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Abstract 

 
We aim in this paper to develop a new algorithm for approximating the analytic solution for the integro-

differential equations using the Galerkin method. The bases of the solution obtained by the proposed algorithm 

are Chebyshev polynomials. Meanwhile, some theorems are deducted to simplify the nonlinear algebraic set 

resulted from applying the Galerkin method, while Newton's method is used to solve the resulting nonlinear 

algebraic system. Examples are introduced to prove the effectiveness of this algorithm in comparison with some 

other methods. 
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1. Introduction 

 

The integro-differential equations stem from the mathematical modeling of many complex real-life 

problems. Many scientific phenomena have been formulated using integro-differential equations. The 

integro-differential equations can be encountered in various fields of science such as physics, 

chemistry, biology, and engineering. These kinds of equations can also be found in numerous 

applications, such as the theory of elasticity, biomechanics, electromagnetic, electrodynamics, fluid 

dynamics, heat and mass transfer, oscillating magnetic field…, etc. [1]. 

 

Many researchers introduced methods to solve integro-differential equations for example 

Rahimkhani et al. [2] proposed the numerical solution of linear and nonlinear fractional integro-

differential equations using a new set of functions called fractional-order Bernoulli functions. Aydogan  

et al. [3] used the fractional Caputo–Fabrizio derivative to solve the higher order fractional integro-

differential equations. Erfanian et al. [4] used a new sequential approach for solving the integro-

differential equation via Haar wavelet bases. Rong et al. [5] applied a new operational matrix via 

Genocchi polynomials to solve fractional integro-differential equations. Numerous works have been 

focusing on the development of more advanced and efficient methods for nonlinear Volterra-Fredholm 

integral and integro-differential equations. For example, hybrid Legendre polynomials and Block-Pulse 

functions [6], triangular functions [7], Taylor polynomials [8] [9], least squares method and Chebyshev 

polynomials [10], collocation method and radial basis functions [11], Taylor collocation method [12], 

least squares approximation method [13], shifted Legendre polynomials approximation [14], fixed 

point technique and Schauder bases [15], Haar wavelets [16], operational matrix with block-pulse 

functions [17], homotopy analysis method [18].  
 

In this paper, we try to find an appropriate algorithm to approximate the analytic solution of 

integro-differential equations, with a good accuracy and high rate of convergence to the exact solution. 

Our proposed algorithm is based on the Chebyshev polynomials as bases in applying the Galerkin 
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method to find the approximate solution of the aimed integro-differential equation to be solved that is 

in the form 
 

                     1 2
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       
 

 1.1
 

with conditions 
 

    ,    1,  2,  3,  ...,  ,    , , ,sp

s s su x q s N p      

 

where  l x ,  x ,  1 ,k x t  and  2 ,k x t  are continuous functions in 2L  space, and sp N . Paper is 

organized as following: in Section 2, we summarize the Chebyshev polynomials and their properties, in 

addition to developed theorems to support our approach. Section 3 will show the analysis made to the 

integro-differential equation and the sequence followed by the algorithm to find the approximate 

solution of the equation. Section 4 is presenting the numerical examples used to prove the usefulness of 

the algorithm with results compared to other methods. Section 5 will give a brief conclusion.  

 

2. Chebyshev Functions Preliminaries 
 

Orthogonal polynomials are used in many applications such as solving partial differential 

equations, integral equations…etc. One of these polynomial sets is the first kind of Chebyshev 

polynomials set  nT x  which is the solution set of Chebyshev differential equation defined as  
 

 2 21 '' ' 0,    1 1x y xy n y x       ,  2.1   
 

and its solution defined in the form 
 

    1cos cos ,    1 1nT x n x x    ,  2.2  
 

or  
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with inverse 
 

 1
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,    2 1 1,
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n n

jn j
j

n j

x
n

x T x






  
  

 
   2.4  

 

and the extreme values of these polynomials at endpoints of interval of definition are  
 

   1 1
n

nT      2.5  
 

The Chebyshev polynomials and their derivatives are defined by the following recurrence relations 
 

     1 12 ,n n nT x xT x T x      2.6  
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 
       

         

1 3 5 1

1 3 5 2 0

2 ,                even,
'

2 ,  odd,

n n n

n

n n n

n T x T x T x T x n
T x

n T x T x T x T x nT x n

  

  

       
 

       
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and the derivatives of the Chebyshev polynomials are given as  
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  2.8  

The product of two Chebyshev polynomials is given by 
 

        1
.

2
m n n m n mT x T x T x T x     2.9  

 

These polynomials are orthogonal on the interval  1, 1  with the weight function 
2

1

1 x
 where  
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also, the integration 
 1

21 1

f x
dx

x 
  could be computed using Gaussian-Chebyshev quadrature method  

as following 
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where ix  are the nodes of Chebyshev polynomials given by 
 

2 1
cos ,    1, , .

2
i

i
x i n

n


 
  

 
  2.12  

 

The integration of the first kind of Chebyshev polynomials is given by 
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Theorem 2.1 For ,  ,  n m p  and q  are positive integers such that, n  and m N   
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Proof: By recalling  2.4  and  2.8 , 
   pq

nx T x  could be written as 
 

   
 

 

 

   

2

2
2 2

 3

1

2
0 0

 2 2
2 even   even 2

0

2
2

,    1.

2

n p k

n pp q

i
k jn p kq j

j k

q

p

q j n p k

q

i

n

n p i k
qn

T x T x p
p

n p i k

x T x

  

 



  
 

  



 
   
 




   
 

 
  

 


 



  2.15  

 

The left hand side of  2.14 could be introduced as  
 

     

 

 

 

     1

1
2

2 2
 3

1

0  0

1

2 2 1
2 2

2 even  2

1

e

1

ven

0

2

.
1

2

1
2

n p k

n pp q
k ji

n p kq j
j k

q j n

qpq

mn m

p k

i

n p i k
q T x T xn

p

n p i k

T x dxx T x T x dx

x x

 


 



 
  

  





   
  

  

   
 


   
 


 



   

 

By simplifying the previous equation using  2.9  and  2.10 , Theorem 2.1 is proved. 
 

Theorem 2.2 For ,  ,  ,  ,  ,  ,  in c p i r h m  and q  are positive integers such that, n  and ic N   
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Proof: By recalling  2.9  and using mathematical induction, the product  
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By replacing  mT x  in  2.14  by  
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i
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T x
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  in  2.17  and simplifying the result, proof is complete. 

 

3. The Chebyshev–Galerkin Method 

Let the approximate finite Chebyshev series expansion of any continuous function  f x  in the interval 

 1,1  be in the form 
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by multiplying both sides of the equation by 
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where the constant ja  could be calculated by the form 
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where the inner product    , jf x T x  is defined as 
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and could be calculated using  2.11  after replacing  f x  with    jf x T x  
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where ix  are the nodes of Chebyshev polynomials given by  2.12 , and m  is the number of nodes. 

 

Let the approximate solution of the integro-differential equation be in the form 
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By plugging the approximate solution  3.4 in the integro-differential equation  1.1 , and taking 2   
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By replacing the functions    ,  l x x   and  f x  by their approximate finite Chebyshev series 

expansion using  3.1 , the integro-differential equation could be introduces as 
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    

 

 

  

  

      

 

 

 

 3.6  

 

where ,  a bd d  and jd  are known constants resulting from Chebyshev series expansion  3.2 , and 

1 2,  n n  and 3n  are chosen numbers of terms of the approximation series for each function.  

 

Integrals in the right hand side of the equation could be approximated using Gauss-Legendre 

quadrature method by the form  
 

 
   

22
1

2
, , ,

2 2 21

nb

i
a

i
i n i

b a b a b a
k x t dt k x t

t P t

   
  

    
   3.7  

 

where it  is the - thi  root of the Legendre polynomials  nP t  which are obtained by 
 

   21
1 ,

2 !

n
n

n n n

d
P t t

n dt
    3.8  

 

and if the integro-differential equation contains the Volterra term, it could be transformed as  

 

   , , ,
x b

a a

x a
k x t dt k x d

b a
 




    3.9  

 

where   .
x a

t a a
b a




  


 Then the integro-differential equation could be written as 

 

           

     

1 2

3

0 0 0 0 0 0

, , ,

0 0 0 0 0 0

                                                ,

n nN n n n
l

a j a j b i j b i j

l a j b i j

n n n n n n

j j j i i j j i h i j h

j j i j i h

d c T x T x d c c T x T x T x

d T x c c g x c c c y x

     

     



  

 

  

      

 

 

 

 3.10  

 

where  ,i jg x  and  , ,i j hy x  are the resulting functions from  3.7  and  3.9 . 
 

By applying the Galerkin method using Chebyshev bases, the weak formula of the equation  3.10  is 

introduced as 
 

               

           

1 2

3

0 0 0 0 0 0

, , ,

0 0 0 0 0 0

, ,

             , , , ,

n nN n n n
l

a j a j r b i j b i j r

l a j b i j

n n n n n n

j j r j i i j r j i h i j h r

j j i j i h

d c T x T x T x d c c T x T x T x T x

d T x T x c c g x T x c c c y x T x

     

     



  

 

  

 

 

 

 

 3.11
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where the inner products in the left hand side of the equation are calculated using  2.16 , and the inner 

products in the right hand side of the equation are calculated using  3.3 . 
 

This would result in the algebraic nonlinear system of equations that could be written as 
 

  Ac Bc E Dc   3.12  
 

where 
 

               

               

       

       

1 1

1 1

1 1

0 0 0

0 0 0 0

0

0 0 0 0

0 1 1

0

, ,

, , ,

N N

n nN N
l l

a a a a n

l a l a

n nN N
l l

a a n N a a n n N

l a l a

p p

n

p p

N n N

d T x T x T x d T x T x T x

d T x T x T x d T x T x T x

T x T x

T x T x

   

 

   

 
 
 
 
 
 

  
 
 
 
 
 
 

 

 A  

 

                   

                   

2 2

2 2

0 0 0,0 0 , 0

0 0

0 0 0,0 ,

0 0

' , ' ,

,, ,

0 0

0 0

n n

b b b b n n n n

b b

n n

b b n N b b n n n n n N

b b

d T x T x T x g x T x d T x T x T x g x T x

d T x T x T x g x T x d T x T x T x g x T x

 

 

 

 
  

 
 
 
 

    
 
 
 
 
 
 

 

 B  

 

       

       

0,0,0 0 , , 0

0,0,0 , ,

, ,

, ,
,

0 0

0 0

n n n

n N n n n n N

y x T x y x T x

y x T x y x T x 

 
 
 
 
 
 
 
 
 
 

D  

           
3 3 3

0 1 1 1

0 0 0

, , , ,

T
n n n

j j j j j j n N N N

j j j

d T x T x d T x T x d T x T x q q q 

  

 
  
 
  E  

 0 1 1 ,
T

n nc c c cc  

 0 0 1 0 1 ,
T

n n n nc c c c c c c cc  
 

and 
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 0 0 0 1 0 0 1 .
T

n n n n n nc c c c c c c c c c c cc  

 

By obtaining the coefficients values, the approximate solution  3.1  of the integro-differential equation 

 1.1  is found, and our algorithm is complete. 

 

 
 

Newton’s Method 

The system  3.10  could be written in the form 
 

         0 1 0 0 0 ,
T T

ng g g   F c c c c   3.13  
 

where c  is the coefficients column matrix. The Jacobian of the given system as  

 

 

     

     

     

0 0 0

0 1

1 1 1

0 1

0 1

,

c c c

c c c
J c

c c c

n

n

n n n

n

g g g

c c c

g g g

c c c

g g g

c c c

   
   
 
   
 
    

 
 
   

    

  3.14  

 

and by using Taylor’s theorem for approximation of multivariable functions neglecting higher-order 

terms, one can easily derive the recursive relation 
 

         1 1 .c c J c F c
i i i i     3.15  

 

Iterations would be stopped when the allowable tolerance is greater than the absolute maximum 

difference between two successive iterations as following 
   

   1
Error max .

i i
 c c   3.16  

 

4. Numerical Examples 

This section demonstrates the reliability and efficiency of our proposed algorithm, four numerical 

examples of nonlinear integro-differential equations with boundary conditions of higher-order are 

performed. The solutions of the Chebyshev-Galerkin method are compared with the exact solution or 

discussed with other previous methods. Calculations are done by using Mathematica 10.0 on a personal 

computer. The maximum absolute error is defined as 
 

     max , ,nE x u x u x a x b         
 

where  nu x  is the approximate solution and  u x  is the exact solution. 

 



Hesham. A. M. A/ et al/ Engineering Research Journal (September 2020/ PH1-PH14) 

 

PH10 

Example 4.1 Considering the 1
st
 order nonlinear integro-differential equation 

 

       
1

6 2 2 3

0 0

1 1 1 1
' 2 , 0 1,

10 32 2 4

x

u x u x x x x xu t dt tu t dt x                

 

subjected to 
 

 0 0,u    
 

with the exact solution 
 

  2.u x x   

 

Table 1 shows the absolute errors of the comparison between the introduced method and with the Haar 

wavelet method, the Triangular factorization method as well as the Hybrid Legendre polynomials. 

 

Table 1 Maximum absolute error  E x corresponding to different methods for Example 4.1 

Proposed method 
Haar wavelets 

method [19]  

Triangular functions 

method [20] 
Hybrid Legendre 

polynomials method 

[21] 

2.168E-19 2.200E-04 2.800E-04 9.700E-04 

 

 

Example 4.2 [22] Consider the nonlinear 2
nd

 order integro-differential equation  

with the boundary conditions    0 1 1,u u  and the exact solution is   2 1u x x x    and 
 

  
2 5 6 7 8

283 1 2 3 2
( ) 2 1 2 1

560 3 4 3 4 5 6

x x x x x x
f x x x x

 
            

 
. 

 

Yüzbaşı introduced the solution using a collocation method that based on Bernstein polynomials for 

this problem. He got the exact closed form using his method. The solution obtained by our method in 

polynomial form is 
 

 2 17 3 17 4 17 5 18 7 17 7

7 ( ) 1 3.18 10 2.17 10 1.6904 10 3.28 10 1.4 10 ,u x x x x x x x x                  
 

with maximum absolute error is 3.8E-18 for 7n   

 

         
1

2 2 3

0 0

1 1
'' ' ( ) , 0 1,

3 2

x

u x u x u x f x x tu t dt xtu t dt x            
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               Figure 1: Absolute error corresponding to 7n   

 

 

 

 

Example 4.3 [23] Consider the 1
st
 order nonlinear integro-differential equation 

 

           2

0

1 2
' cos cos 2 2sin cos , 0 1,

3 3

x

u x x x x x t u t dt x              

 

subjected to 
 

 0 1,u    

 

whose exact solution is 
 

     cos sin .u x x x    
 

The solution obtained by our method in polynomial form is 

 
2 3 4 5 6 7

16

8 6 9 7 8 11

9 12 10 13 11 14 13 15

10

( ) 1 0.5 0.1666 0.04166 0.00833 0.0013888 0.000198

0.0000248 2.75573 10 2.75573 10 2.5052 10

2.087729 10 1.6054 10 1.151256 10 7.46220 10

5.938

u x x x x x x x x

x x x

x x x x

x  

   

       

      

   



   

14 160 10 ,x

 

  

Table 2 shows the maximum absolute error in different values of n . The comparison between our 

method and modified Laplace Adomian decomposition method listed in table 4.  

 

 

Table 2 Maximum absolute error corresponding to different values of n  for  

              Example 4.3 
 

n   E x  
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6 7.875E-6 

10 5.617E-11 

16 3.330E-16 

 
  

 

 

Example 4.4 [23] Consider the nonlinear integral differential equation 
 

     
2

2

0

1
, 0 1,

4 2 4

x
x

xx e
u x e x t u t dt x              

 

whose exact solution is 
 

  .xu x e  
 

 

The solution obtained by our method in polynomial form is 

2 3 4 5 7 7

16

8 6 9 7 8 11

9 12 10 13 11

0

14 1

1

3 15

( ) 1 0.5 0.1666 0.04166 0.00833 0.0013888 0.000198

0.0000248 0.000002755 10 2.75573 10 2.5052 10

2.087729 10 1.6054 10 1.151256 10 7.46220 10

5

u x x x x x x x x

x xx x

x x x x

  

   

       

      

      





14 16.9380 10 ,x

 

 

Table 3 represents the maximum absolute error in different values of n . The comparison between our 

method and modified Laplace Adomian decomposition method listed in table 4.  

 

 

Table 3 Maximum absolute error corresponding to different values of n  for  

              Example 4.4 
 

n   E x  

6 4.691E-6 

10 3.320E-11 

15 8.881E-16 

 

 

Table 4 Maximum absolute error  E x corresponding to method in [23] for examples 4.3 and 4.4 

 Example 4.3  Example 4.4 

x  Exact 
Proposed 

method 

Method in 

[23] 
Exact 

Proposed 

method 

Method in 

[23] 

0.0 1 1 1 1 1 1 

0.1 0.895171 0.895171 0.8964 1.10517 1.10517 1.1044 
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0.2 0.781397 0.781397 0.7858 1.22140 1.22140 1.2188 

0.3 0.659816 0.659816 0.6687 1.34986 1.34986 1.3441 

0.4 0.531643 0.531643 0.5455 1.49182 1.49182 1.4819 

0.5 398157 0.398157 0.4166 1.64872 1.64872 1.6338 

0.6 0.260693 0.260693 0.2828 1.82212 1.82212 1.8018 

0.7 0.120625 0.120625 0.1451 2.01375 2.01375 1.9887 

0.8 -0.0206494 -0.0206494 0.0049 2.22554 2.22554 2.1978 

0.9 -0.161717 -0.161717 -0.1361 2.4596 2.4596 2.4335 

1.0 -0.301169 -0.301169 -0.2758 2.71828 2.71828 2.7014 

  

  

 
 

 

5. Conclusion 

In this article, we have studied nonlinear Volterra-Fredholm integro-differential equations. The 

Chebyshev-Galerkin method is utilized to get the approximate series solution of the given problem. In 

order to apply this method, we proved some theorems to use it in our technique. We have solved the 

given numerical examples to explain the proposed method and its implementation in our work. To 

check our solution, we get the absolute error graphs corresponding to some numerical examples on the 

solution domain. 
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