

c) If 𝐹𝑃𝐸𝑦(𝑚, 𝑛,∗) < 𝐹𝑃𝐸𝑦(𝑚, 𝑛, 𝑟)  
𝑡ℎ𝑒𝑛 𝑍 ⇏ 𝑦 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠   𝜓13(𝐿) = 0 𝑖𝑛 𝑀𝑜𝑑𝑒𝑙 (2 − 1) 

d) If 𝐹𝑃𝐸𝑦(𝑚, 𝑛,∗) > 𝐹𝑃𝐸𝑦(𝑠𝑚, 𝑛, 𝑟) 

 𝑡ℎ𝑒𝑛 𝑍 ⇒ 𝑦 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠   𝜓13(𝐿) = 𝑟 𝑖𝑛 𝑀𝑜𝑑𝑒𝑙 (2 − 1) 

5. Identify the equation 𝑌 𝑙𝑎𝑔𝑔𝑒𝑑 𝑚, 𝑋 𝑙𝑎𝑔𝑔𝑒𝑑 𝑛 𝑎𝑛𝑑 𝑍 𝑙𝑎𝑔𝑒𝑑 𝑟  
6. Repeat steps 1 to 5 for the X variables (and for the Z variable) 

treating the other two as manipulated variables. 
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4. Data Analysis 

In this section, the above strategy is applied to a two data sets, where possible 
causation and feedback exist among the variables within each data set. The 

analysis aims to answer the following: a) what is the optimal lag structure 
for the AR process? b) do exogeneous variables cause simply or 
instantaneously the   endogenous variable? C) is there feedback between the 
variables? And d) what is the best-chosen AR model for each variable within 
a set? 

Variables include: Current Deposits of local currency (D), Loans Total (L), 
and quasi-money (Q). Data were obtained as quarterly data from 2001 I to 
2018 IV (Central Bank of Egypt, Yearbooks 2001 to 2018). However, data 

from the years 2011 to 2014 were excluded from the analysis (Due to the 
economic instability during that period). Thus, data used for the analysis 
were for 56 quarters. Results were compiled from the output of R package, 
which was used for the analysis. 

Data showed a seasonal pattern (not shown), and the seasonal variations 
showed increase over time. To free data from trend and seasonality 
variations, a logarithmic transformation was performed to the time series, 
and then the first difference of the logarithmic values is taken (Bowerman 

and Occonnell;1987, p.82). 

3.1 Testing for simple Causality 

The FPE of treating each variable as a one-dimensional AR is presented in 
Table 1, for a maximum lag being set at 10. The smallest FPE for “Current 
Deposits (D)”, “Loans (L)” and “Quasi-Money (Q)” are 7, 6, and 4 
respectively.  

Table 1: FPE for a one-dimensional AR Process 
 

Order of Lags  𝐷 × 10−3 𝐿 × 10−3 𝑄 × 10−3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

8.2659 

8.4746 

5.7870 

6.0481 

5.7976 

6.0552 

5.7140* 

6.1538 

6.4783 

6.6525 

8.6086 

5.2033 

5.2623 

4.4710 

5.5433 

4.1435* 

4.1924 

4.3330 

4.4082 

4.6161 

3.6437 

3.5264 

3.5744 

3.3029* 

3.5062 

3.5376 

3.4961 

3.7324 

3.9148 

4.1989 
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𝑅2(𝐿) 𝑅2(7) = .7024 𝑅2(6) =. .4923  𝑅2(4) = .4482 

Standard error .0049 .0036 .0030 

 

The intercorrelation of the three variables were:𝑟𝐷,𝐿 = .20     𝑟𝐷,𝑄 = −.13      

𝑟𝑞,𝐿 = .33 .  Thus, the first manipulated variable is chosen to be the one with 

the strongest correlation coefficient. The FPE of the controlled variables are 
obtained by varying the order of lags from 1 to 10, orders that gives the 
smallest FPE are given in Table 2.  

Table 2: The optimum lag of first manipulated variable 

Controlled 
variable 

Ist Manipulated 
variable 

𝐹𝑃𝐸 × 10−3 𝑅2 𝑇 

D(7) 

L(6) 

Q(4) 

Q (1) 

Q (1) 

L(1) 

5.9413 

4.0723 

3.3394 

.7037 

.5233 

.4643 

48 

49 

51 

Lags are denoted as: D for “current deposits”, L for “Loans Total” and Q for 
“quasi-money) and  variable   not in the equation is denoted as “*”.   From 
Table 2, it is found that, adding “ quasi-Money” (lag  1) to current deposits( 

Lag7) did not reduce the FPE, since 𝐹𝑃𝐸(7,∗,∗) =
5.714  𝑓𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒 1 𝑎𝑛𝑑 𝐹𝑃𝐸 (7,∗ ,1) =
5.9413 𝑓𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒 2,𝑎𝑛𝑑 𝑡ℎ𝑢𝑠,   𝐹𝑃𝐸(7,∗,∗) <  𝐹𝑃𝐸 (7,∗ ,1).  Using 
Hsiao (1979a) along with Granger causality definition,  we conclude that “ 
Quasi-Money does not cause “ Current Deposits”, i.e. 𝑄 ⇏ 𝐷, and    𝜓13 in 
model (3-1) could be assumed to equal zero. 

 Also, since 𝐹𝑃𝐸 (∗, 6 ,1) 𝑓𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒 (2)𝑖𝑠  𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛  𝐹𝑃𝐸 (∗
, 6 ,∗) ( 𝑇𝑎𝑏𝑙𝑒 1),, then it is concluded that ., 𝐿 ⇒ 𝑄 and   𝜓23 = 0 ; same for  
the quasi money variable where 𝐹𝑃𝐸 (∗
,1 ,4) 𝑓𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒 (2)𝑖𝑠  𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛  𝐹𝑃𝐸 (∗,∗ ,4) ( 𝑇𝑎𝑏𝑙𝑒 1), then it is 
concluded that  , 𝑄 ⇒ 𝐿   and   𝜓32 = 0, and feedback exists between “ Loans 
Totals” and “ Quasi-money.   

   The FPE(s) of the controlled variable are then obtained, holding the 
autoregressive operator of the controlled variable and the first manipulated 

variable to the order of lags chosen in previous steps. The order that gives 
the smallest FPE of the three- dimensional model is presented in Table 3. 
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Table 3: Optimal lags of fitting the three-dimensional AR process. 

Controlled 

variable 

1st 

Manipulated 
variable 

2nd 

manipulated  
variable 

𝐹𝑃𝐸
× 10−3 

 

𝑅2 

D(7) 

L(6) 

Q(4) 

Q (1) 

Q (1) 

L (1) 

L(1) 

D (1) 

D (1) 

5.8508 

4.1854 

3.1747 

.7211 

.5307 

.4652 

From Table 3, it is found that 𝐹𝑃𝐸 (7, 1 ,1) is less than 𝐹𝑃𝐸 (7,∗ ,1) from 
Table 2, which means that “Loans total” causes “ current deposits”, , i.e., 
𝐿 ⇒ 𝐷 , i.e.,   𝜓12 = 0 . Also, 𝐹𝑃𝐸 (1, 6 ,1) is  > 𝐹𝑃𝐸(∗ ,6,1)  which means 

that 𝐷 ⇏ 𝐿 . Also, 𝐹𝑃𝐸 (∗, 1 ,4) is  > 𝐹𝑃𝐸(1,1,4)  which means that 𝐷 ⇏
𝑄. 

Similarly, comparing the FPE`s from Tables 1,2 and 3. For the other two 
controlled variables, it is found that: 

𝑄𝑢𝑎𝑠𝑖 𝑀𝑜𝑛𝑒𝑦 ⇒ 𝐿𝑜𝑎𝑛 𝑇𝑜𝑡𝑎𝑙𝑠,                𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑠
⇏ 𝐿𝑜𝑎𝑛 𝑇𝑜𝑡𝑎𝑙𝑠     

𝐿𝑜𝑎𝑛 𝑇𝑜𝑡𝑎𝑙𝑠 ⇏ 𝑄𝑢𝑎𝑠𝑖 𝑀𝑜𝑛𝑒𝑦                𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑠
⇏ 𝑄𝑢𝑎𝑠𝑖 𝑀𝑜𝑛𝑒𝑦 

And thus:                𝜓23 ≠ 0   ,   𝜓21    =   𝜓31 =   𝜓32 = 0 

But, since  𝐿 ⇒  𝐷  but   𝐷 ⇏ 𝐿   then no feedback occurs between those two 
variables. Also, no feedback exists between “Current Deposits” and “Quasi-
Money”. 

Comparing models using the  𝑅2  values from Tables (1), (2), and (3) using 

the equation (Draper and  Smith ,1998):   

𝐹(𝑘2−𝑘1),(𝑇−𝑘2−1) =

 𝑅2
𝑓𝑢𝑙𝑙− 𝑅2

𝑟𝑒𝑑𝑢𝑐𝑒𝑑

(𝑘2−𝑘1)

(1−𝑅2
𝑓𝑢𝑙𝑙)/(𝑇−𝑘2−1

                            (3 − 1) 

Where 𝑅2
𝑓𝑢𝑙𝑙 is the 𝑅2 value from the full model and 𝑅2

𝑟𝑒𝑑𝑢𝑐𝑒𝑑 is the 𝑅2 

value from the reduced model; T, 𝑘2 𝑎𝑛𝑑 𝑘1  are the number of observations, 
number of parameters in the full model and the number of parameters in the 

reduced model, respectively. Thus, we are comparing the following models: 

Model 1:  𝐷𝑡 = 𝑎 + ∑ 𝑏𝑗
7
𝑗=1 ×  𝐷𝑡−𝑗                                                         𝑅2 = .7024 

  Model 2 :  𝐷𝑡 = 𝑎 + ∑ 𝑏𝑗
7
𝑗=1  ×   𝐷𝑡−𝑗   + 𝑐 × 𝑄𝑡−1                             𝑅2 = .7037  

Model 3 :  𝐷𝑡 = 𝑎 + ∑ 𝑏𝑗 ×7
𝑗=1  𝐷𝑡−𝑗 + 𝑐 × 𝑄𝑡−1 + 𝑑𝑡 × 𝐿𝑡−1          𝑅2 = .7211  

 

Model 4:   𝐿𝑡 = 𝑎 + ∑ 𝑑𝑗 ×6
𝑗=1 𝐿𝑡−𝑗                                                         𝑅2 = .4923  
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 Model 5: 𝐿𝑡 = 𝑎 + ∑ 𝑑𝑗 ×6
𝑗=1 𝐿𝑡−𝑗  + 𝑐 ×  𝑄𝑡−1                                   𝑅

2 =  .5233           

                                                                                     

           Model 6:  𝐿𝑡 = 𝑎 + ∑ 𝑑𝑗 ×6
𝑗=1 𝐿𝑡−𝑗  + 𝑐 × 𝑄𝑡−1   + 𝑏 × 𝐶𝐷𝑡−1       𝑅2 = .5307            

 Model 7:   𝑄𝑡 = 𝑎 + ∑ 𝑐𝑗 ×4
𝑗=1 𝑄𝑡−𝑗                                                       𝑅2 = .4482                  

Model 8: 𝑄𝑡 = 𝑎 + ∑ 𝑐𝑗×
4
𝑗=1 𝑄𝑡−𝑗   + 𝑑 ×  𝐿𝑡−1                                   𝑅2 =

.4643                         
Model 9: 𝑄𝑡 = 𝑎 + ∑ 𝑐𝑗 ×4

𝑗=1 𝑄𝑡−𝑗   + 𝑑 × 𝐿𝑡−1   + 𝑏 × 𝐶𝐷𝑡−1     𝑅2 =. 4652  

 
And the resulted F-ratios using (4 − 1) are as follows: 

Model (1) vs Model (2) F = .1625 

Model (2) vs Model (3) F = .2.32 
Model (4) vs Model (5) F = 2.40 
Model (5) vs Model (6) F = .616 
Model (7) vs Model (8) F = 1.27 
Model (8) vs Model (9) F = .0723 

None of the obtained F-ratios is significant. Thus, if we had to use the 
F-ratios alone, we would have chosen model (1), (4) and (7) to represent a 
simple equation for each variable. However, since Hsiao (1979a) and 
Granger (1969) definitions are adopted in this paper, and following Masanì s 
(1966) definition , the following system of equations is identified: 

  

[

(1 − 𝐿)𝐿𝑜𝑔 𝐷
(1 − 𝐿)𝐿𝑜𝑔 𝐿
(1 − 𝐿)𝐿𝑜𝑔 𝑄

] = [

𝜓7
11

(𝐿) 𝜓1
12

(𝐿) 0

0 𝜓6
22

(𝐿) 𝜓1
23

(𝐿)

0 0 𝜓4
33

(𝐿)

] [

(1 − 𝐿)𝐿𝑜𝑔 𝐷
(1 − 𝐿)𝐿𝑜𝑔 𝐿
(1 − 𝐿)𝐿𝑜𝑔 𝑄

] +

[
𝜇𝑡
𝜐𝑡

𝜔𝑡

]         (3 − 2) 

Where:  𝜓𝑖𝑗
𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑙𝑎𝑔𝑔𝑒𝑑 𝑘 𝑎𝑛𝑑   𝜇𝑡 ,𝜐𝑡   𝑎𝑛𝑑 𝜔𝑡 are residuals 

error for each time series.  

      Full, information estimates and their corresponding standard error (given 
in parenthesis below each estimate) for each of the single equation of the first 
difference of log (D), Log (L),  and log( Q) are presented below( * denotes 

significance coefficients ( 𝑃𝑣𝑎𝑙𝑢𝑒 < .05)): 
D̂t= − .006 −  .8662 D*t-1 − .9182 D*t-2 − 1.0592 D*t-3 − .6573 D*t-4  
                             (1.66)             (.2036)               (.2292)                (.2640)  
             

                     −.5296 D*t-5 −.2477 D*t-6 ) −.2562 D*t-7+.2716  L*t-1 
                       (.2283)              ( .2014)            (.1498)          ( .1787)                  

                            𝑅2 =  .7211          𝑆𝐸   .0048           𝑇 = 48 
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L̂t = − .007 −  .8133 L*t-1 − .8311 L*t-2 − .6078 L*t-3 − .3340 Lt-4    -.2073Lt-5 

                         (.1500)           (.1843)           (.2019)          (.1988)            (.1559)      
 

                       −.1203 Lt-6 −.2241Qt-1 
                          ( .1179)       (.1455) 
                             

                          𝑅2 =  .5301         𝑆𝐸   .0035                 𝑇 = 49 

 

Q̂
t
= − .001 −  .8188 Q*

t-1
− .4570 Q*

t-2
− .3987 Q*

t-3
− .3214 Q*

t-4
 

                         (.1419)           (.1725)                (.1711)      (.1403)                  

                                                               -     

                      𝑅2 =  .4652            𝑆𝐸 =  .003             𝑇 = 51 

3.2 Testing for Instantaneous Causality 
Granger (1969) gave the definition of instantaneous causality as given 

in definition (3) above. In addition, Granger gave a representation for the 
bivariate case, which is extended and simplified to fit the three- variable case 
(𝐷, 𝐿, 𝑄) as follows: 

dt = ∑ αj
𝑚
𝑗=1  dt−j + ∑ βj

𝑛
𝑗=1 lt−j+1 + ∑ γj

𝑟
𝑗=1 qt−j+1 + εd  

𝑙𝑡 = ∑ αj
𝑚
𝑗=1 dt−j+1 + ∑ βj

𝑛
𝑗=1 lt−j + ∑ γj

𝑟
𝑗=1 qt−j+1 + εl        

          𝑞𝑡 =  ∑ αj

𝑚

𝑗=1

dt−j+1 + ∑ βj

𝑛

𝑗=1

lxt−j+1 + ∑ γj

𝑟

𝑗=1

qt−j + εq 

Rerunning the same data to test for instaneous causality and feedback, 
Table 4 gives the FPE values for the optimal lags for the controlled variable 
and for the first manipulated  variable ( a two- dimensional AR Model).Table 
5, gives The FPE values for the three-dimensional AR Model. 
 
Table 4: Two-Dimensional Instantaneous causality AR Model the FPE for D, L and Q 

 
Optimal Lags 

FPE * 10-3 Controlled 

Variable 

1st Manipulated 

variable 

D (7) 

L  (6) 
Q  (4) 

Q (1) 

Q (1) 
L (1) 

5.5474 

3.8491 
3.0252 

 

Comparing FPE’s of Tables (1), (4) and (5) we find that: 

 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑠  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 
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                 FPE (7,∗,∗) >  𝐹𝑃𝐸 (7, 1,∗)𝑡ℎ𝑢𝑠         𝐿 𝐷, 𝑖. 𝑒.12  0,  

                  𝐹𝑃𝐸 (7, 1,∗) >  𝐹𝑃𝐸 (7, 1, 1)𝑡ℎ𝑢𝑠    𝑄   𝐷, 𝑖. 𝑒.13  0. 

  𝐹𝑜𝑟 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑛𝑠  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒:  

                                     𝑄  𝐿 𝑎𝑛𝑑  𝐷  𝐿, 𝑖. 𝑒.21  0 𝑎𝑛𝑑 23  0     

          𝐹𝑜𝑟 𝑡ℎ𝑒 𝑄𝑢𝑎𝑠𝑖 − 𝑀𝑜𝑛𝑒𝑦  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 

                                               𝐿 𝑄 𝑎𝑛𝑑  𝐷  𝑄.  
Table 5: Three-Dimensional Instantaneous causality AR Model the FPE for D, L and Q 

Optimal Lags 

FPE * 10-3 Controlled 

Variable 

1st Manipulated 

variable 

 2nd 

Manipulated 

variable 

D (7) 
L  (6) 
Q   (4) 

Q (1) 
Q (1) 
L (1) 

L (1) 
D (1) 
D (2) 

5.1582 
3.7239 
2.999 

 

Thus, instantaneous causality and feedback occur between the three 
variables. This is evident, also, when comparing the MSE resulted from the 
simple causal model (Table 3) and the instantaneous causal model (Table 5) 

as given in Table 6, for each of the three variables, where “0” means “ Current 
values at time t”,  MSE for the instaneous causal model is less than that of 
the simple causal model (definition (3) above). 

Table 6: Mean   Squared Error for the Simple and Instaneous causal models.  

Dep. Variable 
Simple causal Instaneous causal 

m n r R2 MSE m n r R2 MSE 
Current Deposits 

Total Loans 
Quasi-Money 

7 

0 
0 

1 

6 
0 

0 

1 
4 

.7211 

.5301 

.4652 

.0048 

.0036 

.0030 

7 

0 
2 

0 

6 
1 

0 

0 
4 

.7541 

.5825 

.5564 

.00425 

.0032 

.0026 

Table 6, shows that, the R2 values are larger and MSE is smaller for the 
instantaneous model than that of the simple causal model. The previous 
conclusion agrees with Granger’s view (1969, P.427): 

“whether or not a model involves some group of economic variables can 
be a simple causal model depends on what one considers to be the speed 
with which information flows through the economy and on the sampling 
period of the data used. It might be true that when quarterly data are 
used, for example, a simple causal model is not sufficient to explain the 

relationships between the variables”. 

The resulting full information instantaneous causal model equations (in 
first difference of the logs) and their corresponding standard error is given 
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below each coefficient, and * denotes significance coefficients ( 𝑃𝑣𝑎𝑙𝑢𝑒 <
.05). 

 
D̂t= − .0062- .8930 D*t-1 − .8935 D*t-2 − 1.0548 D*t-3 − .7536 D*t-4 − .6269 D*t-5 
                         (.1422 )          (.1901)            (.2198)               (.2447)         (.2147)                   

                         
                −.3159 D*t-6    − .2788D*t-7+.3549  L*t − .3374    Q*

t
 

              ( .1858  )         (.1408)      ( .1381)      (. 1569) 

 

                 𝑅2 = .7541           𝑆𝐸   .0043              𝑇 = 48 

L̂t = -.0061+.8133  D*t −  .7140 L*t-1 − .7628 L*t-2 − .5724 L*t-3 − .3496 Lt-4

− .2681 Lt-5 
                     (.0472 )          (.1481)              (.1754)         (.1921)           (.1900)          ( 
.1481 )        

   
                       −.1599 Lt-6   +.3302 Q

t
 

                           (.1032)           (.1270)          

                          

                                         𝑅2 = .5825         𝑆𝐸 =    .0043        𝑇 = 49 

 
  
Q̂

t
= − .0001 −  .1712 D*t          − .1263 D*t-1 +  .2780  L*t  −  .7181 Q*

t-1
 −  .4596 Q*

t-2
 

                               (.1419 )             (.1725)           (.1711)            (.1403)          (.1613)               

                             −.4165 Q*
t-3

        −          .3361 Q*
t-4

   

                             (.1602)                        (.1322)                  
                                                               -     

                           𝑅2 = .5564                𝑆𝐸 =  .0026                       𝑇 = 51 

4. Conclusions 

In this paper, we have tried to fit a multivariate autoregressive process that 
could be used as an initial step for model identification. The standard 
technique is to let every variable in the equation with the same length. The 
investigation of causality and feedback cut down on running an algorithm 
several times. Thus, if we know that the process involves a one-way causality 
or if the variables are unrelated, we could fit a univariate ARIMA model 
(Box and Jenkins, 1970). The multivariate approach is applied to a time 
series that consists of 56 quarters of some monetary variables of the Egyptian 
economy; these variables were Current deposits in local currency, Loan 

Total (guaranteed and unguaranteed), and Quasi-money. It is found that: 
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a) Current deposits of local currency is better predicted using it previous 
seven quarters volume, and “Loan Totals” lagged only one quarter. 

However, prediction is improved when current volume of: Loans 
Totals” and current quasi-money are added to the : current deposits of 
local currency” lagged 7 quarters. 

b) Loans total are affected significantly by its previous 6 quarters volume 
and by “Quasi-money” volume of one previous quarter. However, 
prediction is improved when “current deposits” and “current “quasi-
money” are included in the equation. “Loans Total “, i.e., no past 
values of these two exogeneous variables. 

c) Quasi-money is uni-dimensional, prediction of current values is good 
from its four previous quarters values. However, prediction is 
improved when current and past values of “current deposits” and 
“Loans Total” are included in the prediction equation. 

d) Instantaneous causality and instantaneous feedback occur among all 
three variables. A one-way simple causal relation exists from “Loans 
Total” to “current deposits of local currency” and from “quasi-money 
to “Loans total”. 
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