Lipids and oxidative stress in blood serum of alloxan-induced diabetic rats: possible effects on liver and kidney tissues.

Benrebai M^a, Abidli N^a, Benlatreche C^b

^a Département des sciences de la nature et de la vie. Université Mentouri, Constantine 25000, Algeria. ^b Laboratoire de biochimie, CHU Benbadis, Constantine 25000, Algeria.

Abstract

Experimental diabetes mellitus in rats was produced by a single dose of 200 mg of alloxan /kg body weight given intraperitoneally as an aqueous solution. The diabetic rats showed abnormal high blood glucose and variable increments in serum total lipids as well as in other serum lipid constituents particularly the triglycerides.

Certain pathological abnormalities could be detected in both liver and kidney, particularly when the disturbances in glucose and lipid metabolism were more pronounced in a group of diabetic rats that received no insulin treatment {NIT} or after four weeks of the onset of diabetes. On the other hand, putting the group of diabetic rats on an insulin regimen from the start of the diabetic condition resulted in a significant restoration of most evaluated parameters to values almost similar to those of normal control animals. Diabetic rats receiving no insulin treatment showed a markedly significant loss in body weight; and started to gain body weight gradually when put on the proper insulin regimen.

Introduction

Diabetes mellitus is a disease of different etiology, it may arise as a result of abnormalities in a number of intrinsic factors as stress; pregnancy or disorder in β cells function in synthesis and secretion of insulin. Experimentally, the disease can be induced through the destruction of β cells in the islets of Langerhans by diabetogenic agents such as alloxan. Much attention is given to studies on biochemical abnormalities that associate the disease as well as the proper control of its course, since if the diabetic condition is not well controlled a number of undesirable dangerous complications such as atherosc-lerosis, heart disease, retinopathy and hepatic histopathological changes could be frequently encountered among diabetic patents. The present study deals with investigations on biochemical abnormalities in blood glucose, serum total lipids and their main constituents namely: cholesterol, triglycerides, phospholipids together with follow up of pathological changes in both the liver and kidnev.

Also, the value of introduction of

insulin treatment at the onset of the diabetic condition, or at the later period after alleviating the diabetic state and on its complications was investigated.

Material and methods

Albino rats of both sexes three to five months of age and weighing 300 to 320 gm were used. Animals were left to feed ad libitum. Rats were rendered diabetic through the administration of a single dose of alloxan (200 mg / Kg body weight) injected intrap-eritoneally. Blood glucose was estimated by the glucose oxidase method (Trinder, 1969), serum triglycerides, chole-sterol and phospholipids were determined by enzymatic colorimetric methods (Takayama 1977); 1974); (Flegg (Wahlefeld 1973) ;(Richmond 1973) while serum total lipids were estimated using sulfophosphovanilin method reported by Zoellner and Kirsch (1962).

Insulin when introduced was $inje_{45}$ ted subcutaneously using special insulin needles, and the doses adopted were 1.5

to 3 IU / rat according to the extent of elevation in its blood glucose level.

Blood samples were collected at weekly intervals from the tail vein as described by Hofmann (1963) and serum was separated after blood clotting and analyzed at once. Fresh liver and kidney specimens were extracted from killed rats, fixed with Bouin Holland as described by Martoja and Martoja (1967) and stained with Haematoxilin and Eosin.

Results

Data for control non diabetic rats (ND rats) are given in Table (1). The data obtained for the different parameters (body weight, blood glucose, serum triglycerides, cholest-erol, phospholipids and total lipids) investigated in the different diabetic groups are given in Table (2).

In diabetic rats receiving no insulin treatment, there was an increase in all biochemical parameters with severe loss in body weight at the end of the 4th week after the onset of the diabetic state (Table, 3). These abnormalities were accompanied with serious pathological alterations in their hepatocytes, marked by microsteatosis (Araya, et al. 2004), ectasis of lobular venous centers and cytoplasmic clarification. Also there were swelling of the epithelial cells of the proximal convoluted renal tubules (Moorhead, et al., 1986; Craven, et al., 1987) together with glomerular lesions (Mauer, et al., 1981; Mauer, et al., 1984; Ashim, et al., 1990). Besides the death rate among the diabetic rats left without insulin treatment was significantly high (18.2 % by the end of the 12^{th} week from the onset of the disease, Table, 4).

Insulin administration particularly when given early at the onset of the diabetic state caused a significant drop in blood glucose and serum triglycerides to values approaching the normal levels. Also the levels of serum cholesterol and phospho-lipids showed pronounced decrements although remained slightly elevated above normal (Table. 5). Furthermore, all insulin treated diabetic rats gained body weight and showed net decreases in serum glucose and triglycerides while the other parameters fluctuated around the normal values (Table, 6). A marked decrease in death rate particu-larly among the diabetic group that received insulin treatment immediately after the onset of the diabetic condition was observed.

The activities and levels of enzymatic and non-enzymatic antioxidants of all animal groups are presented in Table 1. After induction of diabetes and before initiation of treatment all diabetic rats had a significant decrease in the activities and levels of all the studied parameters, with the exception of SOD being significantly elevated, as comp-ared with normal rats. Treatment with insulin for eight weeks resulted in a significant restoration in most of the evaluated parameters to values that were not different from those of normal control animals.

Hepatopathological changes were alleviated in diabetic rats receiving insulin treatment four weeks after the onset of diabetes and were completely prevented among the diabetic rats put on insulin regimen immediately after the disease.

However the pathological changes in the epithelial cells of proximal renal convoluted tubules were not alleviated under late, (after 4 weeks of the onset of diabetes), insulin treatment. Yet the renal abnormalities were not detected among the diabetic rats treated with insulin immediately after the onset of the diabetes (Lijun Sun *et al.*, 2002).

Biochemical parameters mg / dl									
Weight(gm)		Glycemia Triglycerides		Cholesterol	Phospholipids	Total Lipids			
Range	141 -321	61 -129	34 - 106	33 - 116	81 - 192	205 - 429			
Mean	207	98	69	66	138	320			
\pm SE	7.2	3.1	2.5	2.5	1.8	4.1			

Table (1) : Levels of biochemical	l parameters in ND rats
-----------------------------------	-------------------------

Mean \pm SD values of enzymatic and non-enzymatic antioxidants of control rats, and diabetic control and insulin-treated rats before and after 8 weeks of treatment with insulin.

Parametera Control		Dia	abetic control	Insulin treated			
		Week 0	Week 8	Week 0	Week 8		
GPx (U/g Hb)	12.5±2.50	8.34±1.63 ^b	7.55±2.08 ^a	7.55±1.92 ^a	10.5±1.74°, ^d		
GRx (U/g Hb)	4.40±0.27	2.58±0.29 ^a	2.66±0.34 ^a	2.71±0.25 ^a	3.56±0.32 ^b , ^c		
SOD (U/g Hb)	0.22±0.05	0.46 ± 0.04^{a}	$0.44{\pm}0.07^{a}$	$0.44{\pm}0.08^{a}$	0.25±0.04 ^b , ^c		
CAT (U/g Hb)	1.12±0.30	0.69±0.16 ^a	0.66±0.15 ^a	0.66±0.12 ^a	0.85±0.23 ^b , ^c		
GSH (Amol/g Hb)	4.55±0.50	2.31±0.34 ^a	2.09±0.37 ^a	2.25±0.30 ^a	3.95±0.45 ^b , ^c		

a GPx:= glutathione peroxidase, GRx:= glutathione reductase,

b p< 0.05 as compared with control.

c p <0.05 as compared with Week 16 (between groups). d p <0.01 as compared with Week 0 (within group).

SOD =: uperoxide dismutase,

CAT:= catalase,

GSH:= glutathione.

Table (2) :

Table (2) :											
	Levels of biocl	nemical par	rameters in D	rats 1st (wee	k)						
	Biochemical parameters mg / dl										
	Weight(gm)	Glycemia	Triglycerides	Cholesterol	Phospholipids	Total Lipids					
Range	130 - 300	246 - 466	56 - 376	24 - 102	61 - 257	308 - 704					
Mean	197	348	119	66	137	460					
±SE	6.4	10.1	12.2	3.2	6.7	19.1					
Levels of biochemical parameters in D rats 2nd (week)											
		Biochem	ical paramete	rs mg/dl							
	Weight(gm)	Glycemia	Triglycerides	Cholesterol	Phospholipids	Total Lipids					
Range	148 - 279	460246	66 - 210	41 - 119	80 - 255	275 - 599					
Mean	191	320	125	73	140	415					
±SE	5.4	9.1	7.4	3.8	7.6	21.7					
	Levels of bioch	emical par	ameters in D	rats 3rd (wee	ek)						
		Biochem	ical paramete	rs mg/dl							
	Weight(gm)	Glycemia	Triglycerides	Cholesterol	Phospholipids	Total Lipids					
Range	143 - 259	210 - 423	72 -252	49 - 202	93 - 207	297 - 626					
Mean	184	325	137	76.2	134	411					
±SE	5.4	11.5	7.6	5.3	5.1	14.7					
	Levels of bioch	emical par	ameters in D	rats 4th (wee	ek)						
		Biochem	ical paramete	rs mg/dl							
	Weight(gm)			Cholesterol	Phospholipids	Total Lipids					
Range	139 - 245	211 - 424	87 - 195	46 - 88	93 - 185.	333 - 528					
Mean	178	310	135	68	136	402					
±SE	5.2	12.4	4.5	2.1	4.3	9					

	Levels of bioc	hemical par	ameters in D	rats 5th (wee	ek)	
		Biochem	ical paramete	rs mg/dl		
	Weight(gm)		Triglycerides	0	Phospholipids	Total Lipids
Range	135 - 241	211 - 420	79 - 168	57 - 106	113 - 183	217 - 517
Mean	177	324	124	78	145	393
±SE	6.4	15.8	6.4	3.5	4.8	15.3
	Levels of bioc	hemical par	ameters in D	rats 6th (wee	ek)	
		-	ical paramete			
	Weight(gm)		Triglycerides		Phospholipids	Total Lipids
Range	132 - 187	422 - 301	79 - 192	40 - 109	111 - 174	338 - 505
Mean	165	351	135	69	143	417
±SE	6.1	13.5	9.7	4.5	4.7	14.4
	Levels of bioc	hemical par	ameters in D	rats 7th (wee	ek)	1
		-	ical paramete			
	Weight(gm)				Phospholipids	Total Lipids
Range	127 - 183	250 - 459	97 - 179	45 - 108	119 - 179	387 - 498
Mean	159	358	140	68.2	143	458
±SE	5.2	17.7	7.7	4.3	4.5	10.1
	Levels of bioc	hemical par	ameters in D	rats 8th (wee	ek)	
			ical paramete			
	Weight(gm)		<u> </u>	<u> </u>	Phospholipids	Total Lipids
Range	131 - 178	213 - 430	103 - 183	48 - 90	124 - 167	349 - 522
Mean	156	336	151	71	143	456
±SE	4.8	22	7.2	3	4.3	13.8
	Levels of bioc	hemical par	ameters in D	rats 9th (wee	ek)	
		Biochem	ical paramete	rs mg/dl		
	Weight(gm)		Triglycerides		Phospholipids	Total Lipids
Range	130 - 172	221 - 437	109 - 186	56 - 93	102 - 181	430 - 544
Mean	155	350	154	72.7	145	457
±SE	4.6	20.2	6.6	3.1	6.3	12.6
	Levels of bioch	nemical par	ameters in D r	ats 10th (we	ek)	
		Biochem	ical paramete	rs mg/dl		
	Weight(gm)	Glycemia	Triglycerides	Cholesterol	Phospholipids	Total Lipids
Range	121 - 168	212 - 434	113 - 192	57 - 102	106 - 198	442 - 582
Mean	150	352	154	76	151	475
±SE	4.8	22.2	8.0	4.1	8.5	11.9
	Levels of bioch	nemical par	ameters in D r	ats 11th (we	ek)	
		Biochem	ical paramete	rs mg/dl		
	Weight(gm)	Glycemia	Triglycerides	Cholesterol	Phospholipids	Total Lipids
Range	116 - 164	263 - 429	111 - 197	55 - 114	116 - 195	402 - 520
Mean	143	359	151	83.3	154	453
±SE	5.2	15.6	7.8	5.4	6.8	9.6
	Levels of bioch	nemical par	ameters in D r	ats 12th (we	ek)	
		Biochem	ical paramete	rs mg/dl		
	Weight(gm)	Glycemia	Triglycerides	Ŭ Ŭ	Phospholipids	Total Lipids
		070 407	114 - 186	54 - 108	130 - 195	425 - 500
Range	115 -161	279 - 437	114 - 180	54 - 108	150 - 175	120 000
Range Mean	115 -161 138	279 - 437 345	114 - 180 156	82	157	455

Weeks	1	2	3	4
Nbr of rats	33	30	28	27
Bio-parameters				
Weight range Mean ± SE Variation %	130 - 300 197 6 4 - 40.0	148 - 279 191 5.4 -77.0	143 - 259 184 5 .4 -11.1	139 - 245 5.2 -14.0
Glycemia Mean ± SE Variation %	246 - 466 348 10.1 +266	460246 320 9.1 +227	210 - 423 325 11.6 + 232	211 - 424 310 12.5 +216
Triglycerides Mean ± SE Variation %	56 -376 119 12.2 +72	66 - 210 125 7 4 126 + 8 1	72 - 252 137 7.6 +99	87 - 195 135 4.5 +96
Cholesterol Mean ± SE Variation %	24 - 102 66 3 2 67 + 0 0	41 - 119 73 3 8 74 + 1 0 6	49 - 202 76.2 5. 3 76.3 + 15 .2	46 - 88 68 2 1 +3.0
Phospholipids Mean ± SE Variation %	61 - 257 137 6.7 -0.7	80 - 255 140 7.6 141 +1.4	93 - 207 134 5 1 -2.9	93 - 185 136 4.3 -1.4
Tot. Lipids Mean ± SE Variation %	308 - 704 460 19.1 +43.8	$275 - 599 \\ 415 2 \\ 1 \\ . \\ 7 \\ 416 + \\ 2 \\ 9 \\ . \\ 7$	$ \begin{array}{c} 297 - 626 \\ 411 & 1 \\ $	333 - 528 402 9.0 +25.6

Table (3) : Statistical studies of biochemical parameters in D rats

D= diabetic rats

Table (4): % of death among D rats non treated with Insulin

Weeks		2	3	4	5	6	7	8	9	10	11	12
Remaining rats (week)	33	30	28	27*	20	15	12	12	12	12	11	9
Nbr of death (weekly)	0	3	2	1	0	5	3	0	0	0	1	2
Rate of death / Past week %	0	9	6.7	3.6	0	25	20	0	0	0	8.3	18.2

* 7 rats were withdrawn to be treated with insulin

D= diabetic rats

Weeks	0	1	2	3	4	5	6	7	8
Nbr of rats	9	9	9	7	7	6	6	6	6
Bio-parameters									
Weight range Mean ± SE Variation %	143 - 204 176 7.1	135 - 193 166 6.7 -5.7	144 - 199 174 6.3 -1.8	155 - 200 179 6.4 1.7	161 - 216 187 7.2 7.4	168 - 227 192 8.9 9.1	171 - 232 198 9.4 12.5	174 - 235 203 9.7 15.3	179 - 239 208 9.7 10.2
Glycemia Mean ± SE Variation %	265 - 466 355 23	52 - 105 78 5.9 -75.0	50 - 110 80 6.8 -77.9	53 - 92 70 5.3 -80.5	60 - 87 68 3.8 -80.8	60 - 66 63 0.8 -82.3	59 - 69 64 1.4 -82.0	60 - 79 66 2.8 -81.4	55 - 75 66 3.1 -81.4
Triglyceride Mean ± SE Variation %	65 - 130 81 6.6	46 - 101 57 6.0 -29.6	41 - 111 58 7.0 -28.4	40 - 65 53 2.9 -34.6	45 - 67 58 2.8 -28.4	49 - 71 60 3.6 -26.0	53 - 80 63 3.6 -22.3	58 - 83 68 3.3 -16.0	62 - 80 68 2.8 -16.0
Cholesterol Mean ± SE Variation %	70 - 102 90 3.8	68 - 108 90 4.8 0.0	64 - 103 87 4.5 -3.3	60 - 88 71 3.2 -21.1	64 - 82 73 2.2 -18.9	62 - 80 72 2.6 -20.0	68 - 90 77 2.9 -14.5	70 - 90 79 2.6 -12.2	72 - 94 79 3.1 -12.2
Phospholipids Mean ± SE Variation %	125 - 170 153 5.3	130 - 181 160 5.8 4.5	145 - 196 171 6.1 11.8	113 - 168 150 7.6 -2.0	117 - 198 152 9.3 -0.7	116 - 158 133 6.2 -13.1	118 - 140 129 3.4 -15.7	129 - 140 132 2.1 13.2	121 - 140 131 2.6 -14.4
Tot. Lipids Mean ± SE Variation %	390 - 485 438 11.8	306 - 429 372 14.7 -15.1	308 - 432 366 15.6 -16.4	327 - 437 375 17.1 -14.4	339 - 430 382 17.7 -12.8	340 - 471 373 20.0 -14.8	350 - 452 381 15.0 -13.1	360 - 470 390 17.0 -11.0	365 - 412 380 7.5 -13.2

Table (5) : Insulin treated group after 4 weeks of the onset of the disease

 Table (6) :Insulin treated group immediately after the onset of the disease

Weeks	0	1	2	3	4	5	6	7	8
Nbr of rats	7	7	5	5	4	4	3	3	3
Bio-parameters									
Weight range Mean ± SE Variation %	153 - 191 176 5.4	162 - 199 185 5.1 5.1	167 - 198 185 5.9 5.1	172 - 203 190 6.1 7.9	176 - 208 193 8.0 9.6	182 - 213 198 7.8 12.5	186 - 217 205 13.9 16.4	191 - 220 219 ns 24.4	197 - 225 214 ns 21.6
Glycemia Mean ± SE Variation %	235 - 353 289 4.5	61 - 137 81 10.5 71.9	52 - 104 78 10.9 74.0	64 - 124 91 12.7 68.5	63 - 83 72 4.3 75.0	65 - 81 74 3.9 74.3	52 - 104 84 ns 70.9	60 - 102 80 ns 72.3	65 - 80 71 ns 75.4
Triglyceride Mean ± SE Variation %	107 - 175 141 12	48 - 86 67 5.0 52.4	53 - 74 66 3.5 53.2	44 - 68 58 4.4 58.8	54 - 74 61 4.4 56.7	40 - 63 59 2.0 58.1	62 - 69 64 3.39 54.6	46 - 62 56 ns 60.2	45 - 65 57 ns 59.6
Cholesterol Mean ± SE Variation %	46 - 80 66 4.7	67 - 89 80 3.1 21.9	59 - 81 69 3.8 4.5	50 - 77 63 4.4 -4.5	51 - 88 67 7.9 1.5	50 - 74 63 5.4 -4.5	49 - 73 57 10.8 -13.6	66 - 80 72 ns 9.0	66 - 105 81 ns 22.7
Phospholipids Mean ± SE Variation %	93 - 156 156 7.6	124 - 173 154 6.8 22.2	109 - 166 130 10.0 3.1	63 - 184 125 21.0 -0.8	118 - 150 132 7.4 4.7	98 - 130 118 7.5 -6.3	100 - 113 105 5.7 -16.6	112 - 128 121 ns -3.9	130 - 150 138 ns 9.5
Tot. Lipids Mean ± SE Variation %	333 - 428 382 12.4	337 - 408 374 8.7 2.1	317 - 441 344 28.3 9.9	238 - 464 352 36.2 7.8	232 - 429 331 43.2 13.3	295 - 380 344 20.6 9.9	266 - 421 364 7.0 4.7	285 - 385 337 ns 11.7	297 - 403 356 ns 6.8

Discussion

Intraperitoneal administration of single dose of alloxan (200 mg / Kg BW) led to the development of a severe diabetic state (Marliss et al., 1981) 48 to 72 hours after alloxan administration accompanied by a significant loss in body weight. The latter could be attributed to disturbances in metabolism associated in insulin deficiency (Davidson and Kaplan, 1977).

Also, it was accompanied with a high percent of death, which had been attributed principally to hypoglycemic phase after alloxan administration as noted and suggested by (Okamoto, 1970)

High death continued during the 1st 2^{nd} and 3^{rd} weeks after the onset of diabetes (Garcia, et al 1974). but such rat was significantly lower when insulin treatment was initiated at the onset of the disease (Table 4).

The diabetic hyperglycemia due to insulin deficiency was accompanied with hyper triglyceridemia, an observation also reported by Bragdon and Gordon (1958), and Grundy et al. (1979). The increase in serum triglycerides seems to be due to a number of intrinsic factors such as a decrease of triglyceride uptake by adipose intensified triglycerides tissue, the

production and release by the liver (Nestel and Steinberg, 1963; Van Tol, 1977; Weiland, et al., 1980).

Elevation in serum cholesterol in the alloxan diabetic rats appeared not be slightly related to the extent of hyperglycemia, most probably to metabolic disturbances corre-lated with abnormalities in the function of enzymatic systems concerned with synthesis and breakdown of cholesterol mainly HMG reductase and HMG (Anderson, synthase al., 1994: et Thomson, 1980).

Besides the accelerated absorption of cholesterol by the intestine has been suggested (Zhang, and Beynen, 1993) to play an important role in the causation of this hypercholesterolemia among diabetic rats. The minor changes in serum phospholipids seems to be related to the disturbances in the different phospholipase enzymatic activities (Kunz, et al., 1994); under the effect of insulin deficiency as well as the concomitant abnormalities in glucose metabolism.

Enforcement of insulin treatment, four weeks after the development of diabetic state, decreased to a limited extent, the rate of death, while when insulin

treatment was adopted immediately after the onset of the disease the rate of death was significantly decreased concomitant with disappearance of pronounced biochemical abnormalities in serum and pathological abnormalities in liver and kidney (Wexler, 1970; Stout, 1979; Wright *et al.*, 1980; Wright *et al.*, 1983; Hostetter, 1985; Holthofer, *et al.*, 1987).

In this study it is suggested that the biochemical changes in glucose and lipid metabolism that accompany diabetes resulting from insulin deficiency could participate in the development of different undesirable complications affecting various organs, among which are the liver and kidney and endangering the life of patients. Besides, it reveals that insulin treatment and well control of the diabetic conditions, as early as possible from the onset of the disease, could significantly lower the risk of the development of such complications.

References

- 1. Anderson J W, Jones A E and Riddell-Mason S (1994): Ten different dietary fibers have significantly different effects on serum and liver lipids of cholesterol fed rats. J. Nutr. 124: 78.
- Araya J, Rodrigo R, Videla L, Thielemann L, Orellana M, Pettinelli P & Poniachik J (2004): Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in non-alcoholic fatty liver disease patients. (Jan 13, 2004) Clin. Sci. (Lond.) 10.1042/ CS20030326 [Epub ahead of print].
- 3. Ashim K Sinha, et al (1990) Effects of fish oil on glomerular function in rats with diabetes mellitus. J Lipid Res.. 31: 1219.
- 4. **Bragdon J Hand Gordon RS** (1958)-Tissue distribution of C^{*}after the intrav-enous injection of labeled chylomicrons and unesterified fatty acids in the rat. J Clin. Invest. 37: 574
- 5. Craven P A, Caines M A and De Rubertis F R (1987). Sequential alterations in

glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism. 36: 95.

- Davidson H B and Kaplan S A. (1977)-Increased insulin binding by hepatic plasma membranes from diabetic rats. Normalisation by insulin therapy. The journal of clinical investigation.59, 22.
- Flegg H M (1973)-Determination of serum cholesterol by an enzymic method. Ann. Clin. Biochem. 10 (3), 79.
- Garcia M J P M, McNamara T, Gordon and W B Kannel (1974). Morbidity and mortality in diabetics in the Framingham population. Diabetes. 23: 105.
- Grundy SM, Mok HYI, Zech LA, et al. (1979) Transport of very low density lipoproteintriglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest;63: 1274.
- 10. **Hofmann G (1960)-** Les animaux de laboratoire. (Précis) Vigot-frères Paris.
- 11. Holthofer H E, Pettersson and T Tornroth (1987). Diabetes mellitus-associated changes in glomerular glycocompounds. Histochem. J. 19: 351.
- 12. **Hostetter T H (1985).** Diabetic nephropathy. N. Engl. J. Med. 312: 642.
- 13. Kunz F, Pechlener C, Erhart R and Muhberger V (1994) HDL and plasma phospholipids in coronary artery disease. Atheroscler. Thromb. 14: 1146.
- 14. Lijun Sun‡, *et al* (2002) Role of Sterol Regulatory Elementbinding Protein 1 in Regulation of Renal Lipid Metabolism and Glomerulosclerosis in Diabetes
- Mellitus* The Journal of Biological Chemistry. Vol. 277, No. 21, Issue of May 24, pp. 18919.
- 16. Marliss, E. B., A. A. F. Sima, and A. F. Nakhooda. (1981). Spontaneous diabetes in the 'BB' Wistar rat. In Etiology and Pathogenesis of Insulin dependent Diabetes Mellitus.J. M. Martin, R. M. Ehrlich, and F.

J. Holland, editors. Raven Press, New York. 251-.

- Martoja, R. and Martoja P. M. – (1967) Initiation aux techniques d'histologie animale. Edt. Masson et Cie.
- Mauer, S. M., M. W. Steffes, and D. M. Brown. (1981). The kidney in diabetes. Am. J. Med. 70: 603.
- Mauer, S. M., M. W. Steffes, E. N. Ellis, D. E. Sutherland, D. M. Brown, and F. C. Goetz. (1984). Structural-functional relationships in diabetic nephropathy. J. Clin. Invest. 74: 1143.
- Moorhead, J. F., M. K. Chan, and Z. Varghese. 1986. The role of abnormalities of lipid metabolism in the progression of renal disease. Conhap. Issues Nephrol. 14: 133.
- Nestle, P. J. and Steinberg, D. (1963) –Fate of palmitate and of linoleate perfused through the isolated rat liver at high concentration. J. Lip. Research., 4: 461.
- Okamoto, K. (1970) Experimental production of diabetes. Diabetes mellitus , Theory and practice. Ellemberg , M and Rifkin, H. Diabetes mellitus arold theory and practice. Mac graw Hill. New York.230.
- 23. **Richmond, W. (1973),** -Preparation and properties of a cholesterol oxidase from Nicardia species, and its application to the enzymic assay of total cholesterol in serum. Clin. Chem.19 (12) 1350.
- 24. Stout, R. W. (1979). Diabetes and atherosclerosis-the role of insulin. Diabetologiu. 16 141.
- 25. **Takayama , M.; et al** (**1977**),-A new enzymic method for determination of serum choline containing phospholipids. Clin. Chim. Acta.7, (1) 93.
- 26. **Thibert.** (1983). Pathological lesions in the spontaneously diabetic BB Wistar rat: a comprehensive autopsy study. Metabolism. Sf (Suppl. 1) 101.
- 27. Thomson, A. B. R. (1980) Unidirectional flux rate of cholesterol and fatty acids into

the intestine of rats with druginduced diabetes mellitus: effect of variations in the effective resistance of the unstirred water layer and the bile acid micelle. Journal of Lipid Research Volume 21, 687.

- 28. **Trinder, P.(1969)** Determination of blood glucose using an oxidase Peroxidase system a non carcinogenic chromogens. Ann. Clin. Biochem. 6: 24.
- 29. Van Tol, A. (1977). Hypertriglycerid-emia in the diabetic rat. Defective removal of serum very low density lipoproteins. Atherosclerosis. 26 117.
- Wahlfeld, A W (1974) Dans H.U. Bergmeyer, Methoden der enzymatischen annalyse, 3rd édition Tome II Velarg. Chemic Weinheim, p.
- Weiland, D, C. E. Mondon, and G. M. Reaven. (1980). Evidence for multiple causality in the development of diabetic hypertriglyceridaemia. Diabetologia.18: 335.
- 32. Wexler, B. C. (1970). Histopathologic responses to severe alloxan diabetes in atherosclerotic and nonatherosclerotic rats. Diabetes. 19: 324.
- 33. Wright, J. R., Jr., A. J. Yates, N. T. Shah, J. C. Neff, D. W. Covey, and P. Thibert. (1980). Histological charact-eristics of the BB Wistar rat. Vet. Clin. Pathol. 14: 9.
- 34. Wright, J. R., Jr., A. J. Yates, H. M. Sharma, and P. Thibert. (1983). Pathological lesions in the spontaneously diabetic BB Wistar rat: a comprehensive autopsy study. Metabolism. Sf (Supp1. 1): 101.
- Zhang, X. & Beynen, A. C. (1993) Influence of dietary fish proteins on plasma and liver cholesterol concent-rations in rats. Br. J. Nutr. 69: 767.
- Zoellner N. and Kirsch, K. (1962) Microdetermination of lipids by the sulfophosphovanilin reaction. Ges. Exp. Med. 135, (6) 545.

Benrebai M et al

الإجهاد التأكسدي في مصل دم الفئران المصابة بمرض السكر التجريبي بالألوكسان: إمكانية التأثير على نسيجي الكبد و الكليتين .

م. بن ربعي ،^aن عبيدلي ،^aش بن لطرش^d ^aقسم علوم الطبيعة و الحياة. جامعة منتوري، قسنطينة 25000 الجزائر ^dمعمل الكيمياء الحيوية المستشفى المركزي الجامعي إبن باديس قسنطينة 25000 الجزائر

بعد ظهور ارتفاع ملحوظ في مستوى جلوكوز الدم عند الفئران المحقونة بالألوكسان Alloxan (200 مع / كغ وزن الجسم)، في تجويف البطن، تبعتها زيادات في مستوى كل من الجليسريدات الثلاثية، الدهون الكلية، الفوسفولبيدات و الكولسترول. صاحب هذه الاضطرابات تغيرات باثولوجية على مستوى نسيجي الكبد و الكليتين، خاصة عند اشتداد الاضطرابات في المجموعة المصابة بمرض السكري غير المعالجة بالأنسولين، أو بعد مضي أربعة أسابيع من حدوث المرض.

من ناحية أخرى المجموعة المصابة بالمرض الخاضعة للعلاج بالأنسولين فور حدوث المرض أبدت تحسنا في عودة مستوى المؤشرات البيولوجية إلى المستوى الطبيعي، باقي الفئران غير الخاضعة للعلاج بالأنسولين فور حدوث المرض، أظهرت انخفاضا في وزنها بصورة معنوية، إلا أنها بدأت تسترد وزنها عند تلقيها العلاج بالأنسولين بعد أربعة أسابيع. باقي المؤشرات البيولوجية، عرفت تراجعا معنويا مقارنة مع المرحلة ما قبل العلاج.