Journal of Advanced Biomedical and Pharmaceutical Sciences

Journal Homepage: http://jabps.journals.ekb.eg

Chemical and Biological Potential of *Ammi visnaga* (L.) Lam. and *Apium graveolens* L.: A Review (1963-2020)

Shereen S. T. Ahmed^{1*}, John R. Fahim¹, Usama R. Abdelmohsen^{1,2}, Ashraf N. E. Hamed^{1*}

¹ Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.

² Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt.

Received: January 3, 2021; revised: June 17, 2021; accepted: June 26, 2021

Abstract

Medicinal plants have a vital role in our life, providing us with a variety of secondary metabolites with varied chemical structures and biological activities. *Ammi visnaga* (L.) Lam. and *Apium graveolens* L. are common traditional plant species that have long been used for the prevention and treatment of several health problems. Both *A. visnaga* and *A. graveolens* belong to the carrot family, Apiaceae (Umbelliferae) and showed different groups of natural compounds, such as coumarins, furanochromones, flavonoids and essential oils. In view of that, the current review describes various classes of chemical constituents identified so far from these medicinal species, together with their valued pharmacological and therapeutic effects.

Key words

Ammi visnaga, Apium graveolens, Apiaceae (Umbelliferae), Natural products, Biological activities.

1. Introduction

Family Apiaceae (Umbelliferae) is a family of aromatic and flowering plants, known as celery, carrot or parsley family, or simply as umbellifers. It includes more than 3000-3750 species in 300-455 genera. Plants of this family are characterized by a heavy aromatic smell due to the presence of essential oils. The family Apiaceae consists of three subfamilies, namely Apioideae, Saniculoideae and Hydrocotyloideae; each is divided into tribes and subtribes [1-5]. The most common members of this family include Anethum graveolens L. (dill), Anthriscus cerefolium L. (chervil), Angelica spp. (angelica), Apium graveolens L. (celery), Carum carvi L. (caraway), Coriandrum sativum L. (coriander), Cuminum cyminum L. (cumin), Foeniculum vulgare Mill. (fennel) and Pimpinella anisum L. (anise), ... etc. [2,3]. Apiaceous plants have been shown to possess different biological properties, including; antimicrobial, antitumor, hepatoprotective and apoptotic activities [2].

2. Results and discussion

2.1. A. visnaga

A. visnaga is widely distributed in North Africa, Europe, Atlantic Islands, southwestern Asia, North America and Eastern Mediterranean region [6]. The fruits of *A. visnaga* were used in the treatment of mild angina symptoms, mild obstruction of the respiratory tract in bronchial asthma, as a postoperative treatment for patients with renal calculi, for intestinal cramps, pain with menstruation and as a diuretic [6, 7].

2.1.1. Phytochemical review

A. visnaga contains several classes of secondary metabolites, noticed from the isolated groups of compounds, including furanochromones, coumarins, flavonoids and essential oil. A

comprehensive list of the previously isolated compounds from *A*. *visnaga* is presented in Table 1 and Figure 1.

2.1.2. Biological review

2.1.2.1 Antimicrobial effects

The antimicrobial potential of both the ethanolic and aqueous extracts of *A. visnaga* fruits were tested against eight pathogenic micro-organisms; *Candida tropicans, Leuconostic mesontroide, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Candida albicans* and *Pseudomonas aeruginosa* at different concentrations (0.05-50 mg/mL) by the hole-plate diffusion method. The ethanol extract demonstrated the highest activity against Gram-positive bacteria with a minimum inhibitory concentration (MIC) of 5 mg/mL for *E. faecalis.* In addition, the MIC value of the same extract against the Gram-negative bacteria, *E. coli* and *K. pneumonia* was 12.5 mg/mL [23].

The essential oil of *A. visnaga* fruits was also tested against *E. coli*, *E. coli* ATCC 25922, *S. aureus*, *S. aureus* ATCC 43300, *P. aeruginosa*, *P. aeruginosa* ATCC 27853, *Enterobacter aerogenes*, *K. pneumoniae* and *Morganella morganii*. The oil showed the highest activity against *E. coli*, *E. coli* ATCC 25922, *S. aureus* ATCC 43300 and *P. aeruginosa* ATCC 27853 as indicated by the inhibitory zones' diameters (29, 25, 25 and 25 mm, respectively) [18].

2.1.2.2 Cardiovascular effects

A. visnaga seeds were reported to reduce the pain caused by the decrease in the heart blood flow due to its γ -pyrone components. Visnadin, visnagin and khellin have cardiovascular effects due to their calcium channel blocking properties [24-26].

Ahmed et al.

Table 1: A list of	previously reported	d compounds from	n A. visnaga

No.	Name		Molecular weight	Molecular formula	Organ	Ref.	
	A) y	-Pyrones (Fu	ranochromones)				
1	Khellinol	e à	246.21	C13H10O5	Fruits	[8]	
2	4-Norvisnagin		216.19	$C_{12}H_8O_4$	Fruits	[8]	
3	Visamminol [syn.: 1"-Deoxy (S) angelicain]		276.28	$C_{15}H_{16}O_5$	Fruits	[8]	
4	Khellin		260.24	$C_{14}H_{12}O_5$	Fruits	[8]	
5	Visnagin		230.22	$C_{13}H_{10}O_4$	Fruits	[8]	
6	Ammiol		276.24	$C_{14}H_{12}O_6$	Fruits	[8]	
0	Khellol		246.21	$C_{13}H_{10}O_5$	Fruits	[8]	
8 0	Ammiol $O \beta D$ glucoside		408.40	$C_{19}H_{20}O_{10}$	Seeds	[9]	
9 10	Pimolin		450.40	$C_{20} H_{22} O_{11}$	Fruits	[2]	
11	Cimifugin		306.31	$C_{16}H_{18}O_{6}$	Umbels	[11]	
12	Prim- $O-\beta$ -D glucosyl cimifugin		468.45	C22H28O11	Umbels	[11]	
		B) Benzo	ofurans				
13 Khellinone 236.22 C ₁₂ H ₁₂ O ₅ Fruits [8]							
14	Visnaginone		206.19	$C_{11}H_{10}O_4$	Fruits	[8]	
		C) Pyranoc	coumarins				
15	Samidin		386.40	$C_{21}H_{22}O_7$	Fruits	[12]	
16	(9 <i>R</i> ,10 <i>R</i>)-9- <i>O</i> -(3-Methylbutanoyl)-10-acetate	khellactone	388.41	$C_{21}H_{24}O_7$	Fruits	[12]	
17	[syn.: Dinydrosamidin] Visnadina		388 /1	CarHarO-	Fruite	[6]	
17	Z-Khellactone-3'- β -D-glucopyranoside		300.41 438.43	$C_{21}H_{24}O_{7}$	Fruits	[0] [13]	
10	2 internettore e p 2 graeopjiantosiae	D) Furanoc	oumarins	0211120010	110105	[10]	
19	Xanthotoxin	2)1 41 41100	216.19	$C_{12}H_8O_4$	Fruits	[12]	
20	Bergapten		216.19	$C_{12}H_8O_4$	Fruits	[12]	
21	Psoralen		186.16	$C_{11}H_6O_3$	Fruits	[12]	
ID) Furanocoumarins 19 Xanthotoxin 216.19 C12H8O4 Fruits [12] 20 Bergapten 216.19 C12H8O4 Fruits [12] 21 Psoralen 186.16 C11H6O3 Fruits [12] 21 Psoralen 330.29 C17H14O7 Fruits [8] 23 Isorhamnetin 316.26 C16H12O7 Fruits [8]							
22	Rhamnazin		330.29	C17H14O7	Fruits	[8]	
23	Isorhamnetin		316.26	$C_{16}H_{12}O_7$	Fruits	[8]	
24	Quercetin		302.23	$C_{15}H_{10}O_7$	Aerial parts	[14]	
25	Rhamnetin		316.26	$C_{16}H_{12}O_{7}$	Aerial parts	[14]	
26	Rhamnetin-3- O - β -D-glucopyranoside		478.40	$C_{22}H_{22}O_{12}$	Aerial parts	[14]	
27	Isorhamnetin-3- O - β -D-glucopyranoside		478.40	$C_{22}H_{22}O_{12}$	Aerial parts	[14]	
28 20	Rhamhazin- $3-O-\rho$ -D-glucopyranoside		492.45	$C_{23}H_{24}O_{12}$	Aerial parts	[14]	
29 30	Somaline $(1 - \rho - \rho)$ -grucopyratioside		478.40 610 52	$C_{22}H_{22}O_{12}$	Aerial parts	[14] [1/]	
31	Quercetin-3-0-R-D-glucopyranoside		464 40	$C_{21}H_{20}O_{12}$	Aerial parts	[14]	
32	Isorhamnetin-3- <i>O</i> -rutinoside		624.54	C28H32O16	Aerial parts	[14]	
33	Quercetin-7,3,3'- <i>O</i> -triglucopyranoside		788.66	$C_{33}H_{40}O_{22}$	Aerial parts	[14]	
34	Kaempferol		286.24	$C_{15}H_{10}O_{6}$	Fruits	[15]	
35	Kaempferol-3-rutinoside		594.52	C27H30O15	Leaves, flowers and fruits	[16]	
36	Kaempferol-3- O - β -D-glucopyranoside		448.40	$C_{21}H_{20}O_{11}$	Leaves, flowers and fruits	[16]	
37	Apigenin		270.24	$C_{15}H_{10}O_5$	Fruits	[15]	
38	Luteolin		286.24	$C_{15}H_{10}O_{6}$	Fruits	[15]	
39	Chrysoeriol		300.26	$C_{16}H_{12}O_{6}$	Fruits	[15]	
40	Quercetin-3-sulfate		382.30	$C_{15}H_{10}O_{10}S$	Leaves, flowers and fruits	[16]	
41	Rhamnetin-3-sulfate		396.33	$C_{16}H_{12}O_{10}S$	Leaves, flowers and fruits	[16]	
42	Isorhamnetin-3-sulfate		394.31	$C_{16}H_{10}O_{10}S^{-2}$	Leaves, flowers and fruits	[16]	
43	Genistin		432.40	$C_{21}H_{20}O_{10}$	Leaves and roots	[17]	
44	Sissotrin		446.40	$C_{22}H_{22}O_{10}$	Leaves and roots	[17]	
45	Isoformononetin		268.26	$C_{16}H_{12}O_4$	Leaves and roots	[17]	
46	Formononetin		268.26	$C_{16}H_{12}O_4$	Leaves and roots	[17]	
47	Prunetin		284.26	$C_{16}H_{12}O_5$	Leaves and roots	[17]	
48	Biochanin-A		284.26	$C_{16}H_{12}O_5$	Leaves and roots	[17]	
49 50	Daidzein		254.24	$C_{15}H_{10}O_4$	Leaves and roots	[17]	
50	4, o, /-1rinydroxyisofiavone		270.24	$C_{15}H_{10}O_5$	Leaves and roots	[1/]	

No.	Name	Molecular weight	Molecular formula	Organ	Ref.			
F) Essential oil								
51	α-Thujene	136.23	C10H16	Aerial parts	[18]			
52	3-Methylpentenol	100.16	$C_6H_{12}O$	Aerial parts	[18]			
53	β -Myrcene	136.23	C10H16	Aerial parts	[18]			
54	Isobutyl isobutyrate	144.21	$C_8H_{16}O_2$	Aerial parts	[18]			
55	Butyl isobutyrate	144.21	$C_8H_{16}O_2$	Fruits	[19]			
56	Linalool	154.25	$C_{10}H_{18}O$	Aerial parts	[18]			
57	2,2-Dimethylbutanoic acid	116.16	$C_6H_{12}O_2$	Aerial parts	[18]			
58	α-Isophorone	138.21	$C_9H_{14}O$	Aerial parts	[18]			
59	2-Nonyne	124.22	C9H16	Aerial parts	[18]			
60	Bornyl acetate	196.29	$C_{12}H_{20}O_2$	Aerial parts	[18]			
61	Thymol	150.22	C10H14O	Aerial parts	[18]			
62	Geranyl acetate	196.29	$C_{12}H_{20}O_2$	Aerial parts	[18]			
63	Lavandulyl acetate	196.29	$C_{12}H_{20}O_2$	Aerial parts	[18]			
64	Citronellyl propionate	212.33	$C_{13}H_{24}O_2$	Aerial parts	[18]			
65	Croweacin	192.21	$C_{11}H_{12}O_3$	Aerial parts	[18]			
66	Neryl isobutanoate	224.34	$C_{14}H_{24}O_2$	Aerial parts	[18]			
67	α-Damascone	192.30	$C_{13}H_{20}O$	Aerial parts	[18]			
68	(2Z, 6E) Farnesal	220.35	C15H24O	Aerial parts	[18]			
69	Isoamyl-2-methylbutyrate	172.26	$C_{10}H_{20}O_2$	Fruits	[19]			
70	α-Pinene	136.23	$C_{10}H_{16}$	Whole	[19]			
				plant				
71	β -Pinene	136.23	$C_{10}H_{16}$	Whole	[19]			
				plant				
72	α -Terpinene	136.23	$C_{10}H_{16}$	Whole	[19]			
				plant				
73	Limonene	136.23	$C_{10}H_{16}$	Whole	[19]			
				plant				
74	3-Hexenyl isobutanoate	170.25	$C_{10}H_{18}O_2$	Fresh aerial	[20]			
				parts				
75	Nerol	154.25	$C_{10}H_{18}O$	Fresh aerial	[21]			
				parts				
76	Hexanal	100.16	$C_6H_{12}O$	Umbels	[19]			
77	Sabinene	136.23	$C_{10}H_{16}$	Umbels	[19]			
78	Tetracosanoic acid	368.64	$C_{24}H_{48}O_2$	Aerial parts	[22]			
79	Stearic acid	284.50	$C_{18}H_{36}O_2$	Aerial parts	[22]			
80	Petroselinic acid	282.50	$C_{18}H_{34}O_2$	Fruits	[22]			
81	Arachidic acid	312.53	$C_{20}H_{40}O_2$	Fruits	[22]			
82	β -Sitosterol	414.71	C29H50O	Aerial parts	[22]			
G) Coumestans								
83	Coumestrol	268.22	$C_{15}H_8O_5$	Leaves and	[17]			
				roots				

Figure 1: Chemical structures of the reported compounds from A. visnaga.

Figure 1: (continued).

40

39

48

но || 0 он

49

Figure 1: (continued).

They inhibit the contraction of vascular smooth muscles, causing dilatation of the peripheral and coronary vessels and stimulate coronary circulation [24,25]. Both the peripheral and coronary vasodilator properties were also found with visnagin, which has been used in angina pectoris as it leads to non-specific inhibition of the contractility of vascular smooth muscles [24,25]. Moreover, it has negative inotropic and chronotropic effects and aids in reducing peripheral vascular resistance [26]. It also causes a weak inhibition of the hydrolytic activity of phosphodiesterase (PDE) isozymes (PDE5, PDE4, PDE3, cyclic GMP activated PDE2 and PDE1). This inhibitory effect on cyclic nucleotide PDEs may be responsible for the vasodilatory action of visnagin at high concentrations [26]. The chloroform and methanol extracts (at 1 mg/mL) of A. visnaga fruits cause the contractions of the rabbit Guinea pig aorta in vitro [6]. The coronary blood flow increased in isolated Guinea pig hearts via visnadin at 60 and 120 µg/mL by 46 and 57%, respectively [6]. Visnadin ($< 10^{-5}$ M) was reported to cause inhibition of the contractions induced by the depolarization with 80 mM KCl or by CaCl₂ in the KCl-depolarized aorta. Its inhibitory effects were not increased when the depolarization time was prolonged and was similar in aorta incubated in 5 or 40 mM KCl [27]. Samidin and khellol glucoside were reported to exhibit positive inotropic effects on the heart [6]. Khellin was reported to increase HDL-cholesterol in normolipidemic subjects. It also reported having vasodilator, bronchodilator and spasmolytic activities [24]. It has been developed in the treatment of angina pectoris as a bronchodilator and coronary medicine due to its peripheral and coronary function as a vasodilator [28]. Besides being such an antiasthmatic and vasodilator and also an important relaxant without influencing blood pressure [29]. The vasodilating features of A. visnaga are associated with the pyranocoumarin, visnadin and its two primary pyrones, khellin and visnagin. Khellin and visnadin have been shown to have antagonistic activity with calcium, which in turn results in vasodilating activities. It has been shown that visnadin exhibits both peripheral and coronary vasodilator activities and is also used to treat angina pectoris. It inhibits the contractions mediated by the entry of Ca2 + via L-type Ca2 + channels [27].

2.1.2.3 Prevention of kidney stone formation

Khellin is a spasmolytic agent and visnagin also may decrease peripheral vascular resistance, which may make the stone to pass through the urinary tract easily. In an *in vitro* cell culture experimentation, khellin and visnagin exhibited preventive activity and decreased lactate dehydrogenase enzyme. Also, khellin and visnagin illustrated preventive effects *in vivo* through decreasing deposition of calcium oxalate crystals [6,30].

2.1.2.4 Treatment of vitiligo

Khellin has phototherapeutic activities like as those of the psoralens without the formation of detectable DNA

mutations or phototoxic effects. It has therefore been used for the treatment of vitiligo [31]. A total of 36 patients suffering from different types of vitiligo underwent 6 months of treatment with a novel gel formulation of khellin (1%), based upon a water/2-propanol/propylene glycol (WPG) ternary system, caused repigmentation in 86.1% of the treated cases, as opposed to 66.6% in the placebo group [6,31].

2.1.2.5 Antioxidant effects

A. visnaga has antioxidant activity [32,33]. The antioxidant effect of the butanolic extract of *A. visnaga* was determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. At a concentration of 200 μ g/mL, the butanolic extract quenched the DPPH radical by 78.7% [6,34].

2.1.2.6 Antidiabetic activities

In many cultures, such as those of Palestine, Morocco and the Sefrou region, *A. visnaga* is considered a popular antidiabetic agent [22,35-36]. An aqueous sample containing *A. visnaga* was shown to possess a substantial hypoglycemic effect when offered to both regular and streptozotocin rats with diabetes [22,37]. In addition, a decoction formulated from the *A. visnaga* fruits had the potential in normoglycemic rats to minimize blood glucose levels by 51% in comparison to a hypoglycemic agent (tolbutamide) [22,38].

2.1.2.7 Anti-inflammatory activities

Visnagin decreases the expression of mRNA and the release of TNF- α , IL-1 β and IFN γ . The anti-inflammatory activity of visnagin could be due to the inhibition of transcription factors, such as AP-1 and NF_{-K}B [22,39]. Visnagin also has a neuroprotective effect that is responsible for its anti-inflammatory activity [22].

2.1.2.8 Cytotoxic activities

The cytotoxicity of khellin was measured against four cancer cell lines: MCF-7 (breast cancer), MKN-45 (gastric cancer), HEp-2 (larynx cancer) and HT-29 (colorectal cancer). The findings were, however, not positive and the substance did not demonstrate any cytotoxic activity against the four cell lines at the tested concentrations [22,40]. Nevertheless, khellin exhibited mild to moderate activity against the hepatocellular carcinoma cell line [41]. An ethanolic extract of *A. visnaga* exhibited cytotoxic activity on cervical cancer and breast cancer cell lines [22,42]. Further research was performed into the cytotoxic activity of isolated khellin and visnagin against Hep-G2 (liver carcinoma), HCT 116 (colon carcinoma), Hela (cervical carcinoma); the findings exhibited the cytotoxic activity of both khellin and visnagin against the Hep-G2 cell line [22,43].

2.1.2.9 Hair loss

The topical use of *A. visnaga* was tested for hair loss. A lotion consisting of visnadin and other components leading to enhancement in local microcirculatory flow [22,44].

2.1.2.10 Antimutagenic effects

In *Salmonella typhimurium* T98, khellin exhibited inhibitory effects of the mutagenicity of two promutagens benzo[a]pyrenes, 2-aminofluorene and 2-aminoanthracene, while visnagin illustrated a greater toxic effect. The total extract of the fruits of *A. visnaga* displayed a higher inhibition ability against 2-aminoanthracene, 1-nitropyrene and daunomycin than khellin alone. This was attributed to the presence of additional inhibitors such as coumarins or due to the synergistic effect of different compounds [22,45].

2.1.2.11 Immunostimulatory activities

Immunostimulatory effects were detected by *A. visnaga* total and protein extracts. Extracts were evaluated on splenocyte using an MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay with or without concanavalin-A (Con-A) stimulation, a mitogenic agent used as a positive control agent [46].

2.1.2.12 Larvicidal and insecticidal activities

Both larvicidal and insecticidal features of A. visnaga have been investigated and the khellin toxicity was examined against Oncopeltus fasciatus (Hemiptera) and Aedes aegypti (Diptera) larvae, where high activity was observed [22,48]. Khellin and therefore visnagin may be used for the production of new botanical acaricides [49]. A. visnaga fruit ethanolic extract caused inhibition of the lipid content in the haemolymph of nymphs and adults [50], while A. visnaga nbutanolic extract caused inhibition to glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activity in the haemolymph [51].

2.1.2.13 Herbicidal activities

A. visnaga dichloromethane extract exhibited herbicidal activity. Khellin and visnagin were responsible for their herbicidal effect [22,52].

2.2 A. graveolens

A. graveolens (Apiaceae) is widely distributed in Italy, Sweden, Egypt, Algeria and Ethiopia [53]. It consists of three varieties that are classified according to the part of the plant consumed [54]; A. graveolens var. dulce; commonly known as celery, A. graveolens var. rapaceum; commonly known as celeriac or root celery and A. graveolens var. secalinum; commonly known as smallage or leaf celery. Celery is an important source of minerals, vitamins and amino acids. It has many different uses such as sedative, stimulant, carminative, laxative, antispasmodic, anthelmintic, diuretic, urinary antiseptic, emmenagogue and aphrodisiac [53,55].

2.2.1 Phytochemical review

A. graveolens contained various classes of secondary metabolites, noticed from the isolated groups of compounds including; flavonoids, coumarins, furanocoumarins, isobenzofurans, sesquiterpenes, phthalides and miscellaneous [55]. A comprehensive list of the previously isolated compounds from *A. graveolens* is presented in (Table 2 and Figure 2).

2.2.2 Biological review

2.2.2.1 Anticancer activities

Celery seed oil (CSO) is a source of anticancer phytochemicals. When, CSO (300 mg/kg, p.o.) was given to rats for four weeks after DENA-induced hepatocellular carcinoma (diethyl nitrosamine) (HCC), its increased caspase-3 expression and decreased PCNA expression, suggesting both apoptotic and antiproliferative activity, respectively. CSO uses anti-proliferative, anti-inflammatory and proapoptotic pathways to exert its anticancer effect [53].

2.2.2.2 Antibacterial activities

The essential oil of celery displayed strong inhibitory activities against *E. coli* and moderate inhibition against *S. aureus* and *P. aeruginosa* [77].

2.2.2.3 Antiulcerogenic activities

Evaluation of the antiulcerogenic activity in rats was done by using the HCl/EtOH method. Inhibition of gastric lesions by extracts of *A. graveolens* was dose-dependent for both seeds and aerial parts by (51-95%) and (53-76%), respectively. The methanolic and aqueous extracts at 300 mg/kg caused inhibition of gastric lesions, which was similar to that induced by omeprazole (94%) [77].

2.2.2.4 Hypolipidemic effects

Ethanol seed extract of *A. graveolens* showed a decrease of serum total cholesterol, low-density lipoprotein cholesterol, triglycerides and significant increase in high-density lipoprotein cholesterol in the treated groups. The oral administration of ethanol seed extract of *A. graveolens* showed good hypolipidemic effects. The results agreed to the traditional use of *A. graveolens* in the treatment of hyperlipidemia [78].

2.2.2.5. Antihypertensive effects

Administration of the methanolic, hexanoic and aqueousethanolic celery seeds extracts was used to demonstrate their effects on blood pressure and heart rate using spironolactone as a guide. The findings showed that in hypertensive rats, they decreased blood pressure and increased heart rate, but they had no effect on normotensive rats. At 300 mg/kg, each celery seed extract resulted in a decrease in blood pressure of 38, 24 and 23 mmHg and an increase in heart rate of 60, 25 and 27 beats/min, respectively [79].

3. Conclusion

Several classes of secondary metabolites isolated from different parts of *A. visnaga* including furanochromones, furanocoumarins, pyranocoumarins, flavonoids and essential oil, where flavonoids and essential oil are the most common investigated classes, while others need more attention from the researchers. Fruits and aerial parts were investigated. Therefore, other parts need further investigation.

No.	Name	Molecular weight	Molecular formula	Organ	Ref.
	A) Flavonoids				
1	Luteolin	286.24	$C_{15}H_{10}O_{6}$	Leaves	[56, 57]
2	Kaempferol	286.24	$C_{15}H_{10}O_{6}$	Leaves	[57]
3	Apiin	564.50	$C_{26}H_{28}O_{14}$	Leaves	[58]
4	Luteolin-7-O- β -D-apiofuranosyl-(1 \rightarrow 2)- β -D-glucopyranoside	580.49	$C_{26}H_{28}O_{15}$	Leaves	[59]
5	Luteolin-7- O - β -D-glucopyranoside	448.38	$C_{21}H_{20}O_{11}$	Leaves	[59]
6	Luteolin-7- O -[β -D-apiofuranosyl (1 \rightarrow 2) -(6 ["] - O -malonyl)]- β -D-	666.54	$C_{29}H_{30}O_{18}$	Leaves	[59]
	glucopyranoside				
7	Chrysoeriol-7- <i>O</i> - β -D-apiofuranosyl (1 \rightarrow 2)- β -D-glucopyranoside	594.52	C ₂₇ H ₃₀ O ₁₅	Leaves	[59]
8	Apigenin-7- O - β -D-glucopyranoside [syn.: Apigetrin]	432.40	$C_{21}H_{20}O_{10}$	Leaves	[60]
9	Apigenin-7- O - β -D-apiofuranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranoside	564.49	C ₂₆ H ₂₈ O ₁₄	Leaves	[59]
10	Apigenin-7- O -[β -D-apiofuranosyl (1 \rightarrow 2)-(6 ["] - O -malonyl)]- β -D-	650.54	C ₂₉ H ₃₀ O ₁₇	Leaves	[59]
	glucopyranoside				[]
	B) Coumarins and furocoum	arins			
11	Apiumetin	244.24	$C_{14}H_{12}O_4$	Seeds	[61]
12	Apiumetin- O - β -D-glucopyranoside	406.38	$C_{20}H_{22}O_9$	Seeds	[61]
13	Bergapten	216.19	$C_{12}H_8O_4$	Seeds	[61]
14	Isopimpinellin	246.21	$C_{13}H_{10}O_5$	Seeds	[61]
15	8-Hydroxy-5-methoxypsoralene	232.19	$C_{12}H_8O_5$	Seeds	[61]
16	5-Methoxy-8-O- β -D-glucosyloxypsoralene	394.33	$C_{18}H_{18}O_{10}$	Seeds	[61]
17	Isorutarin	424.4	$C_{20}H_{24}O_{10}$	Seeds	[61]
18	Vellein	392.40	$C_{20}H_{24}O_8$	Seeds	[61]
19	Celerin	260.28	$C_{15}H_{16}O_{4}$	Seeds	[62]
20	4.9-Dihydroxy-7 <i>H</i> -furo[3.2-g][1] benzopyran-7-one-4-methylether-9- <i>O</i> -	394.33	$C_{18}H_{18}O_{10}$	Seeds	[63]
	β -D-glucopyranoside		- 1010 - 10		[]
21	7.8-Dihydroxy-6-(3-methyl-2-butenyl)-2 <i>H</i> -1-benzopyran-2-one-8-methy	260.29	$C_{15}H_{16}O_{4}$	Seeds	[64]
	ether		- 10 10 - 1		L - J
22	(1'S.2S) 2-(1.2-Dihydroxy-1-methylethyl)-2.3-dihydro-7 <i>H</i> -furo[3.2g][1]	262.26	$C_{14}H_{14}O_5$	Seeds	[64]
	benzopyran-7-one				[*.]
23	Osthenol	230.26	$C_{14}H_{14}O_3$	Seeds	[61]
24	Celereoin	262.26	$C_{14}H_{14}O_5$	Seeds	[61]
	C) Isobenzofurans				L- J
25	3-Butylhexahydro-1(3H)-isobenzofuranone	196.29	$C_{12}H_{20}O_2$	Leaves	[65]
				and stalks	
26	(3R,3aR,7aS) 3-Butylhexahydro-1(3H) isobenzofuranone	196.29	$C_{12}H_{20}O_2$	Leaves	[65]
				and stalks	
27	(3S,3aS,7aR) 7,7a-Didehydro-3-butylhexahydro-1(3H)	194.27	$C_{12}H_{18}O_2$	Leaves	[66]
	isobenzofuranone			and stalks	
28	(3S.3aR.7aS) 3'S-B-D-Glucopyranosyloxy, 7.7a-	372.41	C18H28O8	Leaves	[65]
	didehvdrobutylhexahvdro-1($3H$) isobenzofuranone		- 1020 - 0	and stalks	[]
29	(Z) 4.5.6.7-Tetrahydro-3-butylidene-1(3H) isobenzofuranone	192.25	$C_{12}H_{16}O_{2}$	Leaves	[65]
				and stalks	[]
30	(E) 3S.4.5.8-Tetrahydro-3-butylidene-1(3H) isobenzofuranone	192.25	$C_{12}H_{16}O_{2}$	Leaves	[65]
			-1210-02	and stalks	[]
31	Senkvunolide-J [syn.; (E) 3S.4.5.6.7.8-Hexahydro. 6R.7R-dihydroxy-3-	226.27	$C_{12}H_{18}O_{4}$	Leaves	[65]
	butylidene-1(3 <i>H</i>) isobenzofuranone]			and stalks	[]
32	Senkyunolide-N [syn (E) 3S 4 5 6 7 8-Hexabydro-6S 7S-dihydroxy-3-	226.27	$C_{12}H_{18}O_4$	Leaves	[65]
	butvlidene-1(3H) isobenzofuranone]		012111004	and stalks	[00]
33	(S) 3-Butyl-1(3H) isobenzofuranone	190 24	$C_{12}H_{14}O_2$	L eaves	[66]
00	(b) 5 Buyr (SH) isobelizoruruloite	170.24	012111402	and stalks	[00]
34	3a 4-Dihydro-3-(3-methylbutylidene)-1(3H) isobenzofuranone	204 26	$C_{12}H_{16}O_{2}$	L eaves	[67]
54	50,+-Diriyuro-5-(5-meuryibutyituene)-1(511) isobenzoruranone	204.20	013111002	and stalks	[07]
35	3-(3-Hydroxybutyl)-1(3H)-isobenzofuranone-O-B-D-gluconyranoside	368 38	$C_{10}H_{24}O_{0}$	L eaves	[67]
	5 (5 my droxy out y 1/ 1 (511)-1000012010101010-0-p-D-grucopy10105100	500.50	010112408	and stalks	[0/]
36	3-(3-Hydrovyhutyl)-1(3H)-isohenzofuranona O [R D aniofuranogyl	500.49	CarHanOva		[67]
50	$J = (J = 1) \cup J = 1 $	300.49	C23H32U12	and stalls	[07]
37	$(1 \rightarrow 0) - \mu - glucopyralloslucj$ 3 (3 Mathulbutulidana) $1/2H$ isobanzofuranona	202.25	Culture		[68]
51	3-(3-weinyloutynaene)-1(3 <i>n</i>)-isobenzoiuranone	202.25	C13 Π 14 U 2	Leaves	رەما
				and stalks	

No.	Name	Molecular weight	Molecular formula	Organ	Ref.		
D) Sesquiterpenes							
38	β -Selinene	204.35	C15H24	Seeds	[57]		
39	α-Selinene	204.35	C15H24	Seeds	[57]		
40	σ - Selinene	202.34	C15H22	Seeds	[57]		
41	γ- Selinene	204.35	C15H24	Seeds	[57]		
42	$(1\beta,4\beta)$ -4,14-Epoxy-1,11-eudesmanediol-11- <i>O</i> - β -D-glucopyranoside	416.51	$C_{21}H_{36}O_8$	Seeds	[68]		
43	$(1\beta, 4\alpha, 7\alpha H)$ -1,4,11-Eudesmanetriol-11- <i>O</i> - β -D-glucopyranoside	418.52	$C_{21}H_{38}O_8$	Seeds	[68]		
44	$(1\beta,2\alpha)$ -4(15)-Eudesmene-1,2,11-triol-11- <i>O</i> - β -D-glucopyranoside	416.51	C21H36O8	Seeds	[68]		
45	1β -4(15)-Eudesmene-1,11,14-triol-11- <i>O</i> - β -D-glucopyranoside	416.51	C21H36O8	Seeds	[68]		
	E) Phthalides						
46	Sedanonic acid [syn.: 1-(1-Carboxycyclohex-l-en-6-yl) pentan-l- one]	210.27	$C_{12}H_{18}O_3$	Leaves	[69, 70]		
47	1-(3-Carboxycyclohex-l-en-2-yl) pentan-l-ol	198.26	$C_{11}H_{18}O_3$	Leaves	[69, 70]		
48	Sedanonic anhydride	192.25	$C_{12}H_{16}O_2$	Leaves	[69, 70]		
49	Sedanolic acid [syn.: 1-(3-Carboxycyclohex-2"'n-4-yl) pentan-1-ol]	198.26	$C_{11}H_{18}O_3$	Leaves	[69, 70]		
50	Sedanolide [syn.: (3-Butyl-5,6,7,7a-tetrahydrophthalide]	194.27	$C_{12}H_{18}O_2$	Leaves	[69, 70]		
51	3-Isobutylidene-3a,4,5,6-tetrahydrophthalide	192.25	$C_{12}H_{16}O_2$	Leaves	[69, 70]		
	F) Miscellaneous	5					
52	2-Deoxybrassinolide	464.70	$C_{28}H_{48}O_5$	Seeds	[71]		
53	Anthriscinol methyl ether	222.24	$C_{12}H_{14}O_4$	Seeds	[61]		
54	Limonene	136.23	$C_{10}H_{16}$	Leaves	[62]		
55	<i>p</i> -Coumaric acid	164.16	$C_9H_8O_3$	Leaves	[72]		
56	Caffeic acid	180.16	$C_9H_8O_4$	Leaves	[72]		
57	Ferulic acid	194.18	$C_{10}H_{10}O_4$	Leaves	[72]		
58	Chlorogenic acid	354.31	$C_{16}H_{18}O_{9}$	Leaves	[59]		
59	Junipediol A 8- <i>O</i> -β-D-glucoside [syn: 2-(3,4 Dihydroxyphenyl)-3'- methyl ether-1,3-propanediol 1- <i>O</i> -β-D-glucopyranoside]	360.36	$C_{16}H_{24}O_9$	Seeds	[73]		
60	Junipediol A-4- O - β -D-glucopyranoside [syn: 2-(3,4- Dihydroxyphenyl)-3'-methyl ether-1,3-propanediol-4'- O - β -D-glucopyranoside]	360.36	C16H24O9	Seeds	[68]		
61	Falcarindiol [syn: (3 <i>R</i> ,8 <i>S</i> ,9 <i>Z</i>)-4,6-Diyne-3,8-diol-1,9-heptadecadiene]	260.40	$C_{17}H_{24}O_2$	Roots	[74]		
62	(3R,8S,9Z)-4,6-Diyne-3,8-diol-8-methyl ether-1,9 heptadecadiene	274.40	$C_{18}H_{26}O_2$	Roots	[74]		
63	3-Methyl ether-4,5-methylenedioxy benzoic acid	196.16	C9H8O5	Seeds	[75]		
64	(<i>R</i>)3-Methyl-5-propyl-2-cyclohexen-1-one	152.23	$C_{10}H_{16}O$	Leaves and stalks	[76]		

7

10

Figure 2: Chemical structures of the previously isolated compounds from A. graveolens.

Ь

но

ЮH

ОН

Ь́Н

26

() 0

30

Ò

28

24

НÓ

Ò

́ОН

он

он

Figure 2: (continued).

44

45

Figure 2: (continued).

Also, many biological studies have been conducted on *A. visnaga* and resulted in having antimicrobial, antidiabetic, antiinflammatory, cytotoxic, antimutagenic, immunostimulatory, larvicidal, insecticidal, herbicidal and cardiovascular effects. Also, it causes the prevention of kidney stone formation and it has a role in the treatment of vitiligo. On the other hand, *A. graveolens* is rich in many compounds as flavonoids, coumarins, furanocoumarins, isobenzofurans, sesquiterpenes, phthalides and miscellaneous. Coumarins, isobenzofurans and flavonoids are the most commonly investigated. Leaves and seeds were investigated. Therefore, other parts need further investigation. As well, the effectiveness of *A. graveolens* has been proven as anticancer, antibacterial, antiulcerogenic, hypolipidemic and antihypertensive effects.

Conflict of interests

The authors declare that there is no conflict of interests regarding this review.

Orcid

Shereen Ahmed https://orcid.org/0000-0002-4864-9154 John Fahim https://orcid.org/0000-0002-2425-0819

Usama Ramadan Abdelmohsen^[]<u>https://orcid.org/0000-0002-</u> 1014-6922

Ashraf N. E. Hamed https://orcid.org/0000-0003-2230-9909

References

[1] Downie SR, Katz-Downie DS, Watson MF. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA RPL16 and rpoc1 intron sequences: towards a suprageneric classification of subfamily Apioideae. *American Journal of Botany*. 2000;87(2):273-92.

[2] Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: A review. *Avicenna Journal of Phytomedicine*. 2016;6(6):621-35.

[3] Sahebkar A, Iranshahi M. Biological activities of essential oils from the genus Ferula (Apiaceae). *Asian Biomedicine*. 2010;4(6):835-47.

[4] Christova-Bagdassarian VL, Bagdassarian KS, Atanassova MS. Phenolic compounds and antioxidant capacity in bulgarian plans (dry seeds). *International Journal of Advanced Research*. 2013;1(9):186-97.

[5] Jimenez-Mejias P, Vargas P. Taxonomy of the tribe Apieae (Apiaceae) revisited as revealed by molecular phylogenies and morphological characters. *Phytotaxa*. 2015;212(1):57-79.

[6] Al-Snafi AE. Chemical constituents and pharmacological activities of *Ammi* majus and *Ammi* visnaga: a review. International Journal of Pharmacy and Industrial Research. 2013;3(3):257-65.

[7] WHO. WHO monographs on selected medicinal plants. WHO Library Cataloguing in Publication Data. 2007;3:23-32.

[8] Abou-Mustafa EA, Saleh NAM, Elgamal MHA, Shalaby NMM, Duddeck H. A further contribution to the γ-pyrone constituents of *Ammi visnaga* fruits. *Planta Medica*. 1990;56(1):134.

[9] Tjarks LW, Spencer GF, Seest EP. Isolation and ¹H and ¹³C NMR of ammiol and khellol glucosides. *Journal of Natural Products*.1989; 52(3):655-6.

[10] Elgamal MHA, Shalaby NMM, El-Hagrassy AM, Toth G, Simon A, Duddeck H. A further contribution to some gamma-pyrone constituents of *Ammi* visnaga. *Fitoterapia*. 1998;69:549-50.

[11] Sellami HKN, Apolitano A, Masullo M, Smiti S, Piacente S, Pizza C. Influence of growing conditions on metabolite profile of *Ammi visnaga* umbels with special reference to bioactive furanochromones and pyranocoumarins. *Phytochemistry*. 2013; 95:197-206.

[12] Winderl B, Schwaiger S, Ganzera M. Fast and improved separation of major coumarins in *Ammi visnaga* (L.) Lam. by supercritical fluid chromatography. *Journal of Separation Science*. 2016;39(20):4042-8.

[13] Sonnenberg H, Kaloga M, Eisenbach N, Frömming KK. Isolation and characterization of an angular-type dihydropyranocoumaringlycoside from the fruits of *Ammi visnaga* (L.) LAM. (Apiaceae). *Zeitschrift für Naturforschung C*. 1995;50(9-10):729-31.

[14] Bencheraiet R, Kherrab H, Kabouche A, Kabouche Z, Jay M. Flavonols and antioxidant activity of *Ammi visnaga* L. (Apiaceae). *Records of Natural Products*. 2011;5(1):52-5.

[15] Mabrouk SS, El-Shayeb NM. Inhibition of aflatoxin production in *Aspergillus flavus* by natural coumarins and chromones. *World Journal of Microbiology and Biotechnology*. 1992;8(1):60-2.

[16] Harborne JB, King L. Flavonoid sulphates in the Umbelliferae. *Biochemical Systematics and Ecology*. 1976;4(2):111-5.

[17] Abdulmanea K, Prokudina EA, Lanková P, Vaníčková L, Koblovská R, Zelený V, Lapčík O. Immunochemical and HPLC identification of isoflavonoids in the Apiaceae family. *Biochemical Systematics and Ecology*. 2012;45:237-43.
[18] Khalfallah A, Labed A, Semra Z, Ai kaki B, Kabouche A, Touzani R, Kabouche Z. Antibacterial activity and chemical composition of the essential oil of *Ammi visnaga* L. (Apiaceae) from Constantine, Algeria. *International Journal of Medicinal and Aromatic Plants*. 2011;1(3):302-5.

[19] Khadhri A, El Mokni R, Mguis K, Araujo ME. Variability of two essential oils of *Ammi visnaga* (L.) Lam. a traditional Tunisian medicinal plant. *Journal of Medicinal Plants Research*. 2011;5(20):5079-82.

[20] Soro KN, Sabri L, Amalich S, Khabbal Y, Zair T. Chemical composition of Moroccan *Ammi visnaga* L. (Lam.) and antibacterial activity of its essential oil against extended-spectrum beta-lactamase-producing and not producing bacteria Composition. *Phytotherapy*. 2015;13(3):168-75.

[21] Feirouz B, Salima KG. Antibacterial activity and chemical composition of *Ammi visnaga* L. essential oil collected from Boumerdes (Algeria) during three periods of the plant growth. *Journal of Essential Oil-Bearing Plants*. 2014;17(6):1317-28.

[22] Khalil N, Bishr M, Desouky S, Salama O. Ammi Visnaga L., a Potential Medicinal Plant: A Review. *Molecules*. 2020;25(2):301-18.

[23] Ghareeb AM, Zedan TH, Gharb LA. Antibacterial and antifungal activities of *Ammi visnaga* extracts against pathogenic microorganisms. *Iraqi Journal of Science*. 2011;52(1):30-6.

[24] Hashim S, Jan A, Marwat KB, Khan MA. Phytochemistry and medicinal properties of *Ammi visnaga* (Apiacae). *Pakistan Journal of Botany*. 2014;46(3):861-7.

[25] Alam S, Anjum N, Akhtar J, Bashir F. Pharmacological investigations on khella- (*Ammi visnaga* L.). World Journal of Pharmaceutical Research. 2018;7(13):212-24.

[26] Duarte J, Torres AI, Zarzuelo A. Cardiovascular effects of visnagin on rats. *Planta Medica*. 2000;66(1):35-9.

[27] Duarte J, Vallejo I, Pérez-Vizcaino F, Jiménez R, Zarzuelo A, Tamargo J. Effects of visnadine on rat isolated vascular smooth muscles. *Planta Medica*. 1997;63(3):233-6.

[28] Balandrin MF, Kinghorn AD, Farnsworth NR. Plant-Derived Natural Products in Drug Discovery and Development. *In Human Medicinal Agents from Plants*; American Chemical Society: Washington, DC, USA. 1993;534:2-12.

[29] Al-Snafi AE. A review of medicinal plants with broncho-dilatory effect-Part 1. *Scholars Academic Journal of Pharmacy*. 2015;5(7):297-304.

[30] Vanachayangkul P. *Ammi visnaga* L. for prevention of urolithiasis. Doctor of Philosophy. University of Florida. 2008.

[31] Orecchia G, Sangalli ME, Gazzaniga A, Giordano F. Topical photochemotherapy of vitiligo with a new khellin formulation, preliminary clinical results. *Journal of Dermatological Treatment*. 1998;9(2):65-9.

[32] Aourabi S, Driouch M, Sfaira M, Mahjoubi F, Hammouti B, Emran KM. Influence of phenolic compounds on antioxidant and anticorrosion activities of *Ammi visnaga* extracts obtained ultrasonically in three solvent systems. *International Journal of Electrochemical Science*. 2019 1;14:6376-93.

[33] Aourabi S, Driouch M, Ammor K, Sfaira M, Touhami ME, Mahjoubi F. Evaluation of anticorrosion and antioxidant activities of ethanolic extract of *Ammi* visnaga. Analytical and Bioanalytical Electrochemistry. 2018;10(7):912-29.

[34] Kabouche Z, Jay M. Flavonols and antioxidant activity of Ammi visnaga L. Records of Natural Products. 2011;5(1):52-5.

[35] Bousta D, Boukhira S, Aafi A, Ghanmi M, El-Mansouri L. Ethnopharmacological Study of anti-diabetic medicinal plants used in the Middle-Atlas region of Morocco (Sefrou region). *International Journal of Pharma Research and Health Sciences*. 2014;2(1):75-9.

[36] Yaniv Z, Dafni A, Friedman J, Palevitch D. Plants used for the treatment of diabetes in Israel. *Journal of Ethnopharmacology*. 1987;19(2):145-51.

[37] Jouad H, Maghrani M, Eddouks M. Hypoglycemic effect of aqueous extract of *Ammi visnaga* in normal and streptozotocin-induced diabetic rats. *Journal of Herbal Pharmacotherapy*. 2002;2(4):19-29.

[38] Bnouham M, Mekhfi H, Legssyer A, Ziyyat A. Ethnopharmacology Forum Medicinal plants used in the treatment of diabetes in Morocco. *International Journal of Diabetes and Metabolism*. 2002;10:33-50.

[39] Lee JK, Jung JS, Park SH, Park SH, Sim YB, Kim SM, Ha TS, Suh HW. Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. *Archives of Pharmacal Research*. 2010;33(11):1843-50.

[40] Cordero CP, Gómez-González S, León-Acosta CJ, Morantes-Medina SJ, Aristizabal FA. Cytotoxic activity of five compounds isolated from Colombian plants. *Fitoterapia*. 2004;75(2):225-7.

[41] Ateya AM, Abou-Hashem M, El-Sayed Z, Abbas F. Biological activity of the Egyptian medicinal plants: part 4 cytotoxicity of 50 Egyptian plants and spices against hepatocellular carcinoma. *Journal of Ethnomedicine*. 2014;1:56-63.

[42] Pakfetrat H, Nemati N, Shiravi A. Cytotoxicity effects of *Ammi visnaga* extract on Hela and MCF7 cancer cell lines. *Journal of Animal Biology*. 2015;7(2):25-33.

[43] Beltagy AM, Beltagy DM. Chemical composition of *Ammi visnaga* L. and new cytotoxic activity of its constituents khellin and visnagin. *Journal of Pharmaceutical Sciences and Research*. 2015;7(6):285-291.

[44] Curri SB Bombardelli E. Pharmaceutical compositions having activity on the cutaneous microcirculation. *United States patent US*. 1993;176(5):919-23.

[45] Schimmer O, Rauch P. Inhibition of metabolic activation of the promutagens, benzo [a] pyrene, 2-aminofluorene and 2-aminoanthracene by furanochromones in *Salmonella typhimurium*. *Mutagenesis*. 1998;13(4):385-9.

[46] Daoudi A, Aarab L, Abdel-Sattar E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. *Toxicology and Industrial Health*. 2013;29(3):245-53.

[47] Bhagavathula AS, Al-Khatib AJ, Elnour AA, Al Kalbani NM, Shehab A. *Ammi visnaga* in treatment of urolithiasis and hypertriglyceridemia. *Pharmacognosy Research*. 2015;7(4):397-400.

[48] Maleck M, Santos FC, Serdeiro MT, Guimarães AÉ, Ferreira B, Gunaydin K, Almeida AP Khellin: A furanochromone with toxicity against *Oncopeltus fasciatus* (Hemiptera) and *Aedes aegypti* (Diptera). *Journal of Natural Pharmaceuticals*. 2013;4(1):32-6.

[49] Pavela R. Acaricidal properties of extracts and major furanochromenes from the seeds of *Ammi visnaga* Linn. against *Tetranychus urticae Koch. Industrial Crops and Products.* 2015;67:108-13.

[50] Ghoneim K, Al-Daly A, Amer M, Mohammad A, Khadrawy F, Mahmoud MA. Effects of *Ammi visnaga* L. (Apiaceae) extracts on the main metabolites in haemolymph and fat bodies of *Schistocerca gregaria* (Forskal) (Orthoptera: Acrididae). *Journal of Advances in Zoology*. 2014;1(1):11-23.

[51] Ghoneim K, Al-Daly A, Khadrawy F, Amer M, Mahmoud MA. Efficacy of the toothpick weed *Ammi visnaga* L. (Apiaceae) fruit extracts on transaminase activity in certain tissues of *Schistocerca gregaria* (Forskal) (Orthoptera: Acrididae). *International Journal of Entomology Research*. 2016;1(5):19-28.

[52] Travaini ML, Sosa GM, Ceccarelli EA, Walter H, Cantrell CL, Carrillo NJ, Dayan FE, Meepagala KM, Duke SO. Khellin and visnagin, furanochromones from *Ammi visnaga* (L.) Lam., as potential bioherbicides. *Journal of Agricultural and Food Chemistry*. 2016;64(50):9475-87.

[53] Ahmedy O. Study of the anticancer potential of celery seed oil against chemically induced hepatocellular carcinoma in rats: a mechanistic approach. *Alazhar Journal of Pharmaceutical Sciences*. 2016;53(1):14-28.

[54] Quiros CF. Celery: *Apium graveolens* L. In Genetic Improvement of Vegetable Crops. 1993:523-34.

[55] Al-Asmari AK, Athar MT, Kadasah SG. An updated phytopharmacological review on medicinal plant of Arab region: *Apium graveolens* Linn. *Pharmacognosy Reviews*. 2017;11(21):13-8.

[56] Han D, Row KH. Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. *Journal of the Science of Food and Agriculture*. 2011;91(15):2888-92.

[57] Kooti W, Daraei N. A review of the antioxidant activity of celery (*Apium graveolens* L). *Journal of Evidence-Based Complementary & Alternative Medicine*. 2017;22(4):1029-34.

[58] Mencherini T, Cau A, Bianco G, Loggia RD, Aquino RP. An extract of *Apium graveolens* var. dulce leaves: structure of the major constituent, apiin and its anti-inflammatory properties. *Journal of Pharmacy and Pharmacology*. 2007;59(6):891-7.

[59] Liu G, Zhuang L, Song D, Lu C, Xu X. Isolation, purification and identification of the main phenolic compounds from leaves of celery (*Apium graveolens* L. var. dulce Mill./Pers.). *Journal of Separation Science*. 2017;40:472-81.

[60] Kim SM, Vetrivel P, Ha SE, Kim HH, Kim JA, Kim GS. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell. *The Journal of Nutritional Biochemistry*. 2020;83:108427.

[61] Maruyama T, Abbaskhan A, Choudhary MI, Tsuda Y, Goda Y, Farille M, Reduron JP. Botanical origin of Indian celery seed (fruit). *Journal of Natural Medicines*. 2009;63(3):248-53.

[62] Dolati K, Rakhshandeh H, Golestani M, Forouzanfar F, Sadeghnia R, Sadeghnia HR. Inhibitory effects of *Apium graveolens* on xanthine oxidase activity and serum uric acid levels in hyperuricemic mice. *Preventive Nutrition and Food Science*. 2018;23(2):127-33.

[63] Ahluwalia VK, Boyd DR, Jain AK, Khanduri CH, Sharma ND. Furanocoumarin glucosides from the seeds of *Apium graveolens*. *Phytochemistry*. 1988;27(4):1181-3.

[64] Garg SK, Sharma ND, Gupta SR. A New dihydrofurocoumarin from *Apium* graveolens. Planta Medica. 1981;43(11):306-8.

[65] Bartschat D, Beck T, Mosandl A. Stereoisomeric flavor compounds. 79. simultaneous enantio-selective analysis of 3-butylphthalide and 3-

butylhexahydrophthalide stereoisomers in celery, celeriac and fennel. Journal of Agricultural and Food Chemistry. 1997;45(12):4554-7.

[66] Kurobayashi Y, Kouno E, Fujita A, Morimitsu Y, Kubota K. Potent Odorants Characterize the aroma quality of leaves and stalks in raw and boiled Celery. *Bioscience, Biotechnology and Biochemistry*. 2006;70(4):958-65.

[67] Gold HJ, Wilson CW. Alkylidene phthalides and dihydrophthalides from Celery. *The Journal of Organic Chemistry*. 1963;28(4):985-7.

[68] Kitajima J, Ishikawa T, Satoh M. Polar constituents of celery seed. *Phytochemistry*. 2003;64(5):1003-11.

[69] Collin HA, Isaac S. *Apium graveolens* L. (Celery): *In Vitro* Culture and the Production of Flavors. Medicinal and Aromatic Plants III, Book series (Agriculture). 1991;15:73-94.

[70] Bjeldanes LF, Kim IS. Phthalide components of celery essential oil. *The Journal of Organic Chemistry*. 1977;42(13):2333-5.

[71] Fujioka S, Sakurai A. Brassinosteroids. *Natural Product Reports*. 1997;14(1):1-10.

[72] Yao Y, Sang W, Zhou M, Ren G. Phenolic composition and antioxidant activities of 11 celery cultivars. *Journal of Food Science*. 2010;75(1):9-13.

[73] Simaratanamongkol A, Umhera K, Noguchi H, Panichayupakaranant P. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plant. *Food Chemistry*. 2014;165:92-7.

[74] Zidorn C, Johrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H. Polyacetylenes from the Apiaceae Vegetables Carrot, Celery, Fennel, Parsley and Parsnip and Their Cytotoxic Activities. *Journal of Agricultural and Food Chemistry*. 2005;53(7):2518-23.

[75] Hussain MT, Ahmed G, Jahan N, Adiba M. Unani description of Tukhme Karafs (Seeds of *Apium graveolens* Linn) and its Scientific reports. *International Research Journal of Biological Sciences*. 2013;2(11):88-93.

[76] Wilson CW. Relative recovery and identification of carbonyl compounds from celery essential oil. *Journal of Food Science*. 1970;35(6):766-8.

[77] Baananou S, Bouftira I, Mahmoud A, Boukef K, Marongiu B, Boughattas NA. Antiulcerogenic and antibacterial activities of *Apium graveolens* essential oil and extract. *Natural Product Research*. 2013;27(12):1075-83.

[78] Mansi K, Abushoffa AM, Disi A, Aburjai T. Hypolipidemic effects of seed extract of celery (*Apium graveolens*) in rats. *Pharmacognosy Magazine*. 2009;5(20):301-5.

[79] Moghadam MH, Imenshahidi M, Mohajeri SA. Antihypertensive effect of celery seed on rat blood pressure in chronic administration. *Journal of Medicinal Food*. 2013;16(6):558-63.