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SPLIE: Optimal Illumination Estimation for Structure Preserving Low-light 

Image Enhancement 

Ghada Sandoub1, Randa Atta2, Hesham Arafat Ali 3, Rabab Farouk Abdel-Kader 4 

ABSTRACT 

The images taken in low-light conditions often have many flaws such as, color vividness and low visibility which 

negatively affects the performance of many vision-based systems. Many of the existing Retinex-based enhancement 

algorithms improve the visibility of low-light images via estimating the illumination map and use it to obtain the 

corresponding reflectance. However, the improper estimation of the initial illumination map may produce unsatisfactory 

illuminated enhanced images with weak color constancy. To address this problem, this paper proposes an efficient 

algorithm for the enhancement of low-light images. In this algorithm, the initial illumination map is obtained by the 

fusion between the maximum color channel and bright channel prior. The estimated initial illumination map is then 

refined using a multi-objective problem that contains the illumination regularization terms specifically, the structural 

and textural details of the illumination. The optimization problem is solved using the alternative direction minimization 

(ADM) technique with the augmented Lagrangian multiplier to produce structure-aware smoothness of the initial 

illumination map. Finally, the contrast of the refined illumination map is adjusted using the gamma correction method. 

Experimental results on several benchmark datasets reveal the superiority of the proposed algorithm on the state-of-the-

art algorithms in terms of qualitative and quantitative analysis. Furthermore, the proposed algorithm produces enhanced 

images with reducing the artifacts and preserving the naturalness and structural details. 

Keywords: Image enhancement, Low-light image, Illumination estimation, Optimization  

1. INTRODUCTION 

Computer vision-based applications are designed for 

high-visibility input images. Contrariwise, images taken 

in low-light environments often have many flows, such as 

color vividness, low contrast, and low visibility of object 

details, due to inadequate or varying illumination. As 

these degradations affect the performance of vision-based 

applications, it is necessary to improve the low-light 

images visibility. Thus, many enhancement methods have 

been proposed in literature. Some of them improve the 

low-light image visibility by estimating its illumination 

component. However, the inaccurate estimation of the 

illumination component may result in color distortion, 

halo artifacts, and over-enhancement problems.  
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To address the drawbacks of current enhancement 

algorithms, an effective algorithm for low-light image 

enhancement is proposed through this paper. First, the 

initial illumination map is estimated by the fusion 

between maximum color channel and bright channel prior 

of input image to reduce the color distortion and halo 

artifacts problems produced from these channels. 

Then, an optimal refinement is applied on initial 

illumination map using a multi-objective optimization 

problem. The optimal refinement provides structure-

aware smoothing for the initial illumination map. Finally, 

the reflectance component which represents the enhanced 

image is retrieved by an element-wise division of input 

image by refined illumination based on Retinex model. 

The experimental results demonstrate that the proposed 

algorithm increase the visibility of low-light images and 

obtains natural results while preserving the structural 

details of enhanced images in comparison to several state-

of-the-art algorithms. 

The rest of the paper is organized as follows: In Section 

2, the related work is reviewed. Section 3 includes the 

details of the proposed algorithm. The experimental 

results are given and analyzed in Section 4. Finally, 

Section 5 gives the paper conclusion. 

2. RELATED WORK 

Many image enhancement approaches have been 

introduced to enhance the brightness of low-light images, 
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including histogram-based [1-8], deep learning-based [9-

16], and Retinex-based methods [18-37]. The simplest 

and more intuitive way to improve the visibility of weakly 

illuminated images is to increase their brightness. 

Nevertheless, the saturation of bright regions during this 

operation may cause details loss. To avoid the above 

problem, histogram equalization (HE) methods [1], [2] 

were proposed in which the input image dynamic range is 

expanded. However, these methods are concerned with 

contrast enhancement rather than illumination adjustment 

which may result in under- or over-enhancement. To 

enhance the efficiency of HE methods, variational 

methods such as contextual and variational contrast 

enhancement (CVCE) [3] have been proposed. However, 

the variational methods concentrate on improving the 

illumination of low-light images while not considering the 

sharpness refinement. In [4], an exposure-based sub-

image histogram equalization (ESIHE) was proposed. 

Through this method, the histogram is divided into a set 

of sub-histograms before performing equalizations using 

an exposure threshold to avoid over-enhancement. 

Nevertheless, this method enhances the local contrast 

only. Parihar and Verma [5] proposed an entropy based 

dynamic sub-histogram equalization (EDSHE) algorithm 

in which a recursive histogram division is performed 

depending on the entropy of sub-histograms. In [6], an 

enhancement algorithm was proposed to improve the 

visibility of low-light images based on gamma correction 

and histogram equalization. Furthermore, Tan and Isa [7] 

introduced an adjusted HE enhancement algorithm which 

segments the original histogram into sub-histograms using 

histogram segmentation thresholds based on exposure 

regions. In [8], an enhancement algorithm was proposed 

depending on quasi-symmetric correction (QCFs) and 

histogram equalization. It combines the locally-enhanced 

image and the globally-enhanced image performed via 

contrast limited adaptive histogram equalization 

(CLAHE) [1] and QCFs, respectively. Although HE-

based methods enhance the contrast of low-light images, 

these methods suffer from over-enhancement. Further, 

they neglect the intensive noise in low-light images, 

especially in dark regions.  

Recently, many algorithms based on deep-learning have 

been developed to address the problem of low-light image 

enhancement. In [9], a global illumination-aware and 

detail preserving network (GLADNet) was proposed. This 

method obtains the global illumination of input image 

using encoder-decoder network. In [10], LightenNet was 

proposed to predict the illumination map of a weakly 

illuminated image. However, this method fails to brighten 

low-light images that contain intensive noise. Wei et al. 

[11] introduced a deep Retinex-Net which consists of 

Decom-Net and Enhance-Net used for reflectance and 

illumination decomposition and illumination adjustment, 

respectively. In [12], a new network was proposed to 

enhance underexposed images based on learning an 

image-to-illumination rather than image-to-image 

mapping. However, this method may generate visual 

artifacts and color inconsistency when processing real-

world images with various illumination intensities. In 

[13], unpaired learning framework called EnlightenGAN 

was proposed to train low-light enhancement model. In 

[14], a deep hybrid network was proposed based on 

learning the global content of weakly illuminated image 

using an encoder-decoder network and refining the edge 

details by using an improved spatially variant recurrent 

neural network (RNN). However, this method fails to 

brighten all dark regions. Ma et al. [15] proposed a 

context-sensitive decomposition network (CSDNet) 

architecture to exploit the scene-level contextual 

dependencies on spatial scales. In [16], a zero-reference 

deep curve estimation (Zero-DCE) algorithm was 

proposed based on a group of non-reference loss 

functions. Nevertheless, this method does not sufficiently 

enhance low-light images and suffers from color 

deviation. In general, the deep learning-based algorithms 

develop the performance of low-light image 

enhancement. However, they still suffer from some 

challenges, such as amplifying noise and color distortion. 

Furthermore, most of these algorithms are based on 

supervised learning which require large amount of 

training pairs of low/normal-light images. Thus, it is 

costly to prepare a large dataset. In addition, the 

constraints of training phase are complicated. 

Many enhancement algorithms based on Retinex model 

have been proposed in literature. According to Retinex 

theory [17], the observed image is measured via the 

product of illumination and reflectance components. The 

conventional Retinex-based methods including, single 

scale Retinex (SSR) [18], multi-scale Retinex (MSR) 

[19], and MSR with color restoration (MSRCR) [20] use 

Gaussian filtering to obtain the illumination component of 

input image and consider the reflectance component as 

the final enhanced image. However, these algorithms 

suffer from over-enhancement, color distortion, and the 

enhanced image often looks unnatural. To address this 

problem, many variational Retinex-models have been 

proposed [21- 27]. These models obtain the enhanced 

image depending on the simultaneous estimation of 

reflectance and illumination components. In [21], a 

variational Retinex framework was proposed using bright 

channel prior. However, the enhanced images produced 

from this method suffer from amplified noise and halo 

artifacts around edges. In [22], a weighted variational 

method was introduced to simultaneously obtain the 

reflectance and illumination components from the 

observed image. However, this method fails to improve 

the illumination of dark regions in weakly illuminated 

images. Wu et al. [23] introduced an enhancement 

algorithm depending on an image degradation model. 

However, this method does not take into consideration the 

intensive noise in dark regions and its results are visually 

unpleasant. In [24], a robust Retinex model was proposed 

with an additional noise term to reduce the amount of 

noise in the enhanced images. Nevertheless, this method 

suffers from over smoothing in some regions which 
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results in a degraded image due to the loss of its details. 

Furthermore, in [25], an enhancement algorithm was 

proposed depending on separating the illumination and 

reflectance components while suppressing the intensive 

noise. In addition, this method contains post-processing 

algorithms which correct the color distortion in 

illumination component and enhance the reflectance 

component contrast. In [26], an optimization framework 

was introduced to obtain a smoothed illumination 

component and a noise-suppressed reflectance 

component. Nevertheless, this method suffers from halo 

artifacts on the boundaries besides the high complexity. 

Furthermore, Wang et al. [27], proposed a structure-based 

low-rank Retinex model for simultaneous low-light image 

enhancement and noise removal. In general, the 

simultaneous estimation of the reflectance and 

illumination components from a single image is an ill-

posed problem which makes the complexity of these 

algorithms very high. Therefore, these algorithms are not 

suitable for real-time applications.  

Another set of Retinex-based algorithms was proposed 

to make the low-light images more visible based on the 

estimation of illumination component which used to 

recover the reflectance component. Zheng et al. [28], 

introduced a naturalness preserved enhancement (NPE) 

algorithm to improve the contrast of non-uniform 

illumination images. This method used the bright-pass 

filter to estimate the illumination component which is 

then adapted using a bi-log transformation. The NPE 

algorithm produces promising results while preserving the 

naturalness. Nevertheless, it suffers from high 

computational cost. In [29], the bright channel prior was 

used to estimate the illumination map of input images. 

However, the enhanced images produced by this method 

may contain noise and halo artifacts. Furthermore, Chen 

et al. [30] introduced an enhancement algorithm for low-

light images based on maximum color channel in which 

the maximum value among R, G, and B channels of the 

observed image is obtained to estimate the illumination. 

Although this method does not cause halo artifacts, it 

results in color distortion in the enhanced image. In [31], 

a fusion-based algorithm was proposed to enhance the 

brightness of weakly-illuminated images. This method 

adjusts the illumination of input image via fusing several 

derivatives of the illumination map that was initially 

estimated. Li et al. [32] proposed a low-light image 

enhancement (LIME) algorithm. It gets the initial 

illumination map of input image via seeking for the 

maximum value among its R, G, and B channels and then 

the illumination map is refined using smoothing model. 

Although this method increases the global brightness, 

some regions in the enhanced image suffer from over-

enhancement and often have amplified noise buried in 

dark regions. In [33], a camera response model was 

adopted to brighten the single image by adjusting each 

pixel to the desired exposure. Nevertheless, the enhanced 

image produced by this method may contain visual 

artifacts. In [34], a  non-uniform illumination prior model 

was proposed to enhance the visibility of low-light 

images. Furthermore, Zhang et al. [35] proposed a dual 

illumination estimation algorithm to simultaneously 

handle both overexposed and underexposed images. 

However, this method fails to recover vivid textures of 

overexposed images. In [36], an image enhancement 

method performing a structure-aware estimation of the 

initial illumination was proposed. Then, a multi-objective 

optimization function is minimized to refine the 

illumination estimation. Furthermore, Feng et al. [37] 

proposed a low-light image enhancement algorithm based 

on multi-illumination estimation in which multiple 

exposure correction images are obtained. The Laplacian 

multi-scale fusion is then used to combine the estimated 

weight map and the images with different degrees of 

exposure. Broadly speaking, the improper estimation of 

illumination component may result in a degraded image. 

Therefore, this type of algorithms requires an accurate 

illumination estimation scheme to produce visually 

pleasing results.  

3. STRUCTURE PRESERVING LOW-

LIGHT IMAGE ENHANCEMENT 

(SPLIE) 

As shown in Figure 1, the proposed SPLIE algorithm is 

divided into two stages. The first stage includes the 

estimation of initial illumination map using fusion-based 

bright channel. Then, the illumination map is refined 

based on minimizing multi-objective function to obtain 

the enhanced result. The stages of the proposed SPLIE 

algorithm are demonstrated in details in the following 

sub-sections. 

3.1. Initial Illumination Map Estimation  

According to Retinex theory [17], the low-light image is 

composed of the illumination and reflectance components 

as follows: 

                                      𝑰 = 𝑳 ∘ 𝑹,                                (1) 

where the operator ∘ denotes the element-wise 

multiplication, and 𝑰, 𝑳, and 𝑹  represent the input image, 

the illumination map, and the scene reflectance, 

respectively. When estimating the illumination 𝑳 of the 

low-light image 𝑰 , the scene reflectance 𝑹 which 

represents the enhanced image can be obtained as: 

𝑹 = 𝑰 ⊘ 𝑳,                                (2) 
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where the operator ⊘ represents the element-wise 

division. The way of estimating the illumination map 𝑳 

plays an important rule in the recovery of scene 

reflectance 𝑹 and the improper estimation of the 

illumination map may result in a degraded image. 

Therefore, the goal of this paper is obtaining the optimal 

illumination map.  

There are several methods for estimating the initial 

illumination map �̂�. Max-RGB [30], [38] is a method of 

color constancy in which the illumination map is 

estimated via looking at each location x in the input image 

for the maximum value among the RGB color channels as 

follows:  

                       �̂�𝑚𝑎𝑥(𝑥) =  max
𝑐∈{𝑅,𝐺,𝐵}

( 𝐼𝑐(𝑥)).                  (3) 

This method can boost the global illumination. 

However, it does not take into account the neighbouring 

pixels in the enhanced image which may lead to the color 

distortion. To enhance the performance of the above 

method, another method has been introduced to estimate 

the illumination using the bright channel prior in which 

the illumination is obtained by considering the neighbours 

of the current pixel in a small region [20]. The bright 

channel of a weakly illuminated input image is written as: 

                �̂�𝑏𝑟𝑖𝑔ℎ𝑡(𝑥) =  max
𝑐∈{𝑅,𝐺,𝐵}

( max
𝑦∈Ω(𝑥)

𝐼𝑐(𝑦)),            (4)  

where Ω(𝑥) denotes the local patch centred at 𝑥 having 

size of w × w (w = 15 is chosen in this paper). The bright 

channel is obtained by determining each color channel's 

maximum value through each patch Ω(𝑥). Then, the 

maximum value among the RGB color channels is 

estimated. Although the local consistency is improved by 

using the methods that based on bright channel prior, they 

result in halo artifacts especially when using a large patch 

size. In the case of 1×1 patch size, the bright channel prior 

has similar effect as the maximum color channel. 

Therefore, both channels have no halo artifacts but result 

in color distortion. Many algorithms [32, 36] have used 

the bright channel or its improvement as initial 

illumination. However, the bright channel may not 

represent true illumination as it does not distinguish the 

illumination of the adjacent objects in the low-light 

image. 

Therefore, to overcome these mentioned problems, an 

initial illumination map estimation algorithm is proposed 

to provide near actual estimation of the illumination map 

of low-light images. The initial illumination of low-light 

image in the proposed algorithm is obtained based on the 

fusion of both the maximum color and bright channels to 

reduce the color distortion and the halo artifacts problems 

produced from both channels [39]. First, Gaussian filter 

[40] is applied to the bright channel (�̂�𝑏𝑟𝑖𝑔ℎ𝑡) to smoothen 

its halo artifacts. The fusion of the maximum color 

channel L̂max with the bright channel L̂bright is then done 

by estimating a weight which represents the halo strength 

at each pixel in the bright channel. It is estimated based 

on the normalized difference between both channels as 

follows: 

    𝑊(𝑥) = (�̂�𝑏𝑟𝑖𝑔ℎ𝑡(𝑥) − �̂�𝑚𝑎𝑥(𝑥))/�̂�𝑏𝑟𝑖𝑔ℎ𝑡(𝑥),        (5) 

where the value of  𝑊(𝑥) has a range of [0,1]. 

According to the weight value at each pixel, the fusion-

based initial illumination algorithm accurately estimates 

the illumination map by calculating the sum of maximum 

color channel �̂�𝑚𝑎𝑥  and bright channel �̂�𝑏𝑟𝑖𝑔ℎ𝑡 based on 

the estimated weight as: 

 �̂�(𝑥) =  �̂�𝑏𝑟𝑖𝑔ℎ𝑡(𝑥) ∙ ( 1 −  𝑊(𝑥) ) + �̂�𝑚𝑎𝑥 ∙  𝑊(𝑥).   (6)                 

According to (6), when the weight takes a value close to 

1 which indicates that the halo artifacts are strong, the 

illumination component is obtained via providing larger 

weight to �̂�𝑚𝑎𝑥  while providing �̂�𝑏𝑟𝑖𝑔ℎ𝑡  with less weight 

 and vice versa.  

 
 

 

Figure 1:  The stages of the  proposed structure preserving low-light image enhancement (SPLIE) algorithm 

 

Initial illumination map estimation stage Illumination refinement and scene reflectance recovery stage 
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The halo artifacts at the edge pixels are strong in which 

the weight will take a value near to 1. Therefore, 

according to (6) more weight is provided to �̂�𝑚𝑎𝑥  and less 

weight is provided to  �̂�𝑏𝑟𝑖𝑔ℎ𝑡(𝑥) to obtain the 

illumination component. Therefore, the results produced 

by the fusion-based mechanism in this case are mostly 

similar to the results of maximum color channel in which 

the enhanced images have no halo artifacts. Contrariwise, 

although the homogeneous regions are clear from any 

halo artifacts, a color distortion may appear at these 

regions. Hence, the results produced by the fusion-based 

mechanism are mostly the same as the results generated 

from the bright channel prior. Consequently, the proposed 

fusion-based mechanism weakens the color distortion and 

halo artifacts in the estimated illumination.  

3.2. Illumination Refinement and Image 

Enhancement  

Although the proposed initial illumination �̂� shown in 

Figure 2 (b) provides a good estimation of actual 

illumination of input images, the estimated illumination 

map may contain some textural details which leads to 

over-enhanced images. 

 In this case, the initial illumination map should be 

refined in order to smoothen the textural details and 

preserve the overall structural details of the image. Thus, 

the structure-aware smoothness of the initial illumination 

map is performed using the following optimization 

problem [36]:  

  min
𝑳

‖�̂� −  𝑳‖2
2  +  α‖∇𝑰𝑚 − ∇𝑳‖2

2 +  𝛽‖𝑻 ∘ ∇𝑳‖1,     (7) 

where �̂� and 𝑳 are the initial illumination obtained by 

(6) and the refined illumination, respectively. ∇ denotes 

the gradient operator, 𝑻 is the weight matrix, 𝛻𝑰𝑚 

represents maximum of 𝛻 from all channels of low-light 

image 𝑰. Further, α and β are the regularization 

parameters which balance the involved terms,  ‖ . ‖2 and 

‖ . ‖1 represent the 𝑙2 and 𝑙1 norms, respectively. In (7), 

the first term represents the fidelity between the initial 

 and the refined illumination maps. In order to maintain 

the illumination map's structural details, the second term 

of (7) makes the gradient of the refined illumination 𝛻𝑳 

closer to the maximum gradient of input mage 𝛻𝑰𝑚, while 

the third term considers the smoothness of textural details. 

Using the second and third terms of (7) provides the 

balance between preserving structural details, and 

smoothening textural details in the illumination map and 

thus produces structure-aware smoothness of the 

illumination map.  

For the textural details smoothing, the weight matrix 𝑻 

is calculated depending on the initial illumination map �̂� 

using the relative total variation [41]. It is estimated for 

each location as follows: 

𝑇ℎ = ∑
𝐺𝜎(𝑥, 𝑦)

| ∑ 𝐺𝜎(𝑥, 𝑦)∇ℎ�̂�(𝑦)| + ℇ𝑦∈Ω(𝑥)
𝑦∈Ω(𝑥)

 ; 

            𝑇𝑣

= ∑
𝐺𝜎(𝑥, 𝑦)

| ∑ 𝐺𝜎(𝑥, 𝑦)∇𝑣�̂�(𝑦)| + ℇ𝑦∈Ω(𝑥)
𝑦∈Ω(𝑥)

 ,     (8)  

where the symbols 𝛻𝑣 and 𝛻ℎ represent the first order 

derivatives over the vertical and horizontal directions, 

respectively. 𝐺𝜎(𝑥, 𝑦) denotes the Gaussian kernel with 

standard deviation 𝜎 and it is given by: 

                       𝐺𝜎(𝑥, 𝑦) ∝ 𝑒𝑥𝑝(−
‖𝑥−𝑦‖2

2𝜎2 ).                     (9) 

The optimization problem (7) can be efficiently solved 

by using the alternative direction minimization (ADM) 

technique [42]. To make the problem separable for easy 

solving, the term 𝛻𝑳 is replaced with an auxiliary variable 

𝑴. Consequently, the optimization problem is formulated 

as:  

 min
𝑳,𝑴

‖�̂� −  𝑳‖2
2  +  𝛼‖𝛻𝑰𝑚 − 𝑴‖2

2 +  𝛽‖𝑻 ∘ 𝑴‖1 

                            𝑠. 𝑡.  𝜵𝑳 = 𝑴                      (10)  

This constrained optimization problem can be solved 

using the augmented Lagrangian multiplier method and 

converted into its equivalent unconstrained form as:  

ℒ = ‖ �̂� −  𝑳‖2
2 + 𝛼‖𝛻𝑰𝑚-𝑴‖2

2+ β‖𝑻 ∘ 𝑴‖1 

                   +𝛷(𝝀, 𝛻𝑳 − 𝑴);  

 Where  

 𝛷(𝝀, 𝛻𝑳 − 𝑴) =
𝜇

2
 ‖ 𝛻𝑳 − 𝑴‖2

2+ 〈𝝀, 𝛻𝑳 − 𝑴〉,  (11) 

where 〈∙,∙〉 represents matrix element-wise multiplication. 

𝝀 is the Lagrangian multiplier, and 𝜇 is a positive penalty 

scalar which controls the speed of convergence to the 

solution. The three variables (𝑳, 𝑴, and 𝝀) in (11) should 

be solved. In the augmented Lagrangian method, the 

problem can be solved by iteratively updating one of three 

variables at a time while fixing the others. Therefore, the 

optimization problem is divided into three sub-problems 

as follows: 

1) 𝑳 sub-problem: Considering all the terms 

involving 𝑳 in (11), the 𝑳 sub-problem at 𝑗𝑡ℎ  iteration is 

formulated as:  

𝑳(𝑗+1) =  arg min
𝑳

‖ �̂� −  𝑳‖2
2 + 𝛷(𝝀(𝑗), 𝛻𝑳 − 𝑴(𝑗)).  (12) 

By taking the partial derivative of the cost function in (12) 

in reference to 𝑳 and equate the derivative result to zero, 

we have:  

                        𝑳 =
2�̂�+𝑫𝑇(𝜇𝑴−𝝀) 

2+𝜇𝑫𝑇𝑫
 ,                               (13) 
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 where (∙)𝑇 denotes the transpose operation and 𝑫 

represents the matrix including 𝑫ℎ and 𝑫𝑣 which 

represent the difference along rows and columns, 

respectively. Using inverse, transpose, and multiplication 

is computationally expensive for large matrices.  

Therefore, 𝑳 can be computed by utilizing 2D Fast 

Fourier Transform (FFT) with taking into account the 

circular boundary conditions as follows: 

            𝑳(𝑗+1) = ℱ−1 (
ℱ(2�̂�)+∑ ℱ(𝑫i(𝜇𝑗𝑴𝑗−λ𝑗))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖∈(ℎ,𝑣)

𝟐+𝜇𝑗 ∑ ℱ(𝑫i̅̅ ̅̅ ̅̅ ̅
𝑖∈(ℎ,𝑣) )∘ℱ(𝑫i)

),     (14) 

where ℱ(∙), ℱ̅(∙), and ℱ−1(∙) represent the forward, 

complex conjugate, and the inverse of 2D FFT operations, 

respectively. 2 is a matrix in which its size is the same to 

the image size and all its elements equal 2. 

2) 𝑴 sub-problem: By considering all the terms 

involving 𝑴 in (11), the 𝑴 sub-problem at 𝑗𝑡ℎ  iteration is 

obtained by: 

𝑴(𝑗+1)= arg min
𝑴

 𝛼‖𝛻𝑰𝑚 − 𝑴‖2
2 + 𝛽‖𝑻 ∘ 𝑴‖1 +

𝜇

2
 ‖ 𝛻𝑳 − 𝑴‖2

2+ 〈𝝀, 𝛻𝑳 − 𝑴〉.                                     (15) 

This sub-problem is solved via taking the derivative of 

(15) in reference to 𝑴 and equate its result to 0, 𝑴 is 

obtained as:  

                     𝑴 =
2𝛼 𝛻𝑰𝑚+𝜇 𝛻𝑳+𝝀

(2𝛼+𝜇)
−

𝛽𝑻

(2𝛼+𝜇)
 .                 (16)                                            

Computing 𝑴 using (16) may result in negative pixel 

values in 𝑴 which is normalized to deal with these 

negative values. Therefore, shrinkage operation [43] can 

be used to solve the 𝑴 sub-problem as:  

            𝑴(𝑗+1) = 𝑺 𝛽𝑻

(2𝛼+𝜇𝑗)

[
2𝛼∇𝑰𝑚+𝜇∇𝑳(𝑗+1)+λ𝑗

(2𝛼+𝜇𝑗)
],        (17) 

where 𝑺𝑒>0[∙] represents the shrinkage operation which is 

defined as: 

                 𝑺𝑒[𝑢] = 𝑠𝑔𝑛(𝑢) max
 

( |𝑢| − 𝑒, 0).         (18) 

The shrinkage operation is performed on the elements 

of  𝑢.  

3) 𝝀 and 𝜇 sub-problem: the values of 𝝀 and 𝜇 are 

updated via these equations: 

    𝝀(𝑗+1) = 𝝀(𝑗) + 𝜇(𝑗)(𝛻𝑳(𝑗+1) − 𝑴(𝑗+1)); 

 
(a) 

  
(b) 

 

  
(c) 

 

 
 

 
(d) 

 
 

Figure 2:  The effect of illumination estimation on the enhanced image. (a) Input image. (b) Initial illumination 

maps obtained by: LIME [32], NPLIE [36], and proposed algorithm. (c) Their corresponding refined maps. (d) 

Their corresponding enhanced images. 
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                          𝜇(𝑗+1) = 𝜇(𝑗)𝜂, 𝜂 > 1.                       (19)                                         

To obtain the optimal solution from this iterative 

algorithm, the maximum number of iterations (𝑗0) is set to 

25.  

Gamma correction is then applied on the refined 

illumination map 𝑳 to enhance its contrast and 

consequently improve the visibility of the enhanced 

result. The gamma-corrected illumination map 𝑳𝑓 is 

obtained as: 

                                            𝑳𝑓 = 𝑳𝛾.                                (20)                                          

Finally, the scene reflectance 𝑹 which represents the 

enhanced image is obtained by: 

                       𝑹 = 𝑰 ⊘ 𝑳𝑓.                              (21)  

 Algorithm 1 summarizes the steps of the proposed 

SPLIE algorithm. The effect of estimating the initial 

illumination using LIME [32], NPLIE [36] and the 

proposed algorithm on the enhanced images is                                               

demonstrated in Figure 2. LIME, NPLIE and the proposed 

algorithm (SPLIE) used the Max-RGB, structure-aware 

and proposed fusion-based algorithm for estimating the 

initial illumination map. As shown in Figure 2(b), the 

initial illumination map produced by the proposed fusion-

based algorithm contains more structural details than that 

produced by LIME and NPLIE. Consequently, using this 

estimated initial illumination map for solving a multi-

objective optimization problem limits the smoothing 

effect in structural details and results in textural 

smoothening in the refined illumination map which is 

clear in the enlarged red bounded boxes in Figure 2(c). 

Thus, as shown in Figure 2(d) the enhanced image by the 

proposed SPLIE algorithm contains more structural 

details with fewer color distortion and artifacts than that 

produced by LIME and NPLIE.  

4. EXPERIMENTAL RESULTS  

The performance of proposed SPLIE algorithm was tested 

in this section using five low-light image datasets [11, 28, 

32, 44, 45]. The datasets contain images with various 

illumination conditions and sizes. The proposed algorithm 

was compared quantitatively and qualitatively with 

several state-of-the-art enhancement algorithms, such as 

simultaneous reflection and illumination estimation 

(SRIE) [22], low-light image enhancement (LIME) [32], 

robust Retinex model (ROR) [24], low- 

light enhancement using camera response (LECARM) 

[33], nature preserving low-light image enhancement 

(NPLIE) [36], and  zero-reference deep curve estimation 

(Zero-DCE) [16]. All the experiments were performed 

using Matlab R2018a on a computer with 4G RAM and 

an Intel Pentium Processor of 2.16 GHz.  

4.1.  Parameter Analysis 

In the proposed algorithm, there are two regularization 

parameters ( 𝛼 and 𝛽 ) which control the structural details 

and smoothening of textural details respectively and 

hence affect its performance. It was found experimentally 

that the values of these parameters are in the range of (0, 

1) [36]. According to the multi-objective optimization 

problem in (7), it does not make any sense to consider 𝛼 

and 𝛽 as negative values. In addition, if the value of either 

𝛼 or 𝛽 is more than 1, one of structural or textural details 

will be dominant. For example, if the value of 𝛼 is more 

than 1, this will give more dominance to structural details. 

Furthermore, the textural details may be enhanced while 

capturing the structural details which may produce 

unnatural enhanced images.  In the same way, if the value 

of 𝛽 is more than 1, this will give  

more dominance to textural details. In addition, the 

structural details may be smoothed as well while 

smoothing the textural details which may over-smoothen 

the refined illumination. Therefore, the values of 𝛼 and 𝛽 

are considered to be in the range of (0, 1) to avoid the 

dominance of the term related to any of these 

regularization parameters. Many experiments on several 

images were performed and it was found that the optimal 

values of 𝛼 and 𝛽 that achieve good enhancement results 

were 0.5 and 0.08, respectively. These values make a 

good balance between achieving the required 

smoothening of textural details and preserving the 

structural details. In the case of 𝛼=0.5, the structural 

details are preserved without over-enhancing the textural 

details. However, when the value of 𝛼 is more than 0.5, 

the textual details are preserved with the structural details. 

On contrast, when the value of 𝛼 is less than 0.5, the 

structural details are not preserved sufficiently. In the case 

of 𝛽= 0.08, the textural details are smoothed without 

losing structural details. However, when the value of 𝛽 is 

more than 0.08, the structural details are smoothed along 

Algorithm 1 The proposed SPLIE algorithm. 

Input: Low-light image 𝑰. 

Initialization: Constructing weight 𝑻 using (8), 

𝑗 = 0, 𝑳(0) = 0, 𝑴(0) = 𝝀(0) = 0. 

Step1: Estimate initial illumination map �̂� of 𝑰 using 

(6). 

Step2: Refine illumination map 𝑳 based on �̂� via   

optimization function using (10), 

 while   𝑗 < 𝑗0 do 

Update 𝑳(𝑗+1) using (14); 

Update 𝑴(𝑗+1) using (17); 

Update 𝝀(𝑗+1) and  𝜇(𝑗+1)using (19); 

𝑗 = 𝑗 + 1; 

 end 

Step3: Apply Gamma correction on 𝑳 using (20). 

Step4: Obtain the enhanced image using (21). 

Output: Scene reflectance 𝑹 which represents the 

enhanced image. 
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with the textural details. On the other hand, when the 

value of 𝛽 is less than 0.08, the textural details are not 

smoothed sufficiently. Figure 3 shows the  

estimated illumination map for some distinct values of 𝛼 

and 𝛽.  
The refined illumination map is then enhanced using 

gamma correction. Figure 4 shows the difference between 

the results by setting 𝛾 to 0.6, 0.9, and 1. It can be 

observed that at 𝛾=1, the enhanced image looks over-

enhanced and unnatural while at 𝛾=0.6, the enhanced 

image looks slightly dim. Therefore, for the rest 

experiments, the value of 𝛾 was adopted to 0.9 as it 

produces satisfying and natural results. Moreover, the 

standard deviation 𝜎 in (9) was set to 2 as in [32]. 

4.2. Qualitative Assessment 

In this subsection, several comparisons are given to 

qualitatively evaluate the proposed SPLIE algorithm 

performance as compared with SRIE, LIME, ROR, 

LECARM, NPLIE, and Zero-DCE. Figure 5- Figure 11 

show the visual comparison among the enhancement 

algorithms applied on the low light images in datasets. 

 Figure 5- Figure 9 show the comparison of 

enhancement algorithms in different outdoor scenes. It 

can be observed from these figures that SRIE preserves 

the naturalness and details of enhanced images, however 

the brightness of input images is not sufficiently improved 

by SRIE, and the output images are still dim. On contrast, 

LIME algorithm achieves a good enhancement in low-

light images brightness, nevertheless it suffers from over-

enhancement and color saturation in the bright areas 

which results in distortion on these regions and losing 

some details in the enhanced image. It is also observed 

that ROR slightly enhances the input images brightness, 

however the enhanced image details are over-smoothed 

which makes the image look unnatural. Although the 

outputs of LECARM are acceptable, they have a greyish 

shade which makes the enhanced images appear less 

exposed. Therefore, the visibility of the enhanced images 

produced by LECARM needs to be improved. The 

outputs of NPLIE have some over-enhanced areas in 

which the details of enhanced images are not clear 

enough. Furthermore, it is observed that Zero-DCE 

enhances the input images illumination. Nevertheless, it is 

unable to recover the true colors and textural details of 

input images which results in unnatural and pale enhanced 

images. As shown in Figure 5- Figure 9, the proposed 

SPLIE algorithm produces satisfying results in different 

outdoor scenes. It enhances the input low-light images 

illumination while preserving the structural details and 

naturalness.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 4: The results of gamma correction for the illumination map. (a) Input image. (b)-(d) The 

corrected illumination maps with 𝛾=0.6, 𝛾=0.9, and 𝛾=1. (e)-(g) Their corresponding recovered 

images. 
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(b) 

 
(c) 

 
(d) 

Figure 3: The effect of regularization parameters on illumination map estimation. (a) 𝜶=0.5, 𝜷 =0.08; 

(b)  𝜶=0.5, 𝜷 =1; (c)  𝜶=1, 𝜷 =0.08; (d)  𝜶=1, 𝜷 =1. 
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(g) 

 
(h) 

Figure 5: The comparison of enhanced images produced by different methods. (a) Input image. (b) 

SRIE [22]. (c) LIME [32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE [16]. (h) 

Proposed SPLIE. 
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Figure 7: The comparison of enhanced images produced by different methods. (a) Input image. (b)  

SRIE [22]. (c) LIME [32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE [16]. (h) 

Proposed SPLIE. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(g) 

 
(h) 

Figure 6: The comparison of enhanced images produced by different methods. (a) Input image. (b)  

SRIE [22]. (c) LIME [32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE [16]. (h) 

Proposed SPLIE. 
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 Figure 10 shows the comparison of the enhancement 

algorithms in different indoor scenes. It can be observed  

from this figure that the SRIE is unable to maintain the 

illumination of input images and the improvement in the 

image quality is not apparent enough whereas LIME  

shows impressive performance in brightening the dark 

regions but it may easily over-enhance regions with bright 

colors. ROR can effectively improve the contrast of 

weakly illuminated images while suppressing the 

intensive noise. Nevertheless, the details of the enhanced 

images are over-smoothed. It can also be observed that 

LECARM does not improve the brightness of indoor 

scenes sufficiently. Although NPLIE and Zero-DCE 

produce pleasing results compared with the other 

mentioned algorithms, the output of these algorithms look 

slightly pale with not enough details. The proposed 

SPLIE algorithm produces promising results and enhance 

the indoor scenes better than the other enhancement 

algorithms.  

To further clarify the quality difference between the 

enhanced images generated by SPLIE and the other 

enhancement algorithms, Figure 11 shows the comparison 

of enhanced images in local regions. The selected yellow 

boxes from the input dimmed images shown in Figure 11 

(left column) were zoomed-in to clearly demonstrate the 

enhancement of these local regions by different 

enhancement algorithms. The zoomed-in patches 

demonstrate that the proposed SPLIE algorithm generates 

more clear structural details with fewer color distortion 

and visual artifacts than the other algorithms. It can be 

concluded that the SPLIE algorithm  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 9:  The comparison of enhanced images produced by different methods. (a) Input image. (b)  

SRIE [22]. (c) LIME [32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE [16]. (h) 

Proposed SPLIE. 
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Figure 8:  The comparison of enhanced images produced by different methods. (a) Input image. 

(b)  SRIE [22]. (c) LIME [32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE 

[16]. (h) Proposed SPLIE. 
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subjectively achieves better trade-off between the 

illumination enhancement and preserving the naturalness 

and structural details of input images than other methods  

due to using the proposed fusion algorithm in addition to 

the illumination map refinement.  

 

4.3.  Quantitative Assessments  

To validate the visual results, the objective evaluation 

was performed on the results of the enhancement 

algorithms using non-reference and full reference quality 

metrics. These quality metrics are the lightness order error 

(LOE) [28], the discrete entropy (DE) [46], the measure 

of enhancement (EME) [47], the maximum contrast with 

minimum artifact (MCMA) [48], peak signal-to-noise 

ratio (PSNR) [49], and structural similarity index measure 

(SSIM) [50].   

To evaluate the performance in terms of brightness 

enhancement, the lightness naturalness is measured using 

LOE metric. It is given as: 

𝐿𝑂𝐸 =
1

𝑁
∑ ∑ ( 𝑈(𝑍(𝑥), 𝑍(𝑦)) ⊕ 𝑈(𝑍𝑒

𝑁
𝑦=1

𝑁
𝑥=1 (𝑥), 𝑍𝑒(𝑦)).                                             

(22)                                                                                  

            𝑈(𝑝, 𝑞) = {
1,          if 𝑝 ≥  𝑞 
0,        otherwise

 ,                       (23) 

where ⊕ is the XOR operation, 𝑁 is the pixels number. 

𝑍(𝑥) and 𝑍𝑒(𝑥) denote the maximum values at location 𝑥 

within the RGB color channels of the input low-light 

image and the enhanced image, respectively. The lower 

LOE value represents more preservation of lightness 

order.  
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          (h) 

Figure 10:  The comparison of enhancement algorithms in different indoor scenes.  (a) Input image. (b)  

SRIE [22]. (c) LIME [32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE [16]. (h) 

Proposed SPLIE. 

   

 

  

  

        

 
 (a) 

 
  (b)   

 
  (c) 

 
  (d) 

 
  (e) 

 
  (f) 
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          (h) 

Figure 11: The comparison of enhanced images in local regions. (a) Input image. (b) SRIE [22]. (c) LIME 

[32]. (d) ROR [24]. (e) LECARM [33]. (f) NPLIE [36]. (g) Zero-DCE [16]. (h) Proposed SPLIE. 
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 To evaluate the details preservation, the information 

amount in the final enhanced image 𝑹 is measured using 

DE metric. It can be calculated by:  

                  𝐷𝐸 = − ∑ 𝑃𝑖(𝑹 )log (𝑃𝑖(𝑹 ))𝐾
𝑖=1 ,            (24) 

where 𝑃𝑖(𝑹 ) is the occurrence probability of a pixel 

value 𝑖 in the image 𝑹, 𝐾 denotes the gray levels number. 

The higher DE value implies that the enhanced image 

contains more details. 

Further, The level of contrast enhancement in the 

enhanced image 𝑹 is measured by EME metric. It can be 

formulated as: 

          𝐸𝑀𝐸(𝑹) =
1

𝑘1𝑘2
∑ ∑ 20 𝑙𝑛

𝑚𝑎𝑥𝑘,𝑙(𝑹)

𝑚𝑖𝑛𝑘,𝑙(𝑹)

𝑘2
𝑘=1

𝑘1
𝑙=1  ,      (25) 

where 𝑚𝑎𝑥𝑘,𝑙(𝑹), and 𝑚𝑖𝑛𝑘,𝑙(𝑹) represent the 

maximum and minimum intensities in each of the 

enhanced image blocks. High EME value implies that the 

enhancement algorithm achieves a good contrast 

improvement. 

Moreover, the MCMA metric evaluates the quality of 

enhancement algorithm relating to the contrast 

enhancement. It measures the negative impacts that may 

occur during the enhancement process like, over-

enhancement or other artifacts such as, information loss. 

The MCMA metric can be formulated as:  

              𝑀𝐶𝑀𝐴 =
(0.4𝑃𝐷𝑅𝑂−0.3𝑃𝐻𝑆𝐷−0.7𝑃𝑃𝑈)

1.4
 ,             (26) 

where the three parameters, 𝑃𝐷𝑅𝑂, 𝑃𝐻𝑆𝐷, and 𝑃𝑃𝑈 are 

estimated from the enhanced image. These parameters 

denote the dynamic range occupation (DRO), the 

histogram shape deformation (HSD), and the pixel 

uniformity (PU), respectively [48]. Lower MCMA value 

indicates that the contrast is improved by the 

enhancement algorithm with minimum artifacts.  

Finally, the full reference quality metrics including 

PSNR and SSIM are utilized to evaluate the similarity 

between the enhanced images and the corresponding 

ground truth. PSNR metric measures the enhanced image 

quality by expressing its distance from the corresponding 

ground truth. The PSNR metric can be calculated as 

follows: 

 𝑃𝑆𝑁𝑅 = 10 log (
𝑀𝐴𝑋𝐼

2

1

𝑚×𝑛
∑ ∑ (𝐼𝑟𝑒𝑓(𝑥,𝑦)−𝑅(𝑥,𝑦) )

2
 

𝑛
𝑦=1

𝑚
𝑥=1

),   (27) 

where 𝑀𝐴𝑋𝐼 denotes the image’s maximum pixel value. 

It takes the value of 255 in 8-bit images. 𝑰𝑟𝑒𝑓 and 𝑹 

denote the reference image and the enhanced image of 

size 𝑚 × 𝑛, respectively. The higher value of PSNR 

implies a smaller change between the reference and 

enhanced images which indicates better quality of 

enhanced image as the image is closer to its 

corresponding ground truth. 

The SSIM metric evaluates the identicality between the 

enhanced image and its reference image related to the 

brightness 𝑙, contrast 𝑐, and structure 𝑠. Therefore, the 

SSIM metric can be calculated as follows [50]: 

          𝑆𝑆𝐼𝑀 = 𝐹[𝑙(𝐼𝑟𝑒𝑓 , 𝑅), 𝑐(𝐼𝑟𝑒𝑓 , 𝑅), 𝑠(𝐼𝑟𝑒𝑓 , 𝑅)].    (28) 

The higher value of SSIM implies more similar 

structure between the enhanced image and its reference 

image. 

The efficiency of the proposed SPLIE algorithm is 

assessed via the quality measures including, LOE, DE, 

EME, and MCMA. These metrics are used to evaluate the 

enhanced images from the datasets that have been used. 

Table 1 clarifies the average LOE, DE, EME, and MCMA 

measures gained from SPLIE and the other enhancement 

algorithms. It can be noticed that ROR produces the worst 

result of LOE, DE, and EME because this method over-

smoothes the enhanced image in which the details are not 

prominent enough and makes the enhanced image looks 

unnatural. Whereas, SRIE has the highest value of 

MCMA because this method could not improve the 

brightness of input images sufficiently and produces 

enhanced images with visual artifacts. 

It is observed that the proposed SPLIE algorithm 

obtains better results in all measures. It achieves the 

lowest LOE average value which indicates that SPLIE can 

recover the low-light images brightness while preserving 

their naturalness. Furthermore, compared to the other 

algorithms, SPLIE produces the best scores in terms of 

DE, EME, and MCMA which implies that the proposed 

SPLIE algorithm improves the contrast while maintaining 

the image structural details and reducing the color 

distortions and artifacts. This improvement is due to using 

the fusion-based mechanism for estimating the  

Table 1: Quantitative assessment in terms of LOE, DE, EME, and MCMA 

Evaluation 
SRIE 

[22] 

LIME 

[32] 

ROR 

[24] 

LECARM 

[33] 

NPLIE 

[36] 

Zero-DCE 

[16] 

Proposed  

SPLIE 

LOE [28] 578.06 631.09 717.04 657.23 622.52 670.70 465.52 

DE [46] 4.86 5.11 4.47 4.88 5.00 4.77 5.14 

EME [47] 7.89 8.10 5.19 7.23 7.35 6.69 8.22 

MCMA [48] 0.21 0.13 0.18 0.15 0.15 0.12 0.11 
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initial illumination map of input image and using multi-

objective function to obtain the refined illumination map. 

The full reference metrics including PSNR and SSIM 

were also used to check the performance of the proposed 

SPLIE algorithm on LOL dataset [11]. The average PSNR 

and SSIM measures gained from the proposed SPLIE and 

the other algorithms are illustrated in Table 2. 

It is clear from the table that the proposed algorithm 

obtains the highest scores of PSNR and SSIM which 

implies that the enhanced images obtained from the 

proposed SPLIE algorithm are closer to their reference 

images than the other enhancement algorithms. It can be 

concluded that the proposed algorithm outperforms other 

enhancement algorithms and hence it is effective for the 

enhancement of low-light images.  

4.4.   Processing Time 

Table 3 illustrates the average processing time of 

several enhancement algorithms. As shown in the table, 

the ROR is the slowest algorithm among the other 

enhancement algorithms. This method requires large 

computational time due to its consecutive iterations and 

causes out of memory problems especially in the 

processing of large size images. Whereas, Zero-DCE has 

the lowest running time that represents the test phase 

duration. However, the training time of this method is 

about 30 minutes [16]. Although the processing time of 

the proposed algorithm is not the fastest compared to the 

other enhancement algorithms, it produces the best results 

in the subjective and objective evaluations.  

5. CONCLUSION 

In this paper, an effective algorithm was proposed to 

improve low-light images depending on Retinex model. 

The key for good recovery of enhanced image is how 

accurate the illumination map is obtained. Therefore, the 

proposed algorithm was intended to obtain the optimal 

illumination map of observed weakly illuminated image. 

The initial illumination map was obtained using fusion 

between maximum color channel and bright channel of 

input image. The optimized illumination was then 

estimated by refining the initial illumination map using 

structure-aware smoothing model. The experimental 

results demonstrated the outperformance of the proposed 

SPLIE algorithm over the other enhancement algorithms. 

The proposed algorithm makes the low-light images more 

visible by enhancing their illumination while avoiding 

over-enhancement. Furthermore, it weakens the color 

distortion and halo artifacts while preserving the 

naturalness and structural details of the enhanced images. 

Therefore, our proposed SPLIE algorithm can be used to 

introduce high visibility input images to several computer 

vision applications, such as traffic monitoring, 

surveillance systems, remote sensing systems, and 

medical imaging systems which thus improve the 

performance of these applications. 
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