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ABSTRACT- A boundary element-conjugate gradient memory economic tech-
nique is presented for the analysis of the scattering of an £ or [-
wave by a conducting cylinder of arbitrary cross-section, The case
of internal resonance is treated using the developed technique along
with Waterman's extended boundary condition.
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[. INTRODUCTION

Recently, the boundary element method (BEM) has been applied Lo
gcattering and radiation problems in various enqineerlng areas-elec-
tromagnetic wave scattering by conducting or dielectric bedies being
ane example [1-4] . The governing equation is the scalar Helmholtz
equation from which a simple boundary integral equation is derived.
Using finite element techniques to discretize the integrals and appl-
ying poinkt collocation, the problem is reduced to solving a system
of linear equations. In terms of the moment method, the B8EM is equi-
valent to using subsectional bases and Dirac delta functions as tes-
ting functions. 1In the BEM, however, the shape functions correspon-
ding to subsectional bases are taken systematically which renders
the method simple and easy programmable.

By confining the analysis to the boundaries, the BEM is more
memory economic than its rival Finite element or finite difference
methods. In this paper we consider further development of this
advantage by using the conjugate gredient method (CGM) for solving
the BEM equations. The CGM is one of the most efficient iterative
methods for solving large systems of equations without storing any
square matrices [5,6] . [t has also the additional advantage of
fast convergence where a reasonably accurate solution is obtained
after a finite number of iterations, vsually less than the order of
the matrix. Therefore, the CGM offers considerable reduction in
memory storage requirements without much increase in compulation
time.

Like canventional moment methods based on E-field or H-field
integral equations, the BEM has been reported to fairl to give solu-
tion to the scattering problem at frequencies corresponding to in-
ternal resonance of a cavity formed by 8 hollow conductor of the

same shape as the original scaktterer 03] . At such frequencies the
coefficient matrix of the BEM equations is too ill-conditioned and
nearly singular. To remedy this defect, we adopt Waterman's exten-

ded boundary condition {EBC) (7] which can be easily incorporated
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with the present BEM-CCM algorithm without altering the basic for-
mulaticon or invoking sophisticated integral equations like, for
instance, the combined source [8] or combined field }9] equations.
These equations do give a unique solution at internal resonance,
but require much computatianal effork.

11- Boundary Element Equatians

The BEM formulation of electromagnetic scattering problems is
given in detail in references [1-3] . We present here the main
equations for convenience. We consider the two dimensional problem
of scattering of an E-wave by a perfecltly conducting cylinder. Let
E_ and H, be the scattered fields and £_ and H,_ be the fields radi-
ated by 4 line current source. By intedrating the scalar Helmholtz
equation and using Green's theorem we obtain the following boundary
integral equation [1,2]

Ezp B u(kiz(r,rp) Ht(r,rp) - Ez(r,rp) ﬁt(r,rp)] ds o)
5]
Where
Eoo_ _wWu {2)
E, = gi— H ™' (k |r-rp[].
o ik {2) i
Ay = -Ja— Hyo' (K |r~rp|] A.E,

k :-H'.If ME

and i is aﬁ outward unit normal to the boundary B.

Eavation (1) could also be derived by applying Lorentz recip-
rocity theorem to the scattered and line source fields [3,1Q]
When the observation point p is moved to the boundary, equation(1)
reduces to

cEp = Jg (EH -FE H) ds 42

where ¢ = a/2n 8nd a is the interior angle at p. The arguments as
well as the subscripts t and z have been omitted for brevity and the
symbaol f denotes Cauchy's principal value of the inteagral.

Hext, the conlour B is discretized in bhe usual 1soparametric
finite element method and.the unknawn fields are approximated by,

gay, linear polynomials over the elements. Equation (2) becomes
N
B.
- b j‘_ T
cE, = 2 (M Eowdx o+ 1, / E W, dx)
j=1 -1 _
N B. J[ _ J[1_
Z --‘4]—2 (EJ ‘H ‘HI dx + EJ+| H ‘~P2 dx ) Lo 03)
j= -1 -1
where ¥ (1-x}/2, w, = {1t+x)/2, and x 1s a normaliwed local

coordinale along the elrment B .-

J
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fimally, equation{3}).is applied alt each boundary node and the

boundary condition E = -£° is imposed, where E° is the incaident
electric field. The resulting M egqualions are represented in the
matrix ferm

A= -Be' = b (&)
where ' = col (£, Eyyeenn, E;), b = col (M, Hy,vovry HUD,
and & and B are squaré matrices. Explicit expre5siong for the ele-

ments of A and B are given in reference [3].

In this way the scattering problem has been reduced to solving
the matrix equation- (&), Haowver, the method abviously fails to give
a unigue solution at frequencies for which the homageneous equatiaon
Ah = 0 has a nonzern solution. [t can be shown that these are the
resonance frequencies of the complementary intercior problem; an H-
wave inside a perfectly conducting cylinder of the same shape as
the scatterer [11] . Several methods have been developed to get
around this problem-e survey is given, for instance, in the refere-~
nce list of |9]

Here we adapt a simple and efficient method based on the ext-
ended boundary condition (EBC) intreoduced by Waterman [7, 11]
The method consists in modifying theA matrix using additional equ-
ations gbtained by extending the boundary condition into some in-
terier points. Jhe field at these points i1s computed from

jf(fz Ht - Ez ﬁt) ds ¢ inside B ..... {5)

or its discretized form which is similar Lo equation (3). Using

these additional equations results in an overdetermined svstem of

linear equations. A least-squares solution is then obtained by
minimizing the residual (error)function

ffan-0"9g (6)
where A" 18 the rectanqular matrix ol the averdeleemined syslem

‘snd b” is the corresponding right-side column vector.

I11- The Conjugate Gradient Method

The CGM solves the system of linear equations (4} by finding
the position of the minimum of an error function similar to that
given by equation (6}. Thus, the iterative process for minimizing
(6) is also used for salving f4}. ln each step of iteration a new
trial vectar h is computed by incrementing the *ast value of h by
a direction vector p. The direction vector p is chosen to be
mutually conJugate w1¥h pl with respect to the makrix A*A, (i.e
guch that p A+YA p = 0} and to be as nearly as possible in the
dleCthn of the maximum gradient of the error lunction at the point
h'{the direction af steepest descent). Here the star denotes ord-
Inary complex caonjugale transpose.

o The conjugate gradient algorithm starts with an initial guess
h™ and sels
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r® = 5-an® and p® = F% - AT L. (7)

Iteration then proceeds as follows

o - Aot e (8)

a, = IE"W /g™y (9)
hn+1 N 8 pn ..... (10)
rn+‘I' - rn - Bn Un ..... (11)
1-:r|+1 - A* rn+'l ..... (12)

b, = R T e PP (13)
RIS L by o (14)

The process is terminated when the relative change in h is less than
some specified limit.

it is clear that the only operations in the conjugate gradient pro-
cedure which involves the copefficient matrix A (or A*) 13 matrix-
vector multiplication. Since this operation can be performed quite
efficiently on an element-by-element basis, memory space for the
square matrix A can be dispensed with entirely. The elements of A
are regenerated each time they are needed, but never stored in the
high speed-RAM. Alternatively, the elements may be computed at the
very begining of the program and stored in backup memory (disk space)
until they are called -up in due time.

Both the above alternatives invelve an inerease in execution
time, but the faskt convergence of the CGM makes this increase to-
lerable. Thus, it is known that in the absence of rounding-off
errors, the present CGM yields the exact solution after m steps,
where m is the number of distinct eigenvalues of the metrix ﬁA*[b,ﬁ].
Rounding-off errors may slow the convergence, butb reasonably accur-
ate results are often obtained after a8 number of iterations less
than the order of the matrix. This 1s confirmed by the examples in
the next section as well as by the numerical results of reference
(12} , which applies the CGM to solve large systems of equations
agssociated with a conventional method of moments.

IV- Numerical Examples

We have considered two problems with known analytical solut-
ioans. The first is the scattering of a plane E-wave by a perfectly
conducting elliptiec cylinder. The parameter computed is the for-
ward scattering cross-section which is determined by the radiation
zone scattered field in the direction of the incident wave [13 ].
This latter field is computed from equation (1), but with the Hankel
functions replaced by their asymptotic values and the integral dis-
cretized in the usual way. The results are presented in table 1.
With 72 nodes, the difference between the analytical and numerical
results is within 1.5% and is probably due to rounding off errors
in both the BEM and the analytical solutions. The latter is given
in terms of series of ordinary and modified Mathieu functions which
are computed using Fourier series and Bessel function products series,
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Table 1 gives alsa a comparison between the CGM and the con-
ventional LU-decomposition. The CLHM has been implemented withoutl
storing the sguere-coefficient-matrix. However, this CCH ronside-
rable save in memory space is achieved at the expense aof much in-
crease in the execution time, in spite of the fast convergence of
the method. (Less than N/2 iteration steps have been sufficient
to get close aqgreement with LU-decomposition results).

— 20 |e—
| a = 2 /—l;crjshgo

23 b= 2 fa sinh {0

Table 1: Comparison between conjugate gradient method (CGM) and
LU-decomposition. Apalytical results are taken from fld]
Number of iterations is shown in brackets. .

EG.._—.’-_._

Boundary Normalized Cross-section Comp. Time
85 50 Elsmants gtk {Relative Units)
N Lu CGM Analyt. Lu CGM
11 36 14,17 14.17(17) 14.65 22 111
L]
72 14,43 14.43(25) Ué 541
0.4 36 9.401 9.400(18) 9.755 22, 115
L - .
72 9.602 9.602(26) 44 557
1.0.2 36 B.432 8.430(18) 8.743 22 115
,0.
12 8.598 8.59%7(27) 46 572
The second example is the scattering of a plane ll-wave by a
conducting circular cylinder at internal resonance {ka = 3.8317 =
first zero of J,{x)). The formulation 1s basically the same as in
section I[I with the roles of £ and H interchanged and the Dirichi-
et's boundary condition replaced by a Neumann's caondition. To pre-

dict the occurence of resonance, we could examine the singularity

of the BEM matrix by computing its codition number over a range of
frequencies. However, this would reguire computing the norm of the
inverse matrix {or its largest eigenvalue) and would not be a simple
task as the matrix itself is not stored in the high-speed memory.

We have, therefore, adopted an alternative test based on the energy

conservation at infinity. [t is well known that,_ far an incident
plane wave the power scattering diagram 'F( P )| sati1sfies the
relation

27{
/IFU’) |2 dp = -2n Re[((q,i)] ..... (15)
- _
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Fig. 1: Normalized current dunsity over a circular
tylinder at ipternal resonance.

Inset: variation of accuracy check parameter g
near intermal resonance.
(8EM results).
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which is often celled the optical theorem. Thus, following [3] the
quantity

o re [FC oY) ]

€ - -t (16)
1 N
[P
n=1
has been used to check the energy balance. Away from resonance,

36 boundary elements have been found sufficient to achieve a value
of € less than 0.02 (Fig. %). Howver, € aqraws up rapidly as res-
onance is approached and uging a finer grid does not produce any
noticeable improvement. Similar findings have been reported inl3].
Fig. %1 shows the analytical and computed current distribution over
the conducting cylinder. The variations in the conventional BEM
solution are very different from theose of the analybtical solution.
The use of the EBC with 8 interior constraint points results in a
significant improvement.

¥- Concluding Remarks

The present boundary element-conjugate gradient technique pro-
vides a powerful memeory economic method which makes the solution of
electromagnetic scattering problems feasible even with limited com-
puter memory. The method is readily applicable to the amalysis of
scattering from a single conducting eylinder or from a number of
parallel cylinders. However, the method trades memory space for
execution time and with large problems computing times may be Loo
long in spite of the fast convergence of the conjugate gradient

technique. It may be possible by adopting an appropriate matrix
preconditioning technique to achieve faster rate of convergence and
consequently, to reduce the computation time. Ihis possibility as

well as the application of the method to scattering by dielectric
cylinders are now under study.
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