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Abstract 

Background: Zinc oxide nanoparticle (ZnO NPs) has been widely used in biomedical applications and 

cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. 

Methods: Female Swiss Albino mice were inoculated subcutaneously with Ehrlich ascites carcinoma (EAC) 

cells. ZnO NPs or MTX were injected intraperitoneally. Tumor growth inhibition rate (TIR %), increase in life 

span (ILS%), zinc concentration, lipid peroxidation marker (MDA), glutathione (GSH) contents, and the activity 

of the antioxidant scavenger enzymes SOD and catalase CAT was examined. Also, DNA fragmentation and 

histopathological studies of all groups were carried out. Results: Treatment of tumor-bearing mice with ZnO 

NPs significantly increased (MST), (TIR %), (ILS %) and reduced tumor weight, compared to tumor-bearing 

controls. Additionally, Zn concentration and DNA fragmentation were significantly increased in tumor tissues. 

ZnO nanoparticles were also found to induce oxidative stress, evidenced by the generation of reactive oxygen 

species and depletion of the antioxidants in tumor tissues, with no changes in the liver. Our data demonstrate 

that ZnO NPs exert distinct effects via the killing of cancer cells. Conclusion: The study findings demonstrated 

that the ZnO NPs can induce selective cytotoxicity through reactive oxygen species generation and oxidative 

stress. 

Keywords: Zinc oxide nanoparticles, Methotrexate, Ehrlich solid tumor, selective cytotoxicity, zinc 

concentration, oxidative stress, DNA fragmentation. 
----------------------------------------------------------------------------------------------------------------------------- ---------------------

1. Introduction 

Cancer is a condition of uncontrolled cell 

differentiation, which has been treated by several 

modalities, including chemotherapy, radiation, and 

surgery, during the past several decades.[1,2]  Current 

anticancer chemotherapies based on alkylating 

agents, antimetabolites, biological agents and natural 

products frequently fail to produce a complete 

anticancer response owing to the development of drug 

resistance or their failure to differentiate effectively 

between cancerous and normal cells.[3-7] This 

indiscriminate action frequently leads to systemic 

toxicity and debilitating adverse effects in normal 

body tissues, including bone marrow function 

suppression, neurotoxicity, and cardiomyopathy, 

which greatly limits the maximal allowable dose of 

the chemotherapeutic drug.[8]  Nanoparticles have 

been known as a promising agent for cell imaging, 

biosensing, gene delivery, and cancer therapy. Metal 

oxide nanoparticles (NPs) such as zinc oxide 

nanoparticles (ZnO NPs) have been used in 

biomedical applications and various therapy.[9] The 

manipulation of ZnO at the nanoscale levels enables 

precision engineering to control the physicochemical 

properties of nanoparticles and their interactions with 

cellular systems.[10] ZnO has been widely used in 
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cosmetic lotions and increases anti-bacterial 

activity.[11, 12] It is also utilized in the cotton fabric, 

rubber, and food packaging industry.[13]  

Zinc oxide nanoparticles have attracted 

researchers for their implications in cancer therapy 

and have been reported to induce cytotoxicity at in 

vitro and in vivo Levels.[14] ZnO NPs have been found 

to have the potential for use in biomedical and cancer 

applications due to the attractive chemical properties 

of these nanomaterials.[15] Previous studies reported 

that ZnO NPs exhibit a high degree of cancer cell 

selectivity with the ability to surpass the therapeutic 

indices, compared to chemotherapeutic agents.[16] 

ZnO NPs able to preferentially target rapidly dividing 

cancerous cells, which could serve as a foundation for 

developing novel cancer therapeutics. ZnO NPs show 

enhanced cytotoxicity by a generation of reactive 

oxygen species (ROS), leading to oxidative stress and 

eventually cell death when the antioxidative capacity 

of the cell is exceeded.[15] ROS are oxygen 

metabolites that are highly active in terms of 

oxidative modifications of cellular macromolecules 

including proteins, lipids, and polynucleotides.[17]  

The cellular redox homeostasis is maintained by the 

balance between ROS production and the antioxidant 

system in the cell; when ROS is produced excessively 

or endogenous antioxidant capacity is diminished, 

indiscriminate oxidation elicits harmful effects, 

resulting in “oxidative stress”. Several studies proved 

that excessive oxidative stress is harmful to the cell 

and causes severe cytotoxicity.[17-19]  Upon exposure 

to oxidants or oxidative stress-inducing agents, a 

common adaptive response induced in mammalian 

cells is the upregulation of stress-response genes, 

many of which encode antioxidant defense 

enzymes.[20-22]  While high levels of ROS production 

may lead to the induction of apoptosis or necrosis, 

increasing evidence demonstrates that low or 

transient ROS exposure increases cell proliferation, 

likely through altered expression of growth factors 

and proto-oncogenes.[23,24] Experimental tumors have 

great importance for modeling, and one of the 

commonest is the Ehrlich solid tumor was chosen as 

the experimental model of carcinogenesis.[25] It is a 

neoplasm of epithelial origin, corresponding to 

murine mammary adenocarcinoma. This tumor is 

easily cultivated and transferred in vivo and can be 

used to study the mechanisms of carcinogenesis and 

evaluate the effect of new therapeutic approaches for 

tumors.[25] The present study was aimed to investigate 

the selective toxicity of ZnO NPs against Ehrlich 

solid carcinoma in mice. 

2. Materials and methods 

2.1. Materials 

Zinc oxide nanoparticles (ZnO NPs) with a 

diameter of 20-50 nm were purchased from Sigma–

Aldrich Company Ltd. The purities of ZnO NPs was 

99.5 wt. %. The particular surface areas of ZnO NPs 

were 50m2/g. This physicochemical information was 

provided by the manufacturer. Methotrexate (MTX) 

was purchased from Sanofi (Cairo, Egypt).  All 

different reagents and chemicals employed in this 

study were purchased from Bio- Diagnostic Medical 

Company (Egypt). 

2.2. Animals 

In total, 115 Albino, female mice individually 

weighing around 20–25 g were housed in wire mesh 

cages in a constant environment [temperature (23°C± 

2°C), relative humidity (80% ± 5%), and light (12 h 

light/dark cycles)]. They were given ad lib access to 

a standard diet and water. All experiments were 

performed following guidelines for animal studies 

issued by the Ethical Committee of Faculty of 

Science and Faculty of Medicine, Tanta University, 

as approved by the Institutional Animal Care and Use 

Committee (IACUC-SCI-TU-0041). 

2.3. Ehrlich Ascites Carcinoma (EAC) Cells and 

Tumor Inoculation 

Murine Ehrlich Ascitis Carcinoma bearing mouse 

was obtained from National Cancer Institute, Cairo 

University (Giza, Egypt). Mice were implanted with 

0.2 ml of Ehrlich tumor cell suspension (containing 

about 2×106 viable cells) injected subcutaneously to 

the right hind limb of the mice for the experiment on 

day 0. 

2.4. Animal treatments 

Mice were randomly divided into the following 

groups: 

Control (healthy) group [control]  injected 

intraperitoneally by 200 mL saline (n = 15) 

ZnO NPs control group [ZN] contained normal mice 

injected intraperitoneally by ZnO NPs (10   mg/kg, once 

daily for 3 weeks) (n = 25) 

Ehrlich control group [E] included mice subcutaneously 

implanted by Ehrlich tumor cells (n = 25). 

ZnO NPs -treated group [E + ZN] contained mice injected 

intraperitoneally by ZnO NPs (10 mg/kg, once daily for 3 

weeks)[26] administered 7 days after subcutaneous 

implantation of Ehrlich tumor cells (n = 25). 

MTX-treated group [E + MTX] contained mice injected 

intraperitoneally by MTX (1.25 mg/kg, every 48 hours for 

2 weeks) administered 7 days after subcutaneous 

implantation of Ehrlich tumor cells (n = 25). 

At the end of the experiment, animals were examined 

for body weight changes (BW): 
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(initial BW on day 0, last and net final BWs). Net 

final BW = (final BW – tumor weight). 

BW gain was determined as body weight gain 

(final BW- initial BW/ initial BW) x100. 

2.5. Sample preparation  

One month after tumor inoculation, 15 mice from 

each group were anesthetized by decapitation under 

ether anesthesia and sacrificed to (1) evaluate the 

anti-tumor activity of ZnO NPs and (2) conduct a 

biochemical and histopathological assay. Livers were 

immediately removed from mice (n = 15/ group), 

weighed, and sliced into two parts. Ehrlich tumors 

were carefully removed from the right thigh. Solid 

tumors were excised for tumor weight determination, 

longest and shortest diameters of the tumor were 

measured with the help of a vernier caliper. Tumor 

volumes were calculated by the following: Tumor 

volume (mm3) = (length x width2)/2, where the length 

and width are given in mm.[27] 

Tumor tissues were then washed with ice-cold 

saline three times then chilled on ice. Tumors were 

divided into two sections, one was kept in 10% 

neutral buffer formalin for the histopathological 

examination, and the second was wrapped in 

aluminum foil, and stored at −20°C till used for 

measuring zinc content and biochemical assay.[28] 

2.6. Calculation of MST and percentage of ILS, 

T/C, and TIR 

The remaining mice (n = 10 mice/group) were 

kept a live to estimate the mean survival time (MST) 

and percent increase in life span (% ILS). MST of 

each group was monitored by recording the mortality 

daily. The endpoint of the experiment was determined 

by the spontaneous death of animals and MST was 

calculated according to the equation: MST = (day of 

first death + day of last death)/2. The percentage of 

ILS was calculated using an equation of (ILS% = (T 

− C)/C × 100), where T represents MST of treated 

animals and C represents MST of [E] group. T/C% 

(treated vs. ESC control [E]) was calculated as MST 

of treated animals/MST of [E] group. TIR% (tumor-

growth inhibition rate) = (C − T)/C × 100, where T 

represents the mean tumor volume of the treated 

group and C represents the mean tumor volume of the 

ESC control [E]  group.[29] According to the criteria 

of the National Cancer Institute (NCI), T/C exceeding 

125 % and ILS exceeding 25 % indicate that the drug 

has significant anti-tumor activity.[30] 

2.7. Measurement of zinc content in liver and ESC 

using ICP-OES 

Tumor/mammary glands and liver samples 

weighing 0.5 gm. were prepared for quantitative 

estimation of their zinc concentration using 

inductively coupled plasma optical emission 

spectrometry ICP-OES (Thermo Scientific iCAP 

7000). 0.5 gm of tumor tissue samples were digested 

in a microwave oven digestive system with HNO3 

(65%) and H2O2 (30%) in Teflon vessels., The 

residues were filtered through 0.45μmWhatman filter 

paper and transferred to a 50 mL volumetric flask and 

diluted to 50 mL with deionized water then analyzed 

for zinc content (analytical wavelength chosen was 

213.857 nm). The amount of zinc was calculated from 

the linear portion of the generated standard curve.[31] 

2.8. DNA extraction and fragmentation analysis 

The genomic DNA was extracted from the 

mammary gland and tumor tissue samples using Gene 

JET genomic DNA extraction kit following the 

manufacturer’s protocol (Fermentas, #K0721, 

European Union). Followed by, agarose gel 

electrophoresis (2%) to detect DNA fragmentation 

according to Abd Eldaim et al.[32] The fragment 

patterns (ladder, smear, or intact) were visualized on 

the UV Trans-illuminator and photographed by a gel 

documentation system (UVDI Major Science, USA). 

All samples were processed at one time, to avoid 

variations due to the extraction method itself. 

2.9. Determining oxidative stress biomarkers 

Tumor /mammary gland and liver were soaked in 

PBS (pH 7.4) containing 0.16 mg/ml heparin to 

remove any red blood cells and clots, and then it was 

homogenized in 5 ml cold buffer (50 mM potassium 

phosphate, pH 7.5). The homogenate was then 

centrifuged at 4,000 rpm for 15 minutes, and the 

supernatant was carefully collected.  To determine the 

malondialdehyde (MDA) component, a noxious 

product of lipid peroxidation was detected according 

to the following: lipid peroxidation was evaluated 

based on MDA level, MDA was determined using the 

method as previously described by El Atrash et al.[33] 

Assay of catalase enzyme activity (CAT; EC 

1.11.1.6) was measured by monitoring the 

decomposition of H2O2 (the substrate of the enzyme) 

at 240nm according to the method described by 

Salama et al.[34] Assay of superoxide dismutase 

enzyme activity (SOD; EC 1.15.1.1) in liver 

homogenate was assayed by the method of Habig et 

al.[35] Assay of reduced glutathione (GSH) content 

determination is based on the reduction of 5,5-

dithiobis (2-nitrobenzoic acid), and it was determined 

by the colorimetric method according to Barakat et 

al.[36]  

2.10. Statistical analysis 

The data are expressed as the mean ± standard 

error of the mean (SEM). One-way analysis of 

variance (ANOVA) was used to assess significant 

differences among treated groups and control. The 
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Tukey test was used to compare all groups with each 

other and showed the significant effect of treatment. 

The criterion for statistical significance was set at* 

means p ≤ 0.05, (Graph Pad Prism Software). 

3. Results  

3.1. Animal observation and anti-tumor effects of 

ZnO-NPs against ESC 

To evaluate the anti-tumor effects of ZnO-NPs 

against ESC, changes in body weight, tumor volume, 

tumor-growth inhibition rate (TIR %), mean survival 

time (MST), an increase in life span (ILS %) of 

treated groups were observed [Table 1]. No toxic 

signs or mortality were observed related to ZnO-NPs 

administration in contrast to MTX. Moreover, 

administration of ZnO-NPs led to a significant 

decrease (p˂0.001) in tumor volume and weight in 

comparison with ESC mice. On the other hand, 

treatment of mice (n = 10/group) with ZnO-NPs or 

MTX significantly increased ILS% with a rate of 

111.66% (P ˂ 0.001) and 55.3% (P ˂ 0.01), 

respectively, as compared to non-treated ESC mice. 

Similar treatments led to a notable increase in MST 

with 75.5 (P ˂ 0.001), and 55.6 (P ˂ 0.01) days, 

respectively, as compared to non-treated ESC mice 

(35 days). The Tumor-growth inhibition rate (TIR %) 

of the Ehrlich tumor was found to be 68.8% for ZnO 

NPs -treated animals and 41.6% for MTX-treated 

mice.  

In a solid tumor, the average tumor volume in [E] 

mice increased from 111.83±28.91 mm3 to 1655±5.3 

mm3 after 21 days. In MTX treated group the average 

tumor volume was observed to increase from 

105.01±10.4 mm3 to 976 ± 3.1 mm3. In ZnO NPs 

treated group the average tumor volume was observed 

to increase from 108.1±20.14 mm3 to 516±1.4 mm3, 

indicating the proliferation rate of tumor cells in 

treated mice was inhibited by ZnO NPs due to a 

decrease in tumor burden [Figure 1]. The body weight 

changes were significantly higher in ZnO NPs treated 

group significantly (P˂0.0001) increased 1.7 fold 

more than the control indicating the effect of ZnO 

NPs in preventing tumor growth. 

3.2. Zn content analysis 

A significant (P < 0.0001) increase in the Zn 

content was found in the tumor of mice treated with 

ZnO nanoparticles [E + ZN] as compared to the 

mammary gland of ZnO-NPs control group [ZN] and 

other groups. In contrast, there was no significant 

difference in Zn content in the liver of treated groups 

[ZN] and [E + ZN] and control mice. The liver 

showed a slight increase in the Zn content but it was 

not statistically significant [Figure 2]. 

3.3. Effect of ZnO-NPs on DNA fragmentation 

DNA isolated from Ehrlich solid tumor in [E] 

group and liver tissue of [E + ZN] group showed 

intact (non-degraded) bands near gel wells. In 

contrast, a variable degree of DNA fragmentation, 

revealed by DNA laddering and smearing, was 

noticed after the administration of ZnO-NPs or MTX. 

The most severe pattern of DNA fragmentation was 

observed in ESC mice treated with ZnO-NPs. liver 

tissue of [E + MTX] group showed noticed DNA 

laddering [Figure 3]. 

3.4. Oxidative stress markers 

3.4.1. Effects of ZnO-NPs upon Markers of 

Oxidative Stress in ESC tissue 

It has been suggested that oxidant generation and 

antioxidant depletion are the common pathways 

through which anticancer drugs trigger apoptosis in 

cancer cells.[37] Therefore, the status of oxidants and 

antioxidants was examined in ESC treated with ZnO 

NPs or MTX. MDA levels were measured as markers 

of oxidants, whereas antioxidant status was examined 

by determining the SOD, CAT, and GSH. Results 

showed that the levels of SOD, CAT, and GSH were 

significantly decreased (P < 0.01), MDA were 

increased (P < 0.01) in tumor tissue of the ESC 

control group as compared to the mammary gland of 

the normal group. Figure (4) reveals that MTX - 

induced toxicity; depletion in the levels of CAT, 

GSH, and SOD; (P < 0.01), and a significant increase 

(P < 0.01) in the level of MDA in tumor tissue were 

detected. Treatment of the Ehrlich solid tumor with 

ZnO NPs revealed the most significant decrease (P < 

0.001) in the levels of CAT, GSH, and SOD and high 

significance (P < 0. 001) increase in the level of MDA 

in tumor tissue as compared with the Ehrlich solid 

tumor group [Figure 4]. 

3.4.2. Effect of ZnO-NPs on oxidative stress 

markers in liver tissue 

No significant changes in oxidative stress 

parameter found in liver tissues in the ZnO NPs group 

[ZN] when compared to a liver of the control group. 

And also between [E + ZN] treated group when 

compared to [ZN] group. On the other hand, 

significant changes (p < 0.01) in oxidative stress 

parameter found in liver tissues in the [E + MTX] 

group compared to the liver of the control group. 

ZnO-NPs administration at the dose of 10 mg/kg does 

not affect liver oxidative stress parameters [Figure 4].  
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Figure 1: ZnO-NPs inhibits tumor growth in solid Ehrlich tumor. EAC cells were injected into Swiss albino 

mice (2×106 per mouse). After solid tumors grew to ~100 mm3, the mice were i.p. treated with or without ZnO-

NPs (10 mg/kg/day). Inhibited tumor growth as measured by tumor volume. Solid tumors in the ZnO-NPs 

treated mice were significantly smaller than those in the MTX-treated mice. 

 

 

Table 1: effect of ZnO-NPs on Bodyweight gain% in ESC-bearing mice, Tumor weight, volume, tumor-growth 

inhibition rate (TIR%), mean survival time (MST), and percent increase in life span (% ILS).Data are presented 

as mean ± SEM (ten animals /group ) *P<0.05, **P<0.01, and ***P<0.001 were set significant. 

 

  
 

 

 

 

 

 

 

Body 

weight 

gain % 

 

Tumor 

weight 

(g) 

Tumor 

volume 

(mm3) 

TIR% 

 

Survival 

time 

range 

(days) 

MST 

(days) 
ILS% T/C% 

 

E 

 

- 10.84 

 

1.31 ± 0.07 

 

1655 ± 5.3 

 

------ 

 

31.25 - 40 

 

35.62 

 

-------- 

 

-------- 

 

E+ZN 

 

37.11*** 

 

0.32 ± 0.09*** 

 

516 ±1.4*** 

 

68.8*** 

 

65 - 86*** 

 

75.5*** 

 

111.66*** 

 

211.66**

* 

E+MTX  -13.35* 0.89 ± 0.11** 976 ± 3.1** 41.6** 45- 65** 55.6** 55.3** 156.52** 
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Figure 2: Zinc Concentration in tumor/mammary gland and liver in studied groups. Highly 

significant****(p˂0.0001) increase in tumor treated with ZnO NPs [E + ZN]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Ethidium bromide-stained agarose gel showing patterns of the extracted DNA. M is the marker lane 

50 bp Ladder. Each lane has four pooled DNA samples from each group. E(T), Ehrlich group (tumor tissue); 

E+ ZN (L), Ehrlich group treated by ZnO-NPs (liver tissue);  E + MTX(L), Ehrlich group treated by MTX (liver 

tissue) ; E + MTX(T), Ehrlich group treated by MTX (tumor tissue); E + ZN (T), Ehrlich group treated by ZnO-

NPs (tumor tissue). The most severe pattern of DNA fragmentation was observed in ESC mice treated with 

ZnO-NPs. 
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Figure 4: Effect of ZnO-NPs on oxidative stress biomarkers (malondialdehyde (MDA), reduced glutathione (GSH), catalase 

(CAT), and superoxide dismutase (SOD) activities in tumor/mammary gland and liver homogenates in studied groups. Data 

are the mean ± SEM *P<0.05, **P<0.01, and ***P<0.001 were set significant. 

 

 

4. Discussion  

Zinc oxide nanoparticles (ZnO NPs) have 

received much attention for their implications in 

cancer therapy.[38] Studies have shown that ZnO NPs 

induce cytotoxicity in a cell-specific and 

proliferation-dependent manner, with rapidly 

dividing cancer cells being the most susceptible, and 

quiescent cells being the least sensitive.[16, 39] The 

present study reveals the effects of ZnO NPs on 

Ehrlich solid tumor and normal tissues (mammary 

gland and liver) and provides significant insight into 

the possible selective mechanism through which ZnO 

NPs exert their toxic effects on these cells. Our results 

demonstrate the cytotoxic potential of ZnO NPs in the 

Ehrlich solid tumor. Oxidative stress was found to be 

the underlying mechanism behind ZnO NPs induced 

DNA damage and cell death. 

In our study, we evaluate the cytotoxic activity of 

ZnO NPs on carcinoma and normal cells. The mice 

inoculated with Ehrlich carcinoma showed a 

significant decrease in body weight gain compared to 

the treated ones. This result agrees with those 

obtained by Badr El-Din et al.[40] and Miranda-Vilela 

et al.[41]. Reduction in body weight resulted in stunted 

growth not only due to reduced food consumption but 

also due to the tumor burden with its massive growth 

rate. Bodyweight gain shows a significant increase in 

ESC treated with ZnO NPs which demonstrates 

antitumor activity against Ehrlich solid tumor, as 

evidenced by marked suppression of tumor volume, 

weight, growth inhibition rate; moreover, the tumors 

appeared to grow slowly and their morphology was 

discontinuous and fragmented. This indicates that 

ZnO NPs exerted some inhibitory effects upon the 
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tumor cells. These findings may be attributed to 

reduced cell proliferation and/or increased apoptosis. 

From another aspect, Zinc (Zn) distribution was 

measured in liver and Ehrlich tumor /mammary gland 

among groups. The mammary gland can resemble the 

normal control of Ehrlich solid, this type of Ehrlich 

tumor which appeared originally as a spontaneous 

breast carcinoma in a mouse can resemble breast 

cancer.[42] There was a significant difference in the 

distribution of Zn among the studied groups. The 

highest concentration of Zn in tumor tissues was 

recorded, although the liver was found to be the target 

organ of  ZnO NPs.[43] High accumulation of zinc in 

tumor tissues proves that ZnO NPs were efficiently 

taken up by tumor tissues. ZnO NPs induce toxicity in 

a cell-specific and proliferation-dependent manner 

with rapidly dividing cells being the most susceptible 

and quiescent cells being the least sensitive. The 

marked difference in the cytotoxic response between 

cancer cells and their normal counterparts.[44] Hanley 

et al.[45] observed that there is an inverse relationship 

between nanoparticle size and cytotoxicity in 

mammalian cells, as well as nanoparticle size and 

reactive oxygen species production. Additionally, 

targeting tumor tissues occurs through the 

extravasations of nanoparticles post-injection into the 

systemic blood circulation. The biodistribution of 

these particles is dependent on the characteristics of 

blood capillaries in the organs and tissues as well as 

the administration site, particle size and particle 

surface properties.[46]  

Zinc oxide nanoparticles induced a notable DNA 

fragmentation in form of laddering. The present work 

recorded that the electrophoresis pattern of DNA 

isolated from the untreated Ehrlich tumor group 

displayed an absence of DNA fragments. On the other 

hand, the electrophoresis pattern of DNA isolated 

from ESC treated with ZnO NPs group displayed 

ladder-like DNA fragmentation which is 

characteristic of DNA damage. The disappearance of 

DNA fragment bands postulates loss of apoptosis 

evident by the tumor development. Some types of 

tumors are characterized by defects in apoptosis 

leading to immortal clones of cells.[47]  Most 

anticancer drugs have been known to cause DNA 

damage or suppress its replication, not necessarily 

killing the cells directly but inducing apoptosis.[48] 

When resolved using agarose gel electrophoresis, 

these DNA fragments appear as a nucleosomal ladder, 

a widely recognized hallmark of apoptosis. One of the 

key possible modes thought to be responsible for the 

toxic effects exerted by ZnO NPs via oxidative stress 

is DNA damage.[49] The generation of ROS has been 

attributed to their semiconductor and nanolevel 

characteristics which lead to ROS generation.[50-52]  

The electrons and holes can react with the oxygen and 

hydroxyl ions, respectively, present in the aqueous 

environment of ZnO NPs. This produces highly 

reactive free radicals including the superoxide anion 

radical (from electrons) and the hydroxyl radical 

(from holes).[53]  Bai et al. [54] showed a higher level of 

zinc concentration, which suggests that the level of 

ROS was high and the redox balance was impaired, 

eventually leading to DNA fragmentation in human 

ovarian cancer cells. Our findings indicated that the 

ZnO NP-treated group showed a higher level of zinc 

concentration in the tumor, which suggests that the 

level of ROS was high and the redox balance, was 

impaired, eventually leading to DNA fragmentation. 

Whereas ESC treated with ZnO NPs had started the 

apoptotic process, as was evident from DNA 

fragmentation analysis. Similarly, Akhtar et al. [55]  

reported that ZnO NP-treated human liver cancer 

HepG2 cells showed remarkable fragmentation of 

DNA. 

With elevated levels of oxidative stress, ZnO NPs 

show a deleterious effect on the lipid, protein, and 

nucleic acid of the tumor tissues.[56] Elevated ROS can 

cause membrane damage through lipid peroxidation, 

protein denaturation, DNA damage, and cell death by 

apoptosis.[57] It has been suggested that oxidant 

generation and antioxidant depletion are the common 

pathways through which anticancer drugs trigger 

apoptosis in cancer cells.[58] Therefore, levels of 

MDA, GSH, along with the activities of antioxidant 

enzymes such as SOD and catalase in tumor and liver 

tissues were determined. The elevated level of MDA 

in ESC treated with ZnO NPs mice was observed in 

this study. The levels of the tri-peptide GSH and 

activity of antioxidant enzymes such as SOD and 

catalase were decreased after treatment with ZnO 

NPs. Depletion of GSH content for ZnO NPs was 

observed compared to controls suggesting that ZnO 

NPs is a potent ROS generator could be due to the 

increased generation of ROS and the excessive 

oxidative damage generated in mice. Xia et al.[59] 

reported that  ZnO NPs induce generation of reactive 

oxygen species which can lead to cell death in A375 

cells. When the antioxidative capacity of the cell is 

exceeded. Glutathione, a ubiquitous and abundant 

antioxidant cellular tripeptide, was found to be 

strongly depleted after exposure to ZnO NPs. 

Superoxide dismutase is specialized to convert the 

highly toxic superoxide radical to less toxic H2O2.[60] 

The catalase enzyme reduces H2O2 to H2O[59]. More 

production of intracellular reactive oxygen species 

and more membrane lipid peroxidation in cells 

exposed to ZnO nanoparticles along with depletion of 

their antioxidant components suggest that oxidative 

stress might be a primary mechanism for the toxicity 

of ZnO NPs. These results agree with other studies 

which detected elevated levels of MDA in breast 
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cancer.[61] The findings here are consistent with those 

of Abd El-Aziz et al. [62] who noted that Ehrlich 

tumors exhibited significant increases in MDA and 

considerable decreases in catalase and SOD. MDA 

content manifests the level of lipid peroxidation and 

indirectly represents the level of damage to the tissue.  

The GSH redox system is important for 

attenuating oxidative stress and in this process, GSH 

as a generalist radical scavenger is converted to 

oxidized glutathione (GSSG), while glutathione 

reductase continuously converts GSSG back to 

GSH.[63,64] The malignant cells of different cancer 

types exhibit heterogeneity in the levels of oxidative 

stress associated with various expressive levels of 

SOD and other antioxidant enzymes.[65]  Decreased 

SOD activity in tumor tissues after treatment with 

ZnO NPs may be due to the increase in lipid peroxide. 

This can result in the accumulation of superoxide 

anions, a highly diffusible and potent oxidizing 

radical capable of traversing membranes causing 

deleterious effects.[66] Throughout this experiment, 

the administration of ZnO NPs enhanced cytotoxicity 

by the generation of reactive oxygen species (ROS), 

leading to oxidative stress and eventually cell death. 

 CONCLUSION 

By these studies, it was confirmed that ZnO NPs 

are safe and effective candidates to reduce the growth 

of cancer cells with no effect on normal cells 

according to nanoparticle size and concentration. 

Therefore, it is expected that ZnO NPs may be 

regarded as a new class of antitumorigenic and 

anticarcinogenic agents but we need more 

investigations and field applications. 
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