
Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology. www.eajbs.eg.net

Citation: Egypt. Acad. J. Biolog. Sci. (A. Entomology) Vol. 11(4)pp: 51-58(2018)

Egypt. Acad. J. Biolog. Sci., 11(4): 51–58 (2018) Egyptian Academic Journal of Biological Sciences A.Entomology ISSN 1687- 8809 www.eajbs.eg.net

Occurrence of Different Mites associated with Different Cereals and Legumes Crops in different locations of Egypt

Yassin, E.M.A., Osman, S. A. A., and A. K. A. Rahouma

Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt E-mail: essammohamedabdelsalam@gmail.com

ARTICLE INFO

Article History Received: 12 /6 /2018 Accepted: 19/7 /2018

Keywords:

Bactrocera zonata – Ceratitis capitata – fig – Ficus carica – population - ecology – infestation – temperature – relative humidity-Fayoum.

ABSTRACT

This study proves the occurrence of 60 mite specie belonging to 42 genera under 22 families. These mites are belonging to 4 suborders Acaridida (Astigmata), Actinedida (Prostigmata), Gamasida (Mesostigmata) Oribatid and (Cryptostigmata). The astigmatid mites in this study were represented by 7 families, 17 genera and 23 different species. OI the other hand the number of mites' species in suborde Prostigmata was 26 species in 18 genera belong to 10 families. The obtained data indicated that the mesostigmatids were represented by 9 different species in 5 genera and 3 different families. The current study showed that the mites that belong to suborde Cryptostigmata were 2 mites only, 2 genera in 2 families. The mos abundant mites were Tyrophagus putrescentiae, Caloglyphu berlesi and Rhizoglyphus echinopus (Acaridae); Suidasia nesbiti (Suidasidae); Glycyphagus domesticus (Glycyphagidae) (Pyroglyphidae); *Dermatophagoides* farinae Cheyletu malaccensis and C. eruditus (Cheyletidae); Pymotes herfes (Pyemotidae); Cunaxa capreolus (Cunaxidae); Orthotydeu californicus and O. kochi (Tydeidae); Blattisocius keegani an Proctolaelaps pygmaeus (Ascidae). The stigmaeid mite, S africanus was determined in all tested regions with high numbers.

INTRODUCTION

Food legumes include a number of bean crops that are used for human consumption, such as broad beans (*Vicia faba*), <u>Kidney bean</u> (*Phaseolus vulgaris*), and soybeans (*Glycine max* (L.). Legumes are an important source of good quality dietary proteins and a good source of vitamins such as folate and dietary minerals like calcium, iron, magnesium and zinc. Antioxidants and other health-promoting substances in legumes also help to reduce the risks associated with some diseases such as cancer. Hence food legumes, especially vegetable legumes, are a boon to human health and are cultivated as valuable commercial crops, both for domestic and export markets (Srinivasan, 2014). Serious economic damages on grains and seeds resulting from infestation may occur in developed countries due to the high added value of seeds and

Citation: Egypt. Acad. J. Biolog. Sci. (A. Entomology) Vol. 11(4)pp: 51-58(2018)

low economic injury level (Stejskal, 2003). Stored seeds are vulnerable to pest attack because of their prolonged period of storage (often more than one year) and because seed varieties are stored in relatively small quantities in separate packages that usually exclude the possibility of active ventilation and of regular inspection and monitoring. Mites are the main pests of stored grains and vegetable seeds that can decrease seed germinability by 52% after 3 months of infestation under laboratory conditions (Stejskal et al., 2014). Zdarkova (1996) estimated a rapid decrease in the germination of wheat, maize, and oat seeds after 3 and 6 months of storage due to infestation by 2 mite species (A. siro, T. putrescentiae). These mites are responsible for the spread of various fungal spores throughout a grain mass and into adjoining bins. When present in large numbers, the flour or grain mites promote sweating and impart a disagreeable odor to the grain. Grain mites can cause "grocer's itch" in humans exposed to the mites. Some persons may be allergic to mites. In stored grains they cause great economic loss not so much by what they eat as by the damage they cause by changing the moisture content of the medium and initiating the growth of moulds (Nesbitt, 1945). Several species of acarids are found associated with stored cereals, grains and stored food products. Tyrophagus lintneri (Osborne) is a widely distributed pest of stored foods and at times quite serious Acarus siro Linn. is a cosmopolitan and destructive species found in grain, flour, dried fruits, and vegetables as well as in cheese. The flour mite. Aleorobius farinae (DeGeer) is yet another common species on cereals, flour, seeds, cheese, etc., and is a serious pest in flour mills, granaries and ware houses. Tyrophagus longior (Gervais) is another European species, and it has been stated that an entire hay stalk was practically destroyed by this mite. It also infests food stuffs (Essig, 1958). It is seen that very little is known of the role played by the several mite predators and parasites in checking populations of injurious mites and insects. An intimate knowledge of their ecology will help in a better utilization of these natural enemies.

MATERIALS AND METHODS

Incidence and occurrence of different mite species associated with different cereals and legumes products in different regions of Egypt differed in their ecological conditions were determined. General survey from 4 Egyptian governorates was undertaken for two years 2016 and 2017. The studied governorates were: El-Dakahlia (Aga, El-Sinbilawein and Meit Ghamr districts), El-Behira (Rashid districts), El-Menofia (El-Sadat, Ashmoun, Menouf and El-Bagour districts), Beni Suief (Beni Suief and Beba). Samples of different stored products, namely (rice, wheat, maize as cereals), (broad beans (*Vicia faba*), Kidney bean, *Phaseolus vulgaris* and soybeans as food legumes). These include a number of bean crops that are used for human consumption, such as were occasionally collected from some groceries and houses.

Sample Collection, Isolation, Mounting And Identification:

Tested samples were collected from different faunas and transferred to the Cotton and Field Crops Acarology Department of Plant Protection Research Institute, Agricultural Research Center for separation in the same day of the samples collection. Mites were extracted using a Berlese funnels, and collected by aid of stereomicroscope. Specimens were removed, cleared in Nesbitt's solution and mounted in Hoyer's medium on glass microscopic slides for identification. Collected mites were kept in Nesbitt's solution for about 24 hours for clearing them (Krantz and Walter, 2009). Nesbitt's solution is powerful clearing agent which act as solvent to the internal tissues and viscera thus it keep the external tissues intact and is

prepared as chloral hydrate (40 gm), distilled water (25 ml), and hydrochloric acid (2.5 ml.). For mounting the collected mites, Hoyer's medium was used, which was prepared as follow: distilled water (50 ml), chloral hydrate (50 gm), glycerin (20 ml), and Arabic gum (30 gm) (Krantz and Walter, 2009). The identification of different collected mites were identified according to Hughes (1961, 1976), Summers and Price (1970), Zaher (1986), Fan and Zhang (2003, 2004 and 2007), and Krantz and Walter (2009).

RESULTS AND DISCUSSION

In the course of the present investigation samples of 6 different stored legumes and cereals material were found to be adversely and variously infested with different mite species in different investigated groceries and houses of different regions in Egypt.

This work as shown in Table (1) proves the occurrence of 60 mite species belonging to 42 genera under 22 families. These families are belonging to 4 suborders Acaridida (Astigmata), Actinedida (Prostigmata), Gamasida (Mesostigmata), and Oribatida (Cryptostigmata). The astigmatids were represented by 7 families, 17 genera and 23 different species. On the other hand the number of mites' species in suborder Prostigmata was 26 in 18 genera belong to 10 families. The obtained data in Table (1) also indicate that the mesostigmatids were represented by 9 different species in 5 genera and 3 different families. The current study shows that the mites belong to suborder Cryptostigmata were 2 mites only, 2 genera in 2 families. Table (1) also shows that the collected mites are abundant with their habitat and locations. The most abundant mites were Tyrophagus putrescentiae, Caloglyphus berlesi and Rhizoglyphus echinopus (Acaridae); Suidasia nesbitti (Suidasidae); Glycyphagus domesticus (Glycyphagidae); *Dermatophagoides* farinae (Pyroglyphidae); Cheyletus malaccensis and C. eruditus (Cheyletidae); Pymotes herfesi (Pyemotidae); Cunaxa capreolus (Cunaxidae); Orthotydeus californicus and O. kochi (Tydeidae); Blattisocius keegani and Proctolaelaps pygmaeus (Ascidae).

As shown in Table (2), the acarid mites (most abundant mites) were extracted from 6 different stored material followed by glycyphagid mites, which inhabiting 5 different material. The mites of families Suidasidae, Pyroglyphidae and Carpoglyphidae were collected associated with two different stored material. Whoever, the lardoglyphid and chortoglyphid mites were found associated with one stored material for each. The mites in the families Cheyletidae, Tarsonemidae, and Tydeidae infested more stored products (5 material) for each more than any collected families in the suborder Prostigmata, while stigmaeid mites infested 4 tested material. The families Bdellidae and Raphignathidae were collected inhabiting 3 different material. The mites of the family Cunaxidae were noticed associated with 2 stored material, while mites of Pyemotidae, Caligonellidae, and Eupodidae inhabited one stored material for each (Table 2). On the other hand, the mites of the families Ascidae, Macrochelidae, and Uropodidae (Suborder Mesostigmata) as shown in Table (2) were investigated associated with 5, 3 and 1 stored product material, respectively, but the cryptostigmatids (Oppiidae and Oribatulidae) were collected from 2 stored material for each. Many authors all over the world, surveyed stored product mites in various stored products i.e. cereals (wheat, maize, rice) and legumes (broad bean, kidney bean, soybean) and their products. Abdel Khalik (2013) surveyed the mites associated with different stored products at different areas of Menoufia Governorate. Data proved the occurrence of 82 mite species belonging to 54 genera under 30 families belong to 4 suborders. Survey researches associated

with stored product mites were done by many authors; Hughes (1961) for prostigmatid mites and Mouray and Jamil (1982) for acarid mites. Also, Attiah (1969) studied the tyroglyphid mites, while, Zaher (1986), El-Naggar *et al.*, (1992), and Mostafa and Shokeir (1994) recorded several mite species associated with stored products. In their study, Zaher *et al.* (1986) noticed that members of the families Cheyletidae and Acaridae were the most common mites, found in many stored seeds and food products in Upper Egypt, but those of Caligonellidae, Ascidae, and Raphignathidae were fairly common but occurred in fewer types of samples.

Table (1): Incidence of different collected stored product mites at El-Dakahlia, E	El-
Behira, El-Menofia, and Beni Suief Governorates during 2016-2017.	

Mite species	Locality	Host (s)	Abu.
Suborder A	Acaridida (Astigmata)		
Family Acaridae <i>Tyrophagus putrescentiae</i> (Schrank)	All tested regions	Wheat, maize	+++
Acarus siro (L.)	Berket El-Sabaa	Kidney bean	+
Caloglyphus hughesi (Samsinak)	Shebein El-Koum,	Maize, wheat	+
Caloglyphus oudemansi (Zachvatkin)	Shebein El-Koum	Wheat, rice	++
Caloglyphus berlesi (Michael)	Ashmoun, Beba	Broad bean, kidney bean	+++
Caloglyphus betae (Attiah)	Shebein El-Koum, Ashmoun, Beba	Wheat, kidney bean	++
Rhizoglyphus echinopus (Fumouze & Robin)	Aga, Rashid, Meit Ghamr	Kidney bean, rice	+++
R. robini (Claparede)	El-Sadat, Berket El-Sabaa	Rice	++
Aleuroglyphus ovatus (Tropeau)	Shebein El-Koum	Soybean	+
Carpoglyphus lactis (L.)	Ashmoun, El-Sinbilawein	Wheat,broad bean	++
Mycetoglyphus Fungivorous (Oud)	El-Bagour, Beni Suief	Kidney bean	+
Family Suidasidae Suidasia nesbitti Hughes	Shebein El-Koum, Beba	Soybean, wheat	+++
Family Lardoglyphidae Lardoglyphus zacheri <u>Oudemans</u>	Ashmoun, Aga	Kidney bean	+
Family Glycyphagidae <i>Glycyphagus aegypticus</i> Attiah	El-Sadat, Rashid	Broad bean , rice	+
Glycyphagus domesticus (Ddeegeer)	Ashmoun, Menouf	Wheat	+++
Glycyphagus ornatus (Kramer)	El-Shohadaa, Queisna	Kidney bean	+
Lepidoglyphus destructor (Schrank)	Shebein El-Koum, Meit Ghamr, Menouf	Soybean	++
Blomia freemani Hughes	Ashmoun, El-Bagour	Wheat	++
Grammolichus malukuensis (Faim)	El-Bagour, Aga	Wheat	+
FamilyPyroglyphidae Goheria fusca Oud.	El-Shohadaa, Beni Suief, El- Sinbilawein	Maize, soybean	+
Dermatophagoides farinae (Hughes)	Berket El-Sabaa	Kidney bean, rice	+++
Family Carpoglyphidae Carpoglyphus lactis (Linnaeus)	-Sadat, Ashmoun	Wheat, maize	+
Family Chortoglyphidae Chortoglyphus arcuatus (Troupeau)	Shebein El-Koum	Wheat	+

Mite species	Locality	Host (s)	•			
Suborder Actinedida (Prostigmata)						
Family Cheyletidae <i>Cheletogenes ornatus</i> (C. & F.)	El-Sadat, Beba, El- Sinbilawein	Wheat , soybean	++			
Cheyletus badryi Zaher & Hassan	Menouf, Ashmoun	Kidney bean, rice	++			
Cheyletus malaccensis (Oudemans)	Shebein El-Koum,	Wheat, maize, rice	+++			
Cheyletus eruditus (Schrank)	Ashmoun, Rashid	Wheat, maize, soybean, rice, kidney beans	+++			
<i>Cheyletus cacahuamilpensis</i> Baker	Beni Suief, Rashid	Soybean, wheat	+			
Nodele calamodia (Muma)	Ashmoun, Meit Ghamr	Soybean, kidney bean	+			
Ker summeris Gomaa & Hassan	Ashmoun, Tala	Wheat, kidney	+			
Cheletomorpha lepidopterorum (Shaw)	Shebein El-Koum, El- Shohadaa	Soybean, bod bean	+			
Family Bdellidae Spinibdella cortices (Ewing)	El-Sadat, Menouf	Maize	+			
Spinebdella bifurcate Atyeo	Beni Suief, Tala, Aga	Rice, wheat	++			
Family Pyemotidae <i>Pymotes herfesi</i> (Oud.)	Berket El-Sabaa, Aga	Kidney bean	+++			
<i>Pymotes tritici</i> (Lagrez Forssote & Montene)	Shebein El-Koum, El-Shohadaa	Kidney bean	+			
Family Tarsonemidae <i>Tarsonemus granariea</i> (Lindiquist)	El-Bagour,Beni Suief El-Sinbilawein	Maize, soybean, wheat	+			
Tarsonemus gladifier (Mahunka)	El-Sadat, Rashid	Kidney bean, broad bean	+			
Family Cunaxidae						
Cunaxa capreolus Berlese	Ashmoun, Beni Suief	Rice	+++			
Pulaeus glebulentus Den Heyer	Menouf, Aga, Beba	Wheat, rice	+			
Family Stigmaeidae Apostigmaeus aegypticus (Soliman & Gomaa)	Shebein El-Koum, El- Shohadaa	Maize, broad bean	++			
Stigmaeus africanus (Soliman & Gomaa)	Ashmoun, Beba, Aga, Rashid	Maize, wheat	+++			
Agistemus banksi (Gomaa & (Hassan)	Shebein El-Koum, El- Shohadaa, Meit Ghamr	Wheat, soybean	+			

Table (1): Cont.

Table (1): Cont. Mite species	Locality	Host (s)	Abu.
Family Caligonellidae	Berket El-Sabaa, Meit		1
Neognathus oblongus (Soliman)	Ghamr	Soybean	+
Family RaphignathidaeRaphignathus niloticusGomaa and Hassan	Shebein El-Koum, El- Shohadaa	Maize	+
Raphignathus bakeri Zaher & Gomaa	Beni Suief, Tala	Wheat, soybean	++
Family EupodidaeEupodes aegyptiacusAbou-Awad & El-Bagoury	Berket El-Sabaa, Ashmoun	Wheat	+
Family Tydeidae			
Orthotydeus californicus Banks	Ashmoun, Meit Ghamr	Wheat, maize, soybean	+++
O. kochi (Oudemans)	Beni Suief,, Ashmoun, Rashid	Broad bean, soybean	+++
Pronematus rykei Meyer & Rodrigues	El-Bagour, Rashid	Wheat, kidney bean	++
Suborder G	amasida (Mesostigmata)		
Family Ascidae Blattisocius tarsalis (Berlese)	El-Bagour, Aga, Beba	Rice, wheat, broad bean	÷
Blattisocius keegani (Fox)	Queisna, Menouf	Rice, wheat, broad bea soybean	" +++
Blattisocius dentriticus (Berlese)	Shebein El-Koum, El- Shohadaa	Kidney bean, maize	÷
Proctolaelaps pygmaeus (Muller)	Ashmoun, El-Sinbilawein, Beba	Maize, broad bean	+++
P. orientalis Bhattacharyya	Ashmoun	Wheat and soybean	++
Lasioseius lindiquisti Nasr & Abou Awad	Rashid, Beba	Soybean	+
Family Macrochelidae <i>Macrocheles muscaedomesticae</i> (Scopi)	Berket El-Sabaa, Menouf, Meit Ghamr	Maize, rice	÷
Macrocheles carinatus (Koch)	Ashmoun, Aga	Wheat	+
Family Uropodidae Urobovilla krantzi Zaher & Afifi	Menouf, Ashmoun	Maize	+
	ribatida (Cryptostigmata)	IVIAIZO	
Family Oppiidae	(Si prostigiliata)		
Oppia sticta (Popp)	Menouf, Ashmoun, Aga	Wheat, soybean	÷
Family Oribatulidae <i>Zygoribtula saydei</i> El-Badry & Nasr	El-Sadat, Berket El- Sabaa	Maize, kidney beans	+

Table (1): Cont.

+ = rare (1-3 indivduals) ++ = moderate (4-8 indivduals) +++ = more than 8 indivduals

Table (2): Occurrence of	of collected	different	families,	genera	and	species	according	to
their habitat and fe	eding habits	s in differ	ent Gover	norates				

Families	Genera	Species	Dominant species	No. of products
			Suborder Astigmata	
Acaridae	7	11	utrescentiae, R. robini, C.berlesei	6
Suidasidae	1	1	S. nesbitti	2
Lardoglyphidae	1	1	-	1
Glycyphagidae	4	6	G. domesticus	5
Pyroglyphidae	2	2	-	2
Carpoglyphidae	1	1	-	2
Chortoglyphidae	1	1	-	1
Total	17	23		
			Suborder Prostigmata	
	5	8	C. malaccensis, C. eruditus	5
	1	2	-	3
Pyemotidae	1	2	P. herfesi	1
Tarsonemidae	1	2	-	5
Cunaxidae	2	2	C. capreolus	2
Stigmaeidae	3	3	S. africanus	4
Caligonellidae	1	1	-	1
Raphignathidae	1	2	-	3
Eupodidae	1	1	-	1
Tydeidae	2	3	O. kochi, O. californicus	5
Total	18	26		
			Suborder Mesostigmata	
Ascidae	3	6	B. keegani P. pygmaeus	5
Macrochelidae	1	2	-	3
Uropodidae	1	1	-	1
Total	5	9		
	1		Suborder Cryptostigmata	
Oppiidae	1		-	2
Oribatulidae	1		-	
Total	2			

REFERENCES

- Abdel-Khalik, A.R. 2013. Studies on the effect of certain mites on some food products. M.Sc. Thesis fac. Sc., Menofia Governorate, 104 pp.
- Attiah, H.H. 1969. Tyroglyphid mites associated with stored food in U.A.R. Egypt. Min. Agric., Plant Protection Dept., Tech. Bull., 10: 1-51.
- El-Naggar, M.E., M.A. Rakha and H.A. Taha 1992. Mites of stored grains in Egypt. Egypt. J. Biol. Pest Control, 2(2): 109-122.
- Essig, E.O. 1958. Insects and mites of Western North America. II ed. Macmillan, New York. 1050 pp.
- Hughes, A.M. 1961. The mites of stored food. Min. of Agr., Fish. & Food Tech. Bull., 9: 278.
- Hughes, A. M. 1976. The mites of stored food and houses. Technical Bulletin No.9, Ministry of Agriculture, Fisheries and Food, London. 399 pp.
- Krantz, G.W. and Walter, D.E. 2009. A Manual of Acarology. Texas Tech Univ. Press, 807 pp.
- Mostafa, A.M. and N.I. Shokier 1994. Stored product mites in Egypt. J. Appl. Sci., 9(8): 730-739.
- Mouray, K.R. and Z. Jamil 1982. Survey of storage Acari in Lucknow, India. Biol. Mem., 6(23): 97-122.

- Nesbitt, H.H.J. 1945. A revision of the family Acaridae (Tyrglyphidae), Order Acari, based on comparative morphological studies, Canad. Jour. Res., 23: 139-188.
- Srinivasan, R. 2014. Insect and mites pests on vegetable legumes. The World Vegetable Center, Shanhua, Taiwan.AVRDC Publication No. 14-778. 92 pp.
- Stejskal, V. 2003. Economic injury level and preventive pest control. Anzeiger für Schadlingskunde Journal of Pest Science, 76: 170–172.
- Stejskal, V., Aulicky, R. and Kucerova, Z. 2014. Pest Control Strategies and Damage Potential of Seed-Infesting Pests in the Czech Stores – a Review. Plant Protect. Sci., 50(4): 165–173.
- Summers, F.M. and Price, D.W. 1970. Review of the mite family Cheyletidae. Univ. Calif. Publ. Entomol., 61: 153 pp.
- Fan, Q. and Zhang, Z. 2003. *Rhizoglyphus echinopus* and *Rhizoglyphusrobini* (Acari: Acaridae) from Australia and New Zealand: identification, host plants and geographical distribution. Systematic & Applied Acarology, Special Publications, 16: 1-16.
- Fan, Q. and Zhang, Z. 2004. Revision of *Rhizoglyphus* Claparede (Acari: Acaridae) of Australasia and Oceania. 374 pp.
- Fan, Q. and Zhang, Z. 2007. Fauna of New Zealand, *Tyrophagus* (Acari: Astigmata: Acaridae) : 291 pp.
- Zaher, M.A. 1986. Survey and ecological studies on phytophagous, predaceous and soil mites in Egypt. II- Predaceous and non-phytophagous mites (Nile valley and Delta). PL-480 Program. USA Project No. EG- ARS-30. Grant No. FG-EG-139, 567 pp.
- Zaher, M.A., M.I. Mohamed and S.M. Abdel-Halim 1986. Incidence of mites associated with stored seeds and food products in Upper Egypt. Exp. & Appl. Acarology, 2(1): 19-24.
- Zdarkova E. 1996. The effect of mites on germination of seed. Ochrana Rostlin Plant Protection Science, 32: 175–179.

ARABIC SUMMARY

تواجد الأكاروسات المختلفة المرتبطة بالحبوب والمحاصيل البقولية في مناطق مختلفة من مصر

عصام محمد عبد السلام ياسين - صدقي عبد الحميد عبدالراضى عثمان – على كامل على رحومة معهد بحوث وقاية النباتات – مركز البحوث الزراعية – الدقى – الجيزة - مصر