# Study of the single and combined genotoxic effects of chlorpyrifos and quercetin in *Saccharomyces cereviciae*

**Nada, H. A. Al-Twaty** Department of Biology, King Abdelaziz University

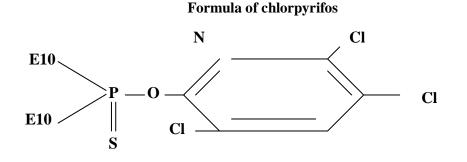
# Abstract

The genotoxic effects of chlorpyrifos and quercetin either single or combined were tested in terms of their ability to induce reverse mutation, gene conversion and mitotic crossing over in *Saccharomyces cereviciae* D7. The results indicated that all single and combined treatments induced reverse mutation, gene conversion and mitotic crossing over in *Saccharomyces cereviciae* D7. Combined treatment was more effective than the single treatment of quercetin. The insecticide (chlorpyrifos and quercetin which are common flavonoids) proved to be mutageneic in *Saccharomyces cereviciae*.

# Introduction

In many genetic investigation the organophosphorus insecticides has been reported as a potent genotoxic agents (Abdallah et al. (1973); Villani et al. (1983); Nafei et al. (1984); Salam et al. (1984); and Mansour et al. (1988)). The induction of mitotic crossing over in diploid yeast Saccharomyces cereviciae is strongly correlated with the mutagenic effects. These tests very sensitivity react with which compounds induce base-pair substitution as well as from-shift mutations. This system has revealed the genetic activity of large number of carcinogens, pesticides. radiation and many other mutagens chemical (Siebert and Elsenbrand, (1974); Zimmermann et al., (1975); Altwaty, (1999); Anjaria and Rao, (2001) and Buschini et al., (2003 and 2004)).

Quercetin is one of the most common flavonoids in plants, widely distributed in natural foods, consumed by humans in a range of 50 mg per day (Brown and Dietrich, 1979 and Caria *et al.*, 1995). Quercetin was shown to be mutagenic in the Ames assay (Bjeldames and Chang 1977; MacGregor and Jurd 1978; Brown and Dietrich 1979 and Rueff *et al.*, 1986). Also it has been shown to be carcinogenic in rats (Pamukcu *et al.*, 1980), to be mutagenic in a variety of genotoxicity tests (Muller *et al.*, 1991 and Caria *et al.*, 1995). The conflicting inform-ations on the genotoxicity of chlorpyrifos and quercetin from previous studies reported in the literature led to us to study the genotoxic effects of both of them in single and combined forms.


# Materials and methods

# 1- Yeast strain:

The D7 strain of *Saccharomyces cereviciae* was used as a test oragnism (Courtesy of F. K. Zimmermann. Darmstad, Germany). This strains has the following genotype: ade2-40 / ade2-119, trp5-12 / trp5-27, ilvl-92 / ilvl-92. It is used for the simultaneous detection of induced reverse mutation, mitotic gene conversion, and mitotic crossing over (Zimmermann *et al.*, 1975).

# 2- Chemicals

a. The insecticide chlorpyrifos was obtained from Hanoo Agricultural, the sole agent in K.S.A.,P.O. Box.4894 Riyadh 114412. Manufactured by Chemac-Agriphar / Rue De Renory, 261B-41020 Ugree/Belgium.



- Chlorpyrifos is an organophosphorus insecticid, it's chemical is:
- O.o-diethylo-3,5,6 trichloro-2 pyridyl phosphorothioate.
- b.Quercetin: is one of the flavonoids in Senna spp (Cassia) (Leguminosae), obtained from Dr. Aisha Mohamed, Ali Khogli, Faculty of Science, King Abdelaziz University.

#### 3- Medium

#### a. Complete medium

This medium was used for routine culture growth, it contains : peptone 5 mg/L, yeast extract 10 g/L, glucose 20 g/L and Agar 20 g/L

#### b. Minimal medium

The medium components have been described in detail by Zimmermann et al. (1975).

#### 4- Testing assay:

- a- Three concentrations were prepared from chlorpyriphos, these concentrations were 1, 2, 5  $\mu$ l per ml media.
- b- The used concentration of quercetin was 5  $\mu$ l per ml media
- c- Combined treatment

The used concentration of chlorpyriphos and quercetin for combined treatment was 5  $\mu$ l/ml media

#### **Treatment protocol:**

- 1. 10 ml of liquid complete medium were inoculated with about 5 x 10 cells/ml in a 50 ml conical flask.
- 2. The culture was incubated on an orbital shaker water bath at 24 c for 6 hrs.
- 3. The sample of the cells was examined under the microscope, the proper culture must be in experimental phase (at least 90 % of the cells have buds).
- 4. Concentration series for treatment were inoculated cache with 1 ml sample cells and incubated at 28 c on an water bath shaker for 18 hrs.
- 5. After appropriate dilution, the cells were plated onto:
  - Complete medium with cycloheximide to detect mitotic crossing over
  - Synthetic complete medium without tryptophan to detect gene conversion
  - Synthetic complete medium without isoleucine to detect point mutation

#### Analysis and evaluation of the data

The frequencies of gene convertion, reverse mutation and mitotic crossing over were computed by dividing the number of convertant, revertant and mitotic crossing over colonies. The general consensus was that the increase in an end point under investigation up to two folds or more of the mean of control frequency is biologically considered as a significant response (Brusick, 1980).

# **Results and discussion**

The results in table (1) show the genetic activities in such chlorpyriphos in Saccharo-myces cereviciae D7. Chlorpyriphos exhib-ited moderate toxicity the lower concentration which at proportionally increased by increasing the treatment dose (1-5 µl/ml). Survival percentages ranged from 70 % at the lowest concentration (1 µl/ml) to 27 % at highest one (5 µl/ml). Weak positive mutagenic activity was obtained using the concentration 1 µl/ml where the induced frequency of mitotic crossing over at the cycloheximide (Cyh) locus was 4.7 times the spontaneous frequency, while the same concentration showed negative results in the induction of gene conversion at the tryptophan-5 (Trp-5) locus and reversion at isoleucine (il) locus. Also, moderate mutagenic activity was obtained at the three loci under study when chlorpyriphos applied at the concentration 2 µl/ml which resulted in mitotic gene conversion, reversion and mitotic crossing over in frequency 3.6, 4.1 and 9.6 times the spontaneous ones respectively. Chlorpyriphos as a mutagen proved to be more potent at the concentration 5 µl/ml which caused 27 % survival and resulted in mitotic gene conversion, reversion and mitotic crossing over in frequencies 13.1, 13.2 and 20 times of control ones respectively. These results suggest the mutagenic effect of chlorpyriphos in the induction of convertion of convertant, revertant and mitotic crossing over in Saccharomyces cereviciae strain D7. This is in agreement with the results obtained by many reports used pesticides in Saccharomvces cereviciae, El-Adawy et al. (1998); Salam et al. (1993 and 1995); Ahmed et al. (1999) and Al-twaty (1999). The results shown in table (2), showed the genetic of quercetin. Its activities positive indications of mutagenic activity were obtained at the concentration of 5 ul/ml of quercetin, where the induced frequency of mitotic gene conversion and mitotic crossing over was 5.1 and 4.7 times the control ones respectively. Also, the same concentration showed a strong activity at the (ilv) locus, causing revertants in a frequency 11.9 times the control level. Meanwhile, the combined treatment of quercetin and chlorpyriphos, showed a mutagenic cumulative effects when compared with quercetin alone which resulted in mitotic gene conversion, revetant and crossing over in frequencies at 11.7, 11.2 and 5.4 times as the control levels, respectively. This result suggests that quercetin and the combined treatment with chlorpyriphos showed mutagenic effect in induction of convertant, revertant and mitotic crossing over in Saccharomyces cereviciae D7. This is in agreement with Caria et al. (1995), who reported that quercetin induced micronuclei in human lymphocytes. Moreover, quercetin was shown to be mutagenic in the Ames assay (Brown and Dietrich, 1979 and Rueff et al., 1986). Induced safe our sheep (SoS) functions (Rueff et al., 1992). The results of the present study show that chlorpyriphos (organoph-osphorus insecticides) and quercetin (one of the common flavonoids in plants) were capable to induce the three genetic end points and to reveal genetic activity at the three loci under study. obviously Chlorpyriphos shoed high genotoxicity to strain D7 of Saccharomyces cereviciae when compared with quercetin. Moreover, the treatment of chloep-yriphos and quercetin was slightly lower as compared with chlorpyriphos alone.

|        |          | Convertant |      |       | Revertant  |     |       |             |     |       |
|--------|----------|------------|------|-------|------------|-----|-------|-------------|-----|-------|
| Con.   | Number   | Mut Freq   | T/C  | D. of | Mut Freq   | T/C | D. of | Mut Freq    | T/C | D. of |
| M/ml   | of cells | _          |      | Act.  | _          |     | Act.  |             |     | Act.  |
| Contro | 17084    | 14.1 (24)  | 1    | -     | 11.7 (20)  | 1   | -     | 16.4 (28)   | 1   | -     |
| 1      |          |            |      |       |            |     |       |             |     |       |
| 1 M1   | 10930    | 25.6 (28)  | 1.8  | -     | 21.9 (24)  | 1.8 | -     | 76.8 (84)   | 4.7 | +     |
| 2 Ml   | 7570     | 52.6 (40)  | 3.6  | +     | 47.5 (36)  | 4.1 | +     | 158.5 (120) | 9.6 | +     |
| 5 Ml   | 4642     | 189.6 (88) | 13.1 | ++    | 155.2 (72) | 13. | ++    | 336.2 (156) | 20  | ++    |
|        |          |            |      |       |            | 2   |       |             |     |       |

 Table (1): Response of Saccharomyces cereviciae D7 to the treatment with different concentrations of chlorpyrifos

Key: Con = Concentration Mut = Mutation

C = Control value T = Treatment value

+ = 2 - 10 control level ++ = > 10 control level - = non significant

D. of Act = Degree of activity, numbers between parenthese represents actual concoly counts

 Table (2): Response of Saccharomyces cereviciae D7 to the treatment with quercetin alone on combined with chlorpyrifos

|          |          | Convertant  |     |       | Revertant   |     |     |             |     |       |
|----------|----------|-------------|-----|-------|-------------|-----|-----|-------------|-----|-------|
| Con.     | Number   | Mut Freq    | T/C | D. of | Mut Freq    | T/C | D.  | Mut Freq    | T/C | D. of |
| M/ml     | of cells |             |     | Act.  |             |     | of  |             |     | Act.  |
|          |          |             |     |       |             |     | Act |             |     |       |
|          |          |             |     |       |             |     | •   |             |     |       |
| Control  | 17084    | 14.1 (24)   | 1   | -     | 11.7 (20)   | 1   | -   | 16.4 (28)   | 1   | -     |
| Ch. 5    | 4642     | 189 (88)    | 13. | ++    | 155.2 (72)  | 31. | ++  | 336.2 (156) | 20  | ++    |
| Ml/ml    |          |             | 1   |       |             | 2   |     |             |     |       |
| Quer     | 9482     | 72.8 (69)   | 5.1 | +     | 139.2 (132) | 11. | ++  | 77 (73)     | 4.7 | +     |
| 5 Ml/ml  |          |             |     |       |             | 9   |     |             |     |       |
| Com. Tr. | 9197     | 166.3 (153) | 11. | ++    | 155.2 (72)  | 11. | ++  | 89.2 (82)   | 5.4 | ++    |
|          |          |             | 7   |       |             | 2   |     |             |     |       |

Key: Con = Concentration Mut = Mutation

C = Control value T = Treatment value

+ = 2 - 10 control level ++ = > 10 control level - = non significant

Ch. = chlorpyrifos quer. = quercetin com Tr. = combined treatment

D. of Act = Degree of activity, numbers between parenthese represents actual colony counts

# References

- Abdallah, M. D.; Zaazou, M. H.; Ali, A. M. and Rizkallah, M. R. (1973): Cholinesterase and aliesterase activity of different stages in the life cycle of organophosphorus resistant and susceptible <u>Spodoptera littoralis</u> (Boised). Bull. Ent. Soc. Egypt. Econ. Ser. 7: 222-228.
- Ahed, E.S.; Asal, N. M. and Baeshen, A. (1999): Study of the single and combined genotoxic effects of furadan and lead in <u>Saccharomyces cereviciae</u>. Alex. J. Agric. Res. 44 (1): 153-170.
- Altwaty, N.H. (1999): Genetic toxicity of insecticide chlorcyrin in <u>Saccharomyces</u> <u>cereviciae</u>. Delta. J. Sci. 23 (1): 523-263.
- 4. **Anjaria, K. B. and Rao, B. S., (2001):** Effect of caffeine on the gentoxic effects of gamma radiation on 4- NQO in diploid yeast. J Environ pathol Toxicol Oncol., 20 (1): 39-45.
- 5. **Bjeldanes, L. F. and Chang, G. W.** (1977): Mutagenic activity of quercetin and related compounds, Science, 197, 577-263.
- 6. Brown, J. P. and Dietrich, P. S. (1977): Mutagenic of plant flavonols in the

salmonella/manmmalian microsome test. Activation of flavonol glycosides by mixed glycosidases from rat faecal bacteria and other sources. Mutation Res., 66, 223-240.

- Brusick, D. (1980): Principles of Genetic Toxicology. Plenum press, New York, p. 2790.
- Buuschini, A.; Poli, P. and Rossi, C. (2003): <u>Saccharomyces cereviciae</u> as an eukaryotic cell model to assess cytotoxicity and genotoxicity of three anticancer anthraquinone. Mutagenesis. 18 (1): 25-36.
- Buschini, A.; Carboni, P.; Furlini, M.; Poki, P. and Tossi, C. (2004): Sodium hypochlorite, chlorine dioxide and peracetic acid induced genotoxicity detected by the Comet assay and <u>Saccharomyces cereviciae</u> D7 tests. Mutagenesis. 2004 19 (2): 157-162.
- Caria, H.; Chaveca, T.; Laires, A. and Rueff, J. (1995): Genotoxicity of quercetin in the micro nucleus assay in mouse bone marrow erythrocytes, human lymphocytes, V 79 cell line and identification of kinetochore- containing (CREST staining) micronuclei in human lymphocytes. Mut. Res. 343:85-94.
- 11. El- Adawy, R. A.; Abd El-Naby, W. N.; Hassanein, S. H.; Shawky, A. S. H. and salam, A. Z. El-Abidin (1988): Mutagenic potentiality of triazophos, sumithion, fenpropathrin and amitraz in yeast, <u>Saccharomyces cereviciae</u> XLX Annual Conf. Soc. Genet., Egypt, pp. 125-123.
- Mansour, S. A.; Hassan, A. H. M.; Awad, A. A. M. and Salam, A. Z. El-Abidin (1988): Allozyme polymorphism in <u>Drosophila</u>: Induction of polymorphism in a homozygous enzyme strain under the effect of the three different organophosphorys compounds. Proc. 2<sup>nd</sup> Conf. Agric. Develop. Res., Ain Shams University, Cairo, 1: 237-250.
- 13. Mac Gregor, J. T. and Jurd. L. (1978): Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonilla typhimurium, Mutation Res., 54,297-309.
- 14. Muller, L. P. Kasper and Madle, S. (1991): The quality of genotoxicity testing of druge. Experiences of a regulatory agency with new and old compounds, Mutagenicis 6, 143-149.
- Nafei, H. A.; Hassan, A. M.; Mansour, S. A. and Salam A. Z. El-Abidin (1984): The mutagenicity of organophosphorus insecticides in <u>D. Melanogaster</u>. Proc. 2<sup>nd</sup> Mediterranean Conf. Genet. Cairo, 717-725.

- Pamukcu, A. M.; Yalciner. S.; Hatcher, J. F.; Bryan, G. T. (1980): Quercetin, a rat intestinal and bladder carcinogen present in bracken fern (Pteridium aquilinum), Cancer Res., 40, 3468-3472.
- Rueff, J.; Laires, A.; Borba, H.; Chaveca, T. and Halpern, M. (1986): Genetic Toxicology of flavonoids: the role of metabolic conditions in the induction of reverse mutation, SOS functions and sisterchromatid exchanges. Mutagenesis, 1, 179-183.
- Rueff, J.; Laires, A.; Gasper, J.; Borba, H. and Rodrigues, A. (1992): Oxygen species and the genotoxicity of quercetin, Mutation Res., 89,69-74.
- Salam A. Z. El-Abidin and Pinsker, W. (1981): Effect of selection for resistance to organophosphorus insecticides on two esterase loci in <u>D. melanogaste</u>r. Genetica, 55: 11-14.
- Salam A. Z. El-Abidin; Hassan, A. H. M.; Nafei, H. A. and Mansour, S. A. M. (1984): Isozyme polymorphism in <u>Drosophilo</u> 5. The effect of two organophosphorus compounds on the gene frequency and the repair system. Proc. 2<sup>nd</sup> Mediterranean Conf. Genet. 11:701-716.
- Salam A. Z. El-Abidin; Ebtissam, H. A. Hussein; Hanaiya, A. El-Itriby; Wagida, A. Anwar and Mansour, S. A. (1993): The mutagenicity of Gramoxone (paraquat) on different eukaryotic systems. Mut. Res., 319: 89-101.
- Salam A. Z. El-Abidin; De-Hondt, H. A.; Fahmy, M. T.; Soussa, S. F.; Elnagar, T. F. K. and El-Din Ahmed, E. S. (1995): The mutagenicity of Nudrin and Meothrin on two different eukaryotic systems Drosophila and yeast. Annals. Agric. Sci., Ain Shams Univ., Cairo. 40 (2): 737-751.
- 23. **Siebert, D. and Elsenbrand, G. (1974):** Induction of mitotic gene conversion in <u>Saccharomyces cereviciae</u> by N-Nitrosated pesticides. Mut. Res., 22: 121-126.
- 24. Villani, F.; Whhite, G. B.; Curtis, C. F. and Miles, S. J. (1983): Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the comples of <u>Culex pipiens</u> L. (Diptera: Culicidae). Bull. Ent. Res., 73: 153-170.
- 25. Zimmermann, F. K.; Kern, R. and Resenberger, H. (1975): A yeast strain for simultaneous detiction of induced mitotic crossing over. Mitotic gene conversion and reverse mutation. Mut. Res. 28: 381-388.

# دراسة مفردة ومشتركة للسمية الوراثية للكلوربرفوس والكيورستين في فطر خميرة الخباز السلالة D7

**ندى حسن على التواتى** قسم علوم الأحياء – جامعة المللك عبدالعزيز

تمت دراسة التأثير السمى الوراثى للكلوربير فوس والكيورستين فى معاملة مفردة ومشتركة لكل منهما لمعرفة مقدرتهما على إحداث كل من الطفرة المرتدة والتحول الجينى والعبور الوراثى الجسمى على سلالة D7 لفطر خميرة الخباز وأوضحت النتائج المتحصل عليها أن كل المعاملات المفردة والمشتركة استحدثت طفرة مرتدة وتحول جينى وعبور وراثى جسمى فى سلالة D7 لفطر خميرة الخباز. المعاملات المشتركة كان لها تأثير أكبر من المعاملات المفردة للكيورستين.

وقد أوضحت النتائج المتحصل عليها أن كلاً من المبيد الحشرى كلوربير فوس وكيورستين (وهو الفلافوتيدات المعروفة) والمستخدمة في مقارنة الحشرات الموجودة على النباتات لهما تأثير طفرى على فطر خميرة الخباز.