

Synthesis and characterization of Nano Zirconia for use in Chromatographic ¹⁸⁸W/¹⁸⁸Re

Mai E. Abd Elghany^{*1}, Mohamed M. Abd Elhamid¹, Hala E. Ramadan¹, Mahmoud A. El-Amir¹, Wagiha H. Mahmoud²

¹ Radioactive Isotopes and Generators Dept., Hot Labs Center, Atomic Energy Authority, Cairo, Egypt. ² Chemistry Dept., Faculty of Science, Ain Shames University, Cairo, Egypt.

requirements of nuclear medicine applications.

ARTICLE INFO

ABSTRACT

Article history: Received 4 November 2020 Accepted 7 March 2021

Keywords: Nano zirconia; nuclear medicine; sorption; generator

Introduction

Rhenium-188 is an attractive radionuclide used for various therapeutic applications ^[1] due to its favorable nuclear properties and its convenient half-life ($t_{1/2} = 17.01$ h). ¹⁸⁸Re is a high energy β -emitter ($E_{max} = 2.118$ MeV, 71.1%) accompanying a predominant (155 keV, 15.8 %) gammaray emission ^[2]. The total radiation dose of β^{-} emission of ¹⁸⁸Re sufficient for effective penetration in solid tumors and destroy abnormal tissues ^[3]. In addition, the lowenergy gamma (155 keV) emission enables imaging with gamma-ray cameras interesting for clinical use for therapy ^[4]. Specific activity of the desired radioisotope is an important parameter, where very high specific activity of carrier-free radioisotope is required for medical applications.¹⁸⁸W via further neutron sorption leads to limited specific activity. Production of a high specific activity ¹⁸⁸W requires relatively long irradiation periods (2-3 months)^[5]. So, ¹⁸⁸W/¹⁸⁸Re generator that can easily use large amounts of low specific activity ¹⁸⁸W. Because of the limited sorption capacity of the sorbent material for ¹⁸⁸W ions, the size of the column matrix should be large or using nano material sorbent. Recently, the researchers use nanomaterial methods in preparation of sorbent matrix to increase its surface area that increase the radioisotope capacity on the sorption matrix, where ¹⁸⁸W specific activity raise hence¹⁸⁸Re eluate specific activity become suitable for

activity of All chemical reagents used in this work were of AR grade. Distilled water was used for preparation of different solutions. The following chemical reagents were used: on periods - Hydrochloric acid, 37 % HCl (MW = 36.46 g), are purchased from BDH.

pressure water conditions. Materials and Methods

Chemical reagents

microemulsions,

The purpose of this dissertation can be represented as the synthesis of nano zirconia

gel material via hydrothermal route under different preparation conditions, choosing

the optimum gel material as indicated from the batch distribution studies of tungstate(VI)¹⁸⁸W to be characterized by different analytical tools (XRD,IR, FESEM,

HRTEM, studying kinetics of ¹⁸⁸W (VI). Finally, preparation of ¹⁸⁸W/¹⁸⁸Re for

chromatographic column generator. Specification of ¹⁸⁸Re eluates was used in the

- HNO₃ 65 %, H_2O_2 30 % , NaOH are purchased from Merck.

Requirements of medicine applications. Nanotechnology is

a field of science that involves the combination of

chemistry, biology, physics and/or engineering for the

production of new nano-scale material size in the range of 1

nm - 100 nm. There are various techniques for synthesis of

nanoparticles such as chemical precipitation, sol-gel,

syntheses. In this search we use hydrothermal method

which defined as crystal growth under high temperature and

and

hydrothermal

sonochemical

- Urea, CO(NH₂)₂, Sodium tungstate dihydrate, Na₂WO₄.2H₂O, Zirconium oxychloride octahydrate, ZrOCl₂.8H₂O are purchased from Sigma-Aldrich.

Instruments and equipment

Gamma-ray spectrometer, Analytical balance, FT-IR spectrometer, X-ray diffractometer, Scanning electron microscope (SEM), High resolution transmission microscope (TEM), Hydrothermal reactors.

^{*} Corresponding author. E-mail address: <u>maiabdelghany47@yahoo.com</u>

Radiotracer stock solution

¹⁸⁸W) was obtained by Radio tungsten (including of sodium tungstate irradiation targets 0.1g Na₂WO₄.2H₂O powder wrapped in aluminum foils placed in special aluminum cans which were sealed by welding for 12 h at a thermal neutron flux of 1×10^{14} n cm⁻² s⁻¹ and cooled for 90-120 days. The irradiated targets were separately dissolved in 5 ml of 5M NaOH with adding 0.5 ml of 30 % H₂O₂ at room temperature.

Preparation under hydrothermal conditions Urea : zirconium molar ratio

0.5 M Zr(IV) solution was prepared by dissolving 32.23g ZrOCl₂.8H₂O in 200 ml H₂O. In addition, 0.624, 0.75, 1, 2.5 M urea solutions were prepared by dissolving 4.50, 5.41, 7.21 and 18.02 g of urea in 50 ml H₂O for each case. Urea solutions were added dropwise with stirring to 50 ml fractions of 0.5 M Zr(IV) solution to obtain mixtures of urea : Zr molar ratios of 1.25 : 1, 1.5 : 1, 2 : 1 and 5 : 1, respectively.

Drying temperature

ZrO₂ gel was synthesized as the optimum urea: Zr molar ratio, and dried at 50, 100, 200, 250, 300, 350, 400 and 500 °C.

Hydrothermal reaction temperature

The gel was prepared at hydrothermal temperature 100. 150 and 200°C for 24 h.

Batch distribution studies

Batch equilibration of 10 ml of tungstate (VI)-188W solution 10⁻⁴ M with 0.1g zirconia gel under different conditions was conducted to calculate the distribution coefficient of tungstate.

Batch distribution studies with hydrothermal route zirconia gel

Distribution coefficient of tungstate (VI)-188W was studied at previous optimum condition.

Characterization of zirconia gels

The optimum zirconia gel synthesized via hydrothermal routes were characterized by (XRD, IR, FESEM, HRTEM).

Kinetic studies

Kinetic studies were carried out for tungstate (VI)-188W batch sorption from chloride solution on the optimum zirconia gel to determine the most suitable kinetic model that the sorption process obeys ^[6].

188W/188Re Preparation and performance of generators

Performance studies of ¹⁸⁸W/¹⁸⁸Re chromatographic column generator based on gel included elution yield, elution profiles at the optimum pH-value.

Results and Discussion

Fig. 1 shows neutron activation scheme of ¹⁸⁶W isotope, through which ¹⁸⁸W is produced ^[7].

Gel synthesis via hydrothermal route

The hydrothermal synthesis via rapid temperature rise gives a suitable reaction zone for nanoparticle synthesis. **Batch distribution studies**

Distribution coefficient, k_d , of tungstate(VI)-¹⁸⁸W between 10 ml aqueous solution and 0.1 g of zirconia gel was determined as a function of some parameters; urea: Zr molar ratio at Cl⁻ and NO₃⁻ media, pH-value of

¹⁸⁸W solution 10⁻⁴M, gel drying temperature and hydrothermal reaction temperature. All of those parameters were studied for zirconia gel synthesized via hydrothermal route at optimum pH and medium obtained using in chromatographic column applications for studying uptake of ¹⁸⁸W and performance studies of ¹⁸⁸W/¹⁸⁸Re generators.

Distribution coefficient, k_d , can be defined as: $k_d = \frac{C_0 - C_e}{C_e} \times \frac{m}{V} \quad (ml/g)$ (1)

Where.

 C_0 : initial count rate of ¹⁸⁸W in solution (before batch contact with gel material).

 C_e : count rate of ¹⁸⁸W in solution at equilibrium (after batch contact with gel material).

m: mass of gel material (0.1 g).

V: volume of ¹⁸⁸W solution (10 ml).

Effect of urea: zirconium molar ratio at NO3⁻ and Cl⁻ media

Distribution coefficient of 10⁻⁴ M tungstate (VI)- ¹⁸⁸W was studied as a function of urea : zirconium concentration at pH 1.5 (using NO₃⁻ and Cl⁻ media), hydrothermal reaction at 100°C and dried at 100°C, According to Fig. 2 k_d -values decreased with increasing urea : zirconia molar ratio . The highest k_d -value was achieved with Cl⁻ medium at urea: zirconium molar ratio of 1.25.

Effect of equilibrium pH at different urea:zirconium molar ratios at media (NO₃⁻ and Cl⁻)

Fig. 3 shows that equilibrium pH increased, k_d -values decreased. The highest k_d -value was achieved with Cl⁻ medium at (pH = 1.5) and urea: zr molar ratio of (1.25).

Effect of drying temperature

Fig. 4 shows studying k_d -values of tungstate(VI)¹⁸⁸W against drying temperature. The highest k_d -value for the hydrothermal route-zirconia gel was obtained at 350 °C.

Effect of hydrothermal reaction temperature

According to Fig. 5, under previous optimum conditions, k_d -values of tungstate (VI)¹⁸⁸W increased at hydrothermal reaction temperature from 100 to 150 °C then drastically decreased with further. increase of the hydrothermal reaction temperature to 200 °c.

Characterization of the optimum zirconia gel materials

From the aforementioned studies Fig. 2, 3, 4 and 5, it was clear that the optimum gel material conditions of tungstate(VI)-¹⁸⁸W were urea : zr molar ratio of (1.25), (pH =1.5)at cl⁻ media hydrothermal reaction temperature at 150 °C and dried at 350 °C.

IR spectroscopy:

Fig. 6 shows IR spectra of nano gel, respectively. Bands appearing at 1634 cm⁻¹ may be attributed to the bending modes of -OH groups on the surface of gel materials, whereas the broad bands at 3405 cm⁻¹ may be attributed to stretching modes which generated from H-O-H intermolecular hydrogen bonds formed between -OH groups attached to Zr⁴⁺ ions ^[8]. The band at 1372 cm⁻¹ may be assigned to the adsorbed non-bridging -OH groups. The strong band at 767 cm⁻¹, in addition to bands at 511 and 587 cm⁻¹ (weak band) may be ascribed to vibrations of Zr-O bonds of monoclinic phase of nano zirconia ^{[9].} The weak band at 743 cm⁻¹ may be an indication to the minor contribution monoclinic phase.

M. E. Abd Elghan et al /Egy. J. Pure & Appl. Sci. 2020; 58(1):43-50

Fig. 1: Neutron activation schemes of ¹⁸⁶W.

Fig. 2: Effect of urea: zirconium molar ratio on distribution coefficient of ¹⁸⁸W (using NO₃⁻ and Cl⁻ media).

Fig. 3: Effect of equilibrium pH of using (a) NO_3^- and (b) Cl⁻ media.

Fig. 4: Effect of drying temperature Fig. 5: hydrothermal reaction via Effect of hydrothermal through time of 24 h. temperature on distribution coefficient of ¹⁸⁸W.

Fig. 6: FT-IR spectra of ZrO₂ gel synthesized via hydrothermal route.

X-ray diffraction

Fig. 7 represents the XRD pattern of the hydrothermal route-ZrO2 gel indicates a high crystallinity and characteristic of monoclinic phase ^[10].

The crystallite size of gel was found to be 42.27 nm indicates a lower Crystallinity, monoclinic-ZrO₂ phase, other peaks and shoulders may be related to other intermediate phases.

SEM analysis (Scanning electron microscopy)

Fig. 8 shows SEM image of the hydrothermal route-nano ZrO_2 gel at different magnifications (2000 χ),

which indicates irregular aggregations with indefinite morphology.

HRTEM (High-resolution transmission electron microscopy)

Fig. 9 shows HRTEM image of nano zirconia gel where gel particles look like blackberries; oval shape and appears to be an aggregate of many smaller particles (100 and 70 nm, respectively) and crystallite size as determined from XRD (42 nm, respectively), proves particle aggregation.

Fig. 7: XRD patterns of (a) nano ZrO₂ gel synthesized via hydrothermal route.

Fig. 8: SEM images of nano ZrO_2 gel synthesized via hydrothermal route with different magnifications; 2000 χ .

Fig: 9: HRTEM images of nano ZrO₂ gel synthesized via hydrothermal gel.

Kinetic modeling studies

Uptake of tungstate(VI)-¹⁸⁸W on gel was studied as a function of time. Uptake was calculated according to the following equation:

$$Uptake = \frac{C_0 - C_e}{C_0} \times 100$$
 (%) (2)

Where,

 C_0 : initial count rate of ¹⁸⁸W in solution (before contact with gel material).

 C_e : equilibrium count rate of ¹⁸⁸W (after contact with gel material).

Fig. 10 shows uptake-time profiles of 0.01 M tungstate(VI)-¹⁸⁸W, Cl⁻ solution at equilibrium pH 1.5, on 0.1 g of gel, by batch contact method for 26 h at different temperatures [25, 40 and 60] °C. In the first time periods (5-30 min), uptake rate increased rapidly and then increased slowly. Increasing temperature accompanied by uptake increased which indicating an endothermic sorption process. Uptake values were found to be 44.2, 48.3 and 56.9 % at [25, 40 and 60] °C after 24 h batch contact time, equilibrium was attained. The sorption rate follows the pseudo second-order kinetic model at all of the studied sorption temperatures [25, 40 and 60]°C. The pseudo second-order kinetic model (PSO) can be represented by the following equation ^[6]:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(3)

Where,

t: sorption time (h).

 q_t : sorption capacity at time t.

 q_e : sorption capacity at equilibrium.

 k_2 : pseudo second-order rate constant (g/mg h).

By plotting t/q_t against t the straight-line obtained, according the following equation q_e and k_2 , calculated through slope, s_{PSO} and intercept, i_{PSO} values obtained from Fig. 10

$$q_e = \frac{1}{s_{PSO}}$$
(4)
$$k_2 = \frac{1}{\frac{1}{l_{PSO}q_2^2}}$$
(5)

According to **Fig. 10**, using Equations (3) and (4), the calculated q_e values of gel were found to be 81.6, 89.0 and 105.9 mg/g at 25, 40 and 60 °C, respectively, showing a high agreement with the corresponding experimentally determined q_t values calculated from equation (3), which found to be 81.3, 88.8 and 104.7 mg/g. Agreement of $q_t \& q_e$ values and R^2 values \cong 1, so the sorption rate of tungstate(VI)-¹⁸⁸W follows the pseudo second-order kinetic model **Table 1**.

Fig. 10: Batch uptake of 0.01 M tungstate(VI)-¹⁸⁸W as a function of contact time with nano ZrO₂ gel synthesized via hydrothermal route at [25, 40 and 60]°C.

Table 1: Kinetic modeling and activation energy data for sorption of tungstate(VI)-¹⁸⁸W on nano ZrO₂ gel

Temp.	Slope	Intercept	R^2	<i>qe</i> (calculated; 1/slope), mg/g	<i>qe</i> (experimenta l), mg/g	k2, g/mg h
25 °C	0.01225	0.00127	0.99999	81.6	81.3	0.118
40 °C	0.01124	0.00115	0.99998	89.0	88.8	0.110
60°C	0.00945	0.00307	0.99959	105.9	104.7	0.029

¹⁸⁸W/¹⁸⁸Re chromatographic column generators based on nano ZrO₂ gel

Gel column was loaded with 25 ml of 1×10^{-2} M tungstate (VI)¹⁸⁸W. After loading, Column was then periodically eluted (\geq 72 h) 40 times along 60 days by passing 10 ml of 0.9 % NaCl solution. Typical elution profiles of gel at different flow rates of 0.5, 1 and 2 ml/min for the eluted ¹⁸⁸Re activity were represented in **Fig. 11**.

It was found that, elution yield decreased with increasing elution flow rate from 0.5 ml/min to 1ml/min ,then increased again with increasing flow rate to 2 ml/min where the elution yield values were found to be 58 ± 9 , 30 ± 7 and 72 ± 3 % at elution flow rates of 0.5, 1 and 2 ml/min. The best elution yield was found at 2 ml/min flow rate.

Conclusion

Nano zirconia gel was synthesized by hydrothermal route.

The effect of different parameters (i. pH, ii. urea: zirconium molar ratio, iii. equilibration media, Cl⁻ and NO₃⁻ media, iv. drying temperature and v. hydrothermal temperature) on the distribution coefficient (k_d) of tungstate (VI)-¹⁸⁸W was studied. It was found that the optimum conditions were urea : zirconia molar ratio of (1.25), pH 1.5, Cl⁻ medium, hydrothermal reaction of 150 °C and drying temperature of 350 °C.

The gel was characterized by IR spectroscopy, XRD, SEM, HRTEM. It was found that sorption of tungstate(VI)-¹⁸⁸W gel obeyed the pseudo second-order kinetic rate at different temperatures [25, 40 and 60] °C. The sorption was found to be endothermic. The performance of ¹⁸⁸W/¹⁸⁸Re chromatographic column generators, based on gel was studied. Specifications of ¹⁸⁸Re eluates from generator was found to meet the requirements of nuclear medicine applications.

Fig. 11: ¹⁸⁸Re elution profiles obtained from¹⁸⁸W/¹⁸⁸Re at flow rates of (a) 0.5 ml / min, (b) 1 ml / min and (c) 2 ml / min at 25 °C.

Reference

- Boschi, A., Uccelli, L., Pasquali, M., Duatti, A., Taibi, A., Pupillo, G. and Esposito J. (2014).¹⁸⁸W/¹⁸⁸Re generator system and its therapeutic applications. Journal of Chemistry, 14 pages.
- Pervez, S., Mushtaq, A. and Arif M., (2002). Preparation of 188Re-labeled hydroxyapatite for radiosynovectomy. J. Radioanal. Nucl. Chem., 254: 383-385.
- Pillai, M. R. A., Ashutosh, D. and Knapp, Jr. F. F. J. (2012). Rhenium-188: Availability from the 188W/188Re generator and status of current applications, Semin. Nucl. Med. 38: S19-S29.
- 4) Jeong, J. M. and Knapp, F. F. Jr. (2008). Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy. Semin. Nucl. Med., 38: S19-S29.
- 5) Vučina, J. and Dragoljub, L. (2002). Radionuclidic generators for the production of technetium-99m and rhenium-188. Phys. Chem. Tech., 2: 235-243
- Ho, Y. S. and McKay, G. (1999a). Pseudosecond order model for sorption processes, Proc. Biochem. 34: 451–465.

- 7) Pritychenko, B. and Mughabghab S. F. (2012). Neutron thermal cross sections, Westcott Factors, resonance integrals, Maxwellian averaged cross sections and astrophysical reaction rates. Nucl. Data Sheets, **113**: 3120-3144.
- Septawendar, R., Nuruddin, A., Sutardi, S., Maryani, E., Asri, L. A. T. W. and Purwasasmita, B. S. (2018). Low-temperature metastable tetragonal zirconia nanoparticles (NpMTZ) synthesized from local zircon by a modified sodium carbonate sintering method. Soc., 54: 643-654.
- 9) Qian, Z. and Shi, J. L. (1998). Characterization of pure and doped zirconia nanoparticles with infrared transmission spectroscopy. Nanostructure. Mater., 10: 235-244.
- **10) Smith, D. K. and Newkirk, H. W. (1965).** The Crystal structure of baddeleyite (monoclinic ZrO₂) and its relation to the polymorphism of ZrO₂. Acta Cryst., **18**: 983-991.