Sialon-based Composites for Solar Receivers: An overview | ||||
International Journal of Materials Technology and Innovation | ||||
Article 10, Volume 1, Issue 1, June 2021, Page 77-88 PDF (507.11 K) | ||||
Document Type: Review Article | ||||
DOI: 10.21608/ijmti.2021.181126 | ||||
![]() | ||||
Authors | ||||
A. A. El-Maddah1; A. A. M. El-Amir ![]() | ||||
1Refractory and Ceramic Materials Department - Advanced Materials Division - Central Metallurgical R&D Institute (CMRDI), Cairo, Egypt | ||||
2Refractory and Ceramic Materials Department - Advanced Materials division - Central Metallurgical R&D Institute (CMRDI), Cairo, Egypt | ||||
3Refractory and Ceramic Materials Department - Advanced Materials Division - Central Metallurgical R& D Institute (CMRDI), Cairo, Egypt | ||||
4Refractory and Ceramic Materials Department -Advanced Materials Division - Central Metallurgical R&D Institute (CMRDI), Cairo, Egypt | ||||
Abstract | ||||
Engineering non-oxide ceramics have recently been implied in many advanced applications based on their high temperature capability, outstanding strength, and low fabrication cost. As solar energy has become an economic trend and a clean source of energy; the utilization of ceramic materials as solar receivers in a solar thermal system has been widely considered. Various ceramic materials have shown their ability as heat absorber material due to their oxidation resistance, bending strength, thermal conductivity, and solar absorptance. Ceramics as Si3N4 and SiC can be valuable solar receiver materials; however, due to the high sintering temperature required for Si3N4 and the non-oxidizing nature of SiC; modification of these ceramics with AIN, oxide materials, and other additives is required. One of the highly promising trials that have proved its ability in a solar thermal system is modifying Si3N4 with Al2O3 and AIN that typically results in developing sialon-based ceramics. The latter materials have modified the flaws in many solar receiver ceramics as they have lower sinterability, lower fabrication cost, and easier densification compared to other solar receiver materials. The present work is an overview of the ceramic materials and composites applied as solar receivers, in addition to the characteristics required for the selected material "sialons" and the previous work achieved in this field. | ||||
Keywords | ||||
Sialons; Solar receivers; Solar power plant; Heat absorbers | ||||
References | ||||
[1] J. Wu, Y. Zhang, X. Xu, X. Lao, K. Li, and X. Xu, A novel in-situ β-Sialon/Si3N4 ceramic used for solar heat absorber, Ceram. Int. 41 (2015) 14440–14446, doi: 10.1016/j.ceramint.2015.07.080.
[2] H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, Concentrated solar power plants: Review and design methodology, Renew. Sustain. Energy Rev. 22 (2013) 466–481, doi: 10.1016/j.rser.2013.01.032.
[3] S. Mahavara, M. S. Khan, and T. Yadav, Synthesis, characterization and testing of black metal oxide nanoparticles as solar concentrator receiver material, Mater. Today Proc. 8 (2019) 22–27, doi: 10.1016/j.matpr.2019.02.076.
[4] A. G. Konstandopoulos, C. Pagkoura, and S. Lorentzou, Concentrating solar power technology Principles, developments and applications. New Delhi: Woodhead Publishing Limited, 2012.
[5] Y. Zhang, J. Wu, X. Xu, Y. Zhou, Q. Zhang, and J. Song, Effect of Sm2O3 on microstructure and high-temperature stability of MgAl2O4-Si3N4 ceramic for solar thermal absorber, J. Alloys Compd. 711 (2017) 365–373, doi: 10.1016/j.jallcom.2017.04.018.
[6] S. E. Division. Review of sputter deposited mid- to high- temperature solar selective coatings for flat plate/evacuated tube collectors and solar thermal power generation applications.1–86, 2010.
[7] A. A. Kudirka and R. H. Smoak, Ceramic technology for solar thermal receivers, Am. Soc. Mech. Eng. 1(1981).
[8] C. K. Ho, Advances in central receivers for concentrating solar applications, Sol. Energy. 152 (2017) 38–56, doi: 10.1016/j.solener.2017.03.048.
[9] M. Ali, M. Rady, M. A. A. Attia, and E. M. M. Ewais, Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers, Renew. Energy. 145 (2020) 1849–1861, doi: 10.1016/j.renene.2019.07.082.
[10] J. F. Wu, Y. X. Zhang, X. H. Xu, D. Z. He, Y. Zhou, and Y. Liu, Preparation and performance of β-sialon/Si3N4 composite ceramics for solar heat absorber, Appl. Mech. Mater. 692 (2014) 234–239, doi: 10.4028/www.scientific.net/AMM.692.234.
[11] O. Guillon, Advanced ceramics for energy conversion and storage, India: Matthew Deans, 2020.
[12] D. G. Morris, A. López-Delgado, I. Padilla, and M. A. Muñoz-Morris, Selection of high temperature materials for concentrated solar power systems: Property maps and experiments, Sol. Energy. 112(2015) 246–258, doi: 10.1016/j.solener.2014.09.050.
[13] V. J. Tennery and G. W. Weber, An assessment of materials for use in a solar ceramic receiver for chemical process heat, OAK RIDGE Natl. Lab., 1979.
[14] R. L. Ashbrook, Improved performance of silicon nitride-based high temperature ceramics, 1977.
[15] D. P. H. Hasselman, J. P. Singh, and K. Satyamurthy, Identification and analysis of factors affecting thermal shock resistance of ceramic materials in solar receivers, 1980.
[16] D. H. A. Besisa, E. M. M. Ewais, E. A. Mohamed, N. H. A. Besisa, and Y. M. Z. Ahmed, Inspection of thermal stress parameters of high temperature ceramics and energy absorber materials, Sol. Energy Mater. Sol. Cells. 203 (2019) 110160, doi: 10.1016/j.solmat.2019.110160.
[17] M. Bengisu, Engineering Ceramics. New York: Springer, 2001.
[18] W. T. Bakker and D. Kotchick, Development of ceramic heat exchangers for indirect fired gas turbines, Proc. ASME Turbo Expo. 5 (1982), doi: 10.1115/82GT182.
[19] X. Xu, Z. Rao, J. Wu, Y. Li, Y. Zhang, and X. Lao, In-situ synthesis and thermal shock resistance of cordierite/silicon carbide composites used for solar absorber coating, Sol. Energy Mater. Sol. Cells. 130 (2014) 257–263, doi: 10.1016/j.solmat.2014.07.017.
[20] J. Wu, Y. Zhang, X. Xu, T. Deng, X. Lao, K. Li, and X. Xu, Thermal shock resistance and oxidation behavior of in-situ synthesized MgAl2O4-Si3N4 composites used for solar heat absorber, Ceram. Int. 42 (2016) 10175–10183, doi: 10.1016/j.ceramint.2016.03.133.
[21] C. Wang, H. Wang, X. Fan, J. Zhou, H. Xia, and J. Fan, Fabrication of dense β-Si3N4-based ceramic coating on porous Si3N4 ceramic. J. Eur. Ceram. Soc. 35 (2015) 1743–1750, doi: 10.1016/j.jeurceramsoc.2014.10.015.
[22] X. Lao, X. Xu, J. Wu, X. Xu, Y. Zhang, and K. Li, Effect of silicon on properties of Al2O3-SiCw composite ceramics in-situ synthesized by aluminium-assisted carbothermal reduction of coal series kaolin for solar thermal storage, J. Alloys Compd. 692 (2017) 825–832, doi: 10.1016/j.jallcom.2016.09.107.
[23] D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed, F. I. Elhosiny, D. V. Kuznetsov, and T. Fend, Densification and characterization of SiC-AlN composites for solar energy applications, Renew. Energy. 129 (2018) 201–213, doi: 10.1016/j.renene.2018.05.100.
[24] M. Liu, X. Xu, J. Wu, G. Xu, G. Xue, and J. Liu, Modification of Si3N4-SIC heat absorption ceramic material using for tower type solar thermal power plant, J.S. Carpenter, C. Bai, J.g Hwang, S. Ikhmayies, B. Li, S. N. Monteiro, Z. Peng, and M. Zhang (ed.), Characterization of Minerals, Metals, and Materials 2014. (2014), doi: 10.1002/9781118888056.ch6.
[25] K. Liddell and D. P. Thompson, The future for multicomponent SiAlON ceramics, Key Eng. Mater. 237 (2003) 1–10, doi: 10.4028/www.scientific.net/kem.237.1.
[26 J. Luo, C. Xi, Y. Gu, L. Zhang, C. Zhang, Y. Xue, and R. Liu, Superplastic forging for sialon-based nanocomposite at ultralow temperature in the electric field, Sci. Rep. 9 (2019) 1–6, doi: 10.1038/s41598-019-38830-1.
[27] J. Wu, C. Ding, X. Xu, and K. Mi, Effects of Gd2O3 and Yb2O3 on the microstructure and performances of O’-Sialon/Si3N4 ceramics for concentrated solar power, Ceram. Int. (2020), doi: 10.1016/j.ceramint.2020.10.083.
[28] K. M. Reddy and B. P. Saha, Effect of porosity on the structure and properties of β-SiAlON ceramics, J. Alloys Compd. 779 (2019) 590–598, doi: 10.1016/j.jallcom.2018.11.277.
[29[ L. Reboutaa, A. Sousaa, M. Andritschkya, F. Cerqueiraa, C.J. Tavaresa, P. Santillib, K. Pischow, Solar selective absorbing coatings based on AlSiN/AlSiON/AlSiOy layers, Appl. Surf. Sci. 356 (2015) 203–212, doi: 10.1016/j.apsusc.2015.07.193.
[30] X. Xu, X. Lao, J. Wu, Z. Rao, Y. Zhou, D. He, and Y. Liu, Preparation and performance study of sialon-Si3N4-sic composite ceramics for concentrated solar power, Int. J. Appl. Ceram. Technol. 12 (2015) 949–956, doi: 10.1111/ijac.12374. | ||||
Statistics Article View: 489 PDF Download: 518 |
||||