Assiut Vet. Med. J. Vol. 54 No. 119 October 2008

Animal Health Research Institute, Dokki, Port -Said Laboratory for Food Hygiene

OCCURRENCE OF ESCHERICHIA COLI O157:H7 IN SOME DAIRY PRODUCTS AT PORT -SAID CITY MARKETS

(With 4 Tables)

By

AMANY M. SHALABY and MARCEL F. GALAB (Received at 18/9/2008)

تواجد الميكروب القولوني O157:H7 في بعض منتجات الألبان المتداولة في أسواق مدينة بورسعيد

أمانى محمود شلبى ، مارسيل فخرى جلاب

لا شك أن منتجات الألبان تلعب دور ا هاما في حياتنا. ويحتل الايس كريم شعبية كبيرة حيث يقبل عليه الكبار والصغار خاصة في فصل الصيف. أما الزبادي فتعتبر من أكثر منتجات الألبان استهلاكا وذلك لقيمته الغذائية والصحية. ولما كانت منتجات الألبان وسط جيد لنمو الكثير من الميكروبات، لذا فإنها تلعب دور ا خطير ا في نقل الكثير من الميكروبات للإنسان ومنها ميكروب الاشيرشيا كولاي TH : O157 حيث يعتبر هذا الميكروب من اخطر الميكروبات الممرضة وذلك لأنه يمكن إحداث العدوى بجر عة هي الأقل بين مثيلاتها من الميكروبات وقد تؤدى إلى حدوث فشل كلوى وخاصة في الأطفال لذلك تهدف هذه الدر اسة إلى عزل وتقييم انتشار الميكروب القولوني TH : O157 الى جانب العترات الأخرى من الميكروب القولوني في عينات الايس كريم والزبادى التي تباع في السوبر ماركت، وقد تم تجميع خمسين عينة من كل منتج. وقد أسفرت التحاليل عن وجود ميكروب الأشير شيا كولاى بنسب 25 42.4% في عينات الايس كريم والزبادى التي تباع في السوبر ماركت، وقد تم بنسب 25 42.4% في عينات الايس كريم والزبادى التي تباع في السوبر ماركت، وقد تم بنسب 25 42.5% في عينات الايس كريم والزبادى على التوالي. كذلك تم عزل وتصنيف بنسب 25 42.5% من المالي منتج. وقد أسفرت التحاليل عن وجود ميكروب الأشير شيا كولاى بنسب 25 42.5% من المالي منتج. وقد أسفرت التحاليل عن وجود ميكروب الأشير شيا كولاى بنسب 25 42.5% من عينات الايس كريم والزبادى على التوالي. كذلك تم عزل وتصنيف بنسب 25 42.5% من الميزات المالي عدد العينات الإيجابية لكل منتج. كما تم تصنيف عترات العترة TH الايجابية وهي 0157, 020 , 0111, 0112,0119 هذا وقد تم مناقشة أخرى من العينات الايجابية وهي 0157,012 الي جانب العترات الأخرى على الصحة العامة.

SUMMARY

A total of one hundred random samples, fifty from ice- cream and 50 from yoghurt were collected from Port-Said markets. Samples were examined to isolate and evaluate the prevalence rate of *E. coli* O157:H7 and other serotypes. *E. coli* was detected in ice-cream and yoghurt samples at a rate of 58 and 42 %, respectively. 9(18 %) and 5(10 %) out of 50 ice- cream and yoghurt samples, respectively were found to be contaminated with *E. coli* O157: H7. A total of 66 *E. coli* isolates

recovered from positive samples were identified to serogroups, O112(40.9%), O119(31.8%) O111(21.2%), O26(3%) and O55(1.5%). The majority of *E. coli* serotypes recovered from the examined samples showed hemolytic activity. The public health significance of the isolated serogroups and consumer's safety were discussed.

Key words: Dairy products, ice-cream, yoghurt, E. coli

INTRODUCTION

Milk and dairy products are subjected to contamination with several types of microorganisms from different sources, such contaminants may render the milk and its products unsafe to use and expose the consumers to risk of infection. *E. coli* as a group of bacteria found in the intestines of human, animals and birds. Enterohaemorrhagic *Escherichia coli* (EHEC) was first identified as a human pathogen in 1982, when *E. coli* of serotype O157: H7 associated with two outbreaks of Haemorrhagic Colitis (HC) in the USA (Riley *et al.*, 1983). Although, there are several strains and serogroups of *E. coli* have been identified as HC, *E. coli* serotype O157: H7 is the predominant cause of HC associated disease in many countries around the world (Thomas *et al.*, 1993, Waters *et al.*, 1994 and Sharpe *et al.*, 1995).

Escherichia coli O157: H7 emerged as one of the most important foodborne bacterial pathogens within the last 20 years. The organism has a low infective dose as cfu/ml or/gm (Doyle et al., 1997) and causes haemorrhagic colitis which is occasionally complicated by haemolytic uremic syndrome (Morrison et al., 1986, Neil et al., 1987 and Kelly et al., 1990). Moreover, the bacterium can produce a variety of clinical symptoms including mild to sever bloody diarrhea and thrombotic thrombocytopenic Purpura haemorrhagica (Dean-Nystrom et al., 1999, Todd and Dundas, 2001 and Meichtri et al., 2004). The main virulence factor of EHEC bacteria is the production of verotoxins either verotoxins (VT1) and/or (VT2) so it's called Verocytotoxic E. coli (Kaper, and O'Brien, 1998 and Normanno et al., 2004). E. coli O157: H7 can survive in the stomach at pH level of 3 for up to 5 hrs before passage to the intestinal tract (Price et al., 2004). These characteristics provide a competitive edge for E. coli O157: H7 in ready-to-eat foods. E. coli O157: H7can contaminate avariety of foods resulting in E. coli O157: H7associated illness (Foley et al., 2004). However many epidemiologic and microbiologic investigations on large epidemic outbreaks have implicated the consumption of raw milk (Benkerroum et al., 2004) and raw milk products including yoghurt and ice -cream (Cheng and Chou., 2001; Oksuz *et al.*, 2004). The organism may get access to milk and milk products through fecal contamination as well as post pasteurization contamination (Murinda *et al.*, 2002). In addition yoghurt and ice-cream are the most likely dairy products, which are prefered by adult and young. Ice- cream is a food commodity consumed widely during summer and is considered the major dairy product thatdominates interest of large segments of population (Anuranjini *et al.*, 2008). On the other hand yoghurt is consumed by a wide cross section of people throughout the world, has an established market as a functional therapeutic food. It is also considered more digestible than ordinary milk, it is usually eaten for prevention and treatment of several disorders and particularly recommended for sick and convalescent people (Gilliland, 2000).

World Health Organization (1988) emphasized the importance of examining the behavior of pathogens during preparation of food products as a first step to control their growth .Therefore the aim of the present study was to determine the prevalence of *E. coli* O157 and other serotypes in ice- cream and yoghurt sold in Port-Said markets.

MATERIALS and METHODS

A total of one hundred random samples, fifty from each of icecream and yoghurt were collected from Port-Said markets. Ice-cream samples were thawed in their original containers in a refrigerator at 2-5°C. Twenty five gm of each of ice- cream and yoghurt samples were transferred to 225 ml of tryptone phosphate broth as a pre-enrichment fluid and thoroughly mixed then incubated for 4-6 hr. at 37°C. (Mehlman and Lovett, 1984). Two Mossel's enteric enrichment broth (E.E), tubes (10ml) were inoculated with 1ml from the pre-enrichment tryptone phosphate broth medium. One tube was incubated at 44°C for 24 hr, permit the growth of pathogenic E. coli, other than serovar O157:H7. The other tube was incubated at 37°C to permit the growth of E. coli O157and other serovars which are unable to grow at higher (44°C) temperatures. (Mehlman and Romero, 1982) Then the two tubes were incubated for 24 hr. One loopful from each of the selective enrichment cultures incubated at 37°C & 44°C was inoculated onto MacConkey -Sorbitol agar (MACS) and Eosin Methylene Blue agar (EMB), then incubated at 37°C for 24hr. Suspected colonies: white and colorless with smoky center 1-2mm diameter, sorbitol negative colonies on MACS and metallic green colored smooth sides colonies on EMB, were picked up and subcultured onto nutrient agar plates and incubated at 37°C for 24hr. The purified colonies were picked up and streaked onto slope nutrient agar for morphological and biochemical tests according to (Cruickshank *et al.*, 1975; Quinn *et al.*, 2002). The isolates were identified serologically by the slide agglutination test using diagnostic polyvalent and monovalent *E. coli* O157 antisera and H7 antisera. *Escherichia coli* antisera (Denka Seikenco., Ltd, Tokyo, Japan), following the manufacturer's specification.

Detection of haemolysin: (Beutin et al., 1989).

Isolated *E. coli* were inoculated onto blood agar containing sheep blood 5% and incubated at 37° C for 24 hr. Positive haemolysin production was detected.

RESULTS

Table 1: Prevalence of *E*.*coli* in the examined samples (n=50 of each)

Milk products	Positive samples	% of positive samples
Ice- cream	29	58
Yoghurt	21	42

Table 2: Prevalence of *E. coli* O157:H7 among the examined samples (n=50 of each).

Milk products	Positive samples for serovar O157:H7			
	No	%		
ice-cream	9	18		
Yoghurt	5	10		

Table 3: Serovars of *E. coli* isolates (other than O157: H7) recoveredfrom the examined milk products samples.

Serovar	Tot-al no. of isolates	0112		O119		0111		O26		O55	
Milk Products	S	No	%	No	%	No	%	No	%	No	%
Ice-cream	37	15	40.5	11	29.7	8	21.6	2	5.4	1	2.7
Yoghurt	29	12	41.4	10	34.5	6	20.7	-	-	1	3.4
Total	66	27	40.9	21	31.8	14	21.2	2	3	2	1.5

Assiut Vet. Med. J. Vol. 54 No. 119 October 2008

E. coli serovars	No. of isolates	Activity			
		No.	%		
O157:H7	17	17	100		
O112	27	27	100		
O119	21	21	100		
0111	14	12	85.7		
O26	2	2	100		
O55	2	2	100		
Total	83	81	97.5		

Table 4: Haemolytic activity of *E. coli* isolates recovered from the examined milk products samples.

DISCUSSION

E. coli strains are important cause of diarrheal diseases in the world and remain one of the major public health problems of children and young infants (Levine *et al.*, 1986). Several well-documented outbreaks due to enterohaemorrhagic *E. coli* (EHEC) infection have been linked to consumption of milk and its products (Champman and Wright, 1993; Upton and Coia, 1994). Although more than 60 *E .coli* serotypes produce shiga-like toxins, (SLTS) serotype O157: H7, is the predominant pathogen in the EHEC group and the one associated most frequently with human infection worldwide (Karmali, 1989).

The present investigation was carried out to evaluate the prevalence of E. coli O157: H7 and other E. coli serotypes among selected types of milk products. The overall incidence of E. coli in icecream and voghurt samples was recorded in Table 1; E. coli was recovered from ice-cream samples at a rate of 58%. El-Essawy and Riad (1990) and Anuranjini et al., (2008) could detect E. coli in 8.16 and respectively from the examined ice-cream samples. 21.1% In comparative, higher isolation rate of E. coli in this study may be due to contamination during handling as well as in efficiency and bad sanitary conditions during storage (Anuranjini et al., 2008). On the other hand, 42% of the yoghurt samples showed positive results. These results are nearly in agreement with that recorded by Moursy (1969) who detected E. coli in 55% of the examined yoghurt samples. While Moustafa et al. (1988) isolated 25(62.5%) E. coli strain out of the examined 40 yoghurt samples. This contamination rate of the examined yoghurt samples indicated unhygienic practices, the fact that the major route of E. coli transmission is through the consumption of contaminated food, water, person-to-person and animal to person intact (Heuvelink *et al.*, 1995; Leyer *et al.*, 1995; Reilly 1998). Moreover, milk and milk products are good media for the growth of a number of pathogens. (Erskine *et al.*, 1988).

Results of biochemical and serological identifications of sorbitol negative E. coli isolates, revealed that 9 (18%) out of the 50 examined ice-cream samples were found to be contaminated with E. coli O157:H7 (Table 2). In this respect Wilson et al. (1997) isolated E. coli O157 from 18% of the examined ice-cream samples. On the other hand, Josefa et al., (2005) recorded one case of outbreak due to consuming ice-cream in the United States .The fact that ice-cream is a good source for microbial growth due to its nutrient content, neutral pH and long storage time even though, it is stored in a frozen state. (Kanbakna et al., 2004). The results in Table 2 showed that 5(10%) out of the 50 examined voghurt samples were found to be contaminated with E. coli O157. (Abdel -Hakiem et al., 1988) could isolate E. coli O157: H7 from voghurt samples. EL-Gaml, (2000) and Mohamed et al., (2005) explained that yoghurt can serve as conveyors of E. coli O157: H7 infection despite of it is acidity because the pathogen have the ability to grow during processing and could survive for long period during cold storage. E. coli O157: H7 has the ability to tolerate acidic conditions of yoghurt (Lederberg, 2000) since milk fermentation usually produce anaerobic conditions within the fermented dairy products, it is thought that anaerobic growth of E. coli O157: H7in an acidic medium, like yoghurt, results in the development of acid tolerance (Cheng and Kaspar, 1998). This may be due to production of RPoS-regulated protein or arginine decarboxylase, which is also induced during anaerobic growth at acidic pH (Auger et al., 1989; Lin et al., 1996).

Regarding other serogroups of isolated *E. coli* as shown in Table 3 O112and O119 were the most prevalent serotypes recovered from the examined samples of ice-cream and yoghurt followed by O111.O26 which could be detected in ice-cream samples only. Two isolates of the serovar O55 were isolated from both ice-cream and yoghurt samples .Most of the isolated serotypes are usually associated with many cases of food borne outbreaks and multiple sporadic cases in different parts of the world. Anathan and Subramanian (1995) could isolate *E. coli* belonging to serotypes from cases of perisistent diarrhea in young children. Although *E. coli* O157was the main focus of attention, there is increasing evidence that verotoxigenic *E. coli* (VTEC) serotypes other than O157 are the cause of haemolytic uraemic syndromes (Goldwater

and Bettelheim, 1995). Furthermore, Saridakis *et al.* (1997) recorded that *E. coli* of serogroup O26 was commonly isolated from infants and calves affected with diarrhea and has been considered as one of the most important enteropathogenic *E. coli* (EPEC) and SLT producers.

Blood haemolysis is one of character of virulent *E. coli*. (Stephen *et al.*, 1985). Fourteen isolates identified serologically as *E. coli* O157: H7 were tested for haemolysis production using sheep blood agar. As shown in Table 4, all the tested isolates were haemolytic. Furthermore, the majority of *E. coli* isolates other than O157: H7 were isolated from the examined samples showed haemolytic activity. In this respect Adesiyun *et al.*, (1997) concluded that from *E. coli* isolates tested for haemolysis 13.8% were haemolytic and this could be used as phenotypic marker or virulence factors of serotypes. Meanwhile Gad EL-Said *et al.*, (2005) reported that 81.25% of isolated *E. coli* recovered from milk samples showed haemolytic activity. *E. coli* strains were found to be haemolytic is an indication contaminating of *E. coli* may result in problems for consumers. since haemolysin production has been associated with pathogenicity of *E. coli* strains.

The results of this study showed that, ice-cream and yoghurt can serve as conveyors of *E. coli* O157: H7 and some other serotypes (Cheng and Kaspar, 1998) of *E. coli* which pose a health hazard to consumers, therefore efficient heat treatment of raw milk and prevention of post-treatment contamination during processing ,storage and handling should be strictly adopted.

REFERANCES

- Abdel-Hakiem, E.H.; Ley, K.W. and Neumann, H. (1988): Prevalence of E. coli (EHEC) in some foods and water. 8 th Sci. Con. Fac. Vet. Med. Assiut Univ., Egypt. Proc., 1: 98-117.
- Adesiyun, A.A.; Webb, L.A.; Romaine, H. and Kaminijolo, J.S. (1997): Prevalence and characteristics of isolated *Escherichia coli* from milk and faeces of cows on dairy farm in Trinidad. J. Food Protect., 60(10): 1174-1181.
- Anathan, S. and Subramanian, M.A. (1995): Microbial etiology and assessment of immunological status of children persistent diarrhea. J. Comm. Dis., 27(3): 193-195.
- Anuranjini, C.; Sebastian, G. and Dhanashre, B. (2008): Bacteriological analysis of ice–cream from Mangalore, south India. Indian J. Med Rs, 127: 91-92.

Assiut Vet. Med. J. Vol. 54 No. 119 October 2008

- Auger, E.A.; Redding, K.E.; Plumb, T.; Childs, L.C.; Meng, S.Y. and Bennett, G.N. (1989): Construction of lac fusions to the inducible Arginine and Lysine decarboxylase genes of Escherichia coli K- 12. J. Mol. Microbiol., 3: 609-620.
- Benkerroum, N.; Bouhal, Y.; EL-Attar, A. and Marhaben, A. (2004): Occurrence of shiga toxin producing Escherichia coli O157 in selected dairy and meat products marked in the city of Rabat, Morocco. J. Food Prot., 67(6): 1234-1237.
- Beutin, L.; Montenegro, M.A.; Orskov. I.; Orskov, F.; Prado, J.; Zimmermann, S. and Stephen, R. (1989): Close association of verotoxin (Shiga like toxin) production with enterohaemolysin production in strains of E. coli. J. Clin. Microbiol., 27(11): 2559-2564.
- Champman, P.A. and Wright, D.J. (1993): Untreated milk as a source of verotoxigenic E. coli O157. The Vet. Record, 14: 171-172.
- Cheng, C.M. and Kaspar, C.V. (1998): Growth and processing conditions affecting acid tolerance in *Escherichia coli* O157: H7. Food Microbiol., 15: 157-166.
- Cheng, H.Y. and Chou, C.C. (2001): Acid adaptation and temperature effect on the survival of *Escherichia coli* O157: H7 in acidic fruit juice and lactic fermented milk product Int. Food Microbial., Amesterdam: Elsevier Science B.V.70 (10): 189-195.
- Cruickshank, R.; Duguid, J.P.; Marmoin, B.P and Swain, R.H.A. (1975): "Medical Microbiology". The practice of medical microbiology, VII, 12th ed., Churchill, Living stone, Edinburgh.
- Dean-Nystrom, E.A.; Boswoth, B.T. and Moory H.W. (1999): Pathogenesis of Escherichia coli O157: H7 in weaned calves. In Paul, P.S. and Francis, D.H. (editors), Mechanisms in the pathogenesis of enteric disease Z. Adv. Exp. Med. Biol., 473: 173-177.
- Doyle, M.P.; Zhao, T.; Meng, J. and Zhao, S. (1997): Escherichia coli O157: H7 In Food Microbiology Fundamental and Frontiens. Doyle, M.P.; Beuchat, L.R. and Montville, T.J. eds. Am. Soc. Microbiol., Washington DC.
- *El-Essawy, H.A. and Riad, A.A.M. (1990):* Incidence of coliform organisms in cream and ice-cream with special reference to enteropathogenic strains of *Escherichia coli*. Assuit Vet. Med. J.: 24, 47: 140 -144.

- *El-Gaml, A.M. (2000):* Survival of *Escherichia coli* O157: H7 in yoghurt. Egypt J. Agric. Res. 78: 251 -259.
- Erskine, R.J.; Eberhart, R.J.; Hutchinson, L.J.; Spencer, S.B. and Campell, M.A. (1988): "Incidence and types of clinical mastitis in dairy herds with high and low somatic cell counts". J. Am. Vet. Med. Assoc., 192: 761-765.
- Foley, S.L.; Simjee, S.; Meng, J.; White, D.G.; Mc Dernott, P.F.; Zhao, S. (2004): Evaluation of molecular typing methods for *Escherichia coli* O157: H7 isolates from cattle, food and humans. J. Food Prot., 67(4): 651-657.
- Gad EL-Said, W.A.; EL-Jakee, J.K.; Kandel, M.M. and EL- Shabrawy, M.A. (2005): Presence of of Escherichia coli O157: H7 in raw milk and meat samples. J. Egypt. Vet. Med. Assoc., 65(3): 341-350.
- *Gilliland, S. (2000):* Fermented milks and probiotics in Applied dairy microbiology (2nded.). E.H. Marth and J.L. Steele, Eds. Marcel Dekker Inc., Ny, USA.
- Goldwater, P.N. and Bettelheim, K.A. (1995): "Haemolytic uremic syndrome due to shiga-like toxin producing *Escherichia coli* O48: H21. Emerging Infect. Dis., I: 132-133.
- Heuvelink, A.E.; Vanderkar, N.C.J.; Meis, J.F.G.M.; Monnes, L.A.H. and Melchers, W. (1995): Characterization of verotoxin producing Escherichia coli O157 isolates from patients with haemolytic uremic syndrome in western Europe. Epidemiol. infect, 115: 1-14.
- Josefa, M.R.; Phyllis, H.S.; Collen, C.; Patricia, M.G. and David, L.S. (2005): Epidemiology of Escherichia coli O157: H7 Outbreaks, United States 1982: 2002. Emerging infectious Diseases, 11 (4): 603-609
- *Kanbakna, U.; Con, A.H. and Ayar, A. (2004):* Determination of microbiological contamination sources during ice-cream production in Denizli, Turkey. Food control, 15: 463-470.
- Karmali, M.A. (1989): Infection by verocytotoxin producing Escherichia coli. Clin. Microbiol., 2: 15-38.
- Kaper-James, B. and O'Brien-Alison, D. (1998): Escherichia coli O157:H7 and other shiga toxin produced by Escherichia coli strains. Washington, DC: ASU Press.
- Kelly, J.; Oryshak, A.; Wenetsek, M.; Garbiec, J. and Handy, S. (1990): The colonic pathology of *Escherichia coli* O157: H 7 infection. Am. J. Surg. Pathol.14: 87-92.

- *Lederberg, J. (2000):* Dairy products In Encyclopedia of microbiology.2nd ed., Vol. 2 D-K. Academic press. A Harcourt Science and Technology Company. UK.
- Levine, M.M.; Losonkey, M.B.; Herrington, P.; Tacket, C.; Rennel, M.B. and Morris J.G. (1986): Pediatric diarrhea. J. Pediatr. Infect. Dis., 5 (suppl.1): 29-43.
- Leyer, G.J.; Wand, L.L. and Jonshon, E.A. (1995): Acid adaptation of *Escherichia coli* O157: H7 increases survival in acidic foods. App. Environ. Microbiol., 61: 3752-3755.
- Lin, J.; Smith, M.P.; Chapin, K.C.; Baik, H.S.; Benett, G.N. and Foster, J.W. (1996): Mechanisms of acid resistance in enterohemorrhagic Escherichia coli, Appl. Environ. Microbiol., 62: 3094-3100.
- Mehlman, I.I. and Romero, A. (1982): Escherichia coli recovery from foods. Food Technol., 36(3): 73 -79.
- Mehlman, I.I. and Lovett, J. (1984): Escherichia coli in FDA Bacteriological Analytical Manual, 6th ed. Assoc. of Official Analytical Chemists: Arlington.
- Meichtri, L.; Miliwebsky, E.; Gioffre, A.; Chinen, I.; Basckier, A.; Chillemi, G.; Guth, B.E.C.; Masana, M.O.; Cataldi, A. and Rodriguez, H.R. (2004): Shiga toxin producing Escherichia coli in healthy beef steers from Argentina. Prevalence and virulence properties. Int. J. Food Microbiol., 96 (2): 189-198.
- Mohamed, H.A.; Aboueleinin, A.M.A. and EL-Barbry, H.A. (2005): Fate of *E. coli* O157: H7 in plain yoghurt during refrigerated storage 4th Int. Sci. Conf., Mansoura.
- Moursy, A.W. (1969): Incidence and viability of coliform organisms in yoghurt. Vet. Med. J.: 19, 1971, Vet. Med. Cairo University.
- Moustafa, M.K.; Ahmed, A.A.H. and Abdel-Hakiem (1988): Sanitary conditions of commercially available yoghurt in Assuit city. Assuit Vet. Med. J: 20(39): 99-102.
- Morrison, D.M.; Tyrell, D.L. and Jevels, L.D. (1986): Colonic biopsy in verotoxin induced haemorrhagic colitis and thrombiotic thrombocytobenic purpura (T T P). Am. J. Clin. Pathol. 86: 108 -112.
- Murinda, L.; Miliwebsky, E.; Gioffre, A.; Chinen, I.; Basckier, A.; Chillemi, G.; Guth, B.E.C.; Masana, M.O.; Cataldi, A. and Rodriguez, H.R. (2002): Shiga toxin producing Escherichia coli O157:H7 in bulk tank milk and fecal samples from cull cows: a 12- month survey of dairy farms in east Tennessce. J.

Food Prot., Des Moines, Lowa: International Association of Milk, Food and Environmental sanitarians. 65(5): 752-759.

- Neil, M.A.; Tarr, P.I.; Clausen, C.R.; Christic, D.L. and Hickman, R.O. (1987): Escherichia coli O157: H7 as the predominant pathogen associated with the hemolytic uremic syndrome: a prospective study in the Pacific Northwest Pediatrics 80: 37-40.
- Normanno, G.; Parisi, A.; Dambrosio, A.; Quaglia, N.C.; Montagna, D.; Chiocco, D. and Celano, G.V. (2004): Typing of Escherichia coli O157 strains isolated from fresh sausages. Food Microbiol., 21(2): 79-82
- Oksuz, O.; Arici, M.; Kurullay, S. and Gumus, T. (2004): Incidence of Escherichia coli O157 in raw milk and white picked cheese manufactured from raw milk in Turkey. J. Food control, 15: 453-45.
- Price, S.B.; Wright, J.C.; Decraves, F.J.; Castanie-Cornet, M.P. and Foster, J.W. (2004): Acid resistance systems required for Escherichia coli O157: H7 in the bovine gastrointestinal tract and in apple cider are different. Appl. Environ. Microbiol., 39(5): 1932-1937.
- *Quinn, P.J.; Markey, B.K.; Carter, M.E.; Donelly, W.J.C. and Leonard, F.C. (2002):* Veterinary Microbiology and Microbial Diseases 1st Iowa Sate University Press Blackwell Science.
- Riley, L. W.; Remis, R. S.; Helgerson, S. D.; Mcgee, H.B.; Wells, J.G.; Davis, B.R.; Herbert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargett, N.T.; Blake, P.A. and Cohen, M.L. (1983): "Haemorragic colitis associated with a rare serotype of Escherichia coli. N. Engl. J. Med., 308: 681-685.
- *Reilly, A. (1998):* Prevention and control of enterohemorrhagic *Escherichia coli* (EHEC) Infection .Memorandum from a WHO meeting, Bull, WHO, 76: 245-255.
- Saridakis, H.O.; EL-Gared, S.A.; Vidotto, M.C. and Guth, B.E.C. (1997): "Virulence properties of *Escherichia coli* strains belonging to enteropathogenic (EPEC) serogroups isolated from calves with diarrhea. Vet. Microbiol., 54(2): 145-153.
- Sharpe, J.M.; Keilly, W.J. Coia, J.; Curnow, E. and Synge, B.A. (1995):
 E. coli O157: H7 infection in Scotland, an epidemiological overview 1984-1994. P H L S Microbiol. Dig., 12: 134-140.

- Stephen, J.; Cavalieri, G. and Synder, I. (1985): Escherichia coli alpha haemolysin: Characteristics and probable role in pathogenicity. Microbiological Reviews, Dec. 48(4): 326-343.
- Thomas, A.; Chart, H.; Cheasy, T.; Smith, E.; Frost, J.A. and Rowe, B. (1993): VeroCytotoxin – producing E. coli particularly serogroup O157 associated with human infection in the United kingdom, 1989-1991-Epidemiol. infec., 110: 591 – 600.
- *Todd, W.T.A. and Dundas, S. (2001):* The management of VTEC O157 infection. Int. J. Food Microbiol., Amesterdam: Elsevier Science B.v.66 (½).103 -110.
- Upton, P. and Coia, J.E. (1994): Outbreak of E. coli O157 infection associated with pasteurized milk supply (letter) Lancet, 344: 1015
- Waters, J.R.; Sharp, J.C.M. and Dev, V.J. (1994): Infection caused by E. coli O157:H7 in Alberts, Canada and in Scotland: a five-year review, 1987-1991. Clin. Infect. Dis., 19: 831-843.
- Wilson, I.G.; Heaney, J.C.N. and Weatherup, S.T.C. (1997): "The effect of ice –cream –Scoop water on the hygiene of ice-cream. Epidimiology and infection., 119(1): 35-40
- World Health Organization (1988): Geneva , Switzerland. Fed. 15-19.