# Seasonal and Circadian Fluctuations of Human Intestinal Parasites in El-Dakahlia Governorate, Egypt

Alaa El-Din Sallam<sup>1\*</sup>; Maha Soliman<sup>1</sup>; Khairi Helal<sup>1</sup> and Sabry Ahmad<sup>2</sup>

<sup>1</sup>Zoology Dept., Faculty of Science, Suez Canal University, Ismailia, Egypt

<sup>2</sup>Zoology Dept., Faculty of Science, Zagazig University, Zagazig, Egypt

#### ABSTRACT



The present study aims to monitor the incidence of human intestinal parasites and their seasonal fluctuations in El-Dakahlia governorate. Human fecal specimens from 428 patients visiting Meet-Ghamr general hospital were monthly collected during different sampling circadian time: morning, afternoon and evening, throughout the period from 2007 to 2009. Microscopic examination was performed using both direct smear and formalin-ether sedimentation techniques. Anti-Schistosoma specific antibodies in sera of 279 patients were examined using indirect haemagglutination test. The results demonstrated that the overall prevalence of eight identified intestinal parasites reached, in order, Entamoebahistolytica а descending (52.34%), Schistosomamansoni (37.63%), Ascarislumbricoides (26.86%), Hymenolepis nana (16.35%), Giardia lamblia (5.14%), Enterobiusvermicularis (3.73%), Trichuristrichiura (0.46%), and Trichomonashominis (0.23%). Highest prevalence was recorded for E. histolytica(87.80%) and G. lamblia (14.63%) during summer. whereas for S. mansoni(73.08%) and A. lumbricoides (36.62%) during autumn, and for H.nana (22.07%) during winter. Highest incidence was observed in the morning samples for S.mansoni(38.27%). Meanwhile, evening samples demonstrated highest incidence for E. histolytica (75.41%) and A. lumbricoides(36.07%). A marked sex-related difference regarding the infection prevalence was found. Moreover, most of the parasitic infections were the highest in age <=10 years.In conclusion, sampling at a definite circadian time and in a proper month will precisely indicate the parasite prevalence rate. This will consequently optimize monitoring and controlling of the parasite community.

Key words:Seasonal, circadian, intestinal parasites, prevalence, El-Dakahlia governorate.

factors

#### INTRODUCTION

Parasitic diseases caused by helminths and protozoa are the major causes of human disease and misery in most countries of the tropics and subtropics. They plague billions of people and kill millions annually, and inflict debilitating injuries such as blindness and disfiguration of additional millions (W.H.O., 2012). Parasitic diseases constitute one of the major public health problems for people living in developing countries, especially children who are most severely affected because parasites directly contribute towards malnutrition (Chaudhryet al., 2004). High prevalence of infections with intestinal parasites in developing countries is related to poverty, poor living conditions, poor personal and environmental hygiene, inadequate health services, inadequate sanitation and water supply facilities (Cook, 1996; Montresoret al., 1998 and Chaudhryet al., 2004).

In Egypt, the parasitic diseases are major causes of illness and death in infants, children and adults. For example, the enteric diseases caused by protozoan and helminth parasites rank the second in prevalence to schistosomiasis (EL-Khobyet al., 2000). Unfortunately accurate information about the epidemiological picture of parasitic diseases in Egypt is scarce and contradictory. The aim of this study was a trial to demonstrate that different chronobiological factors must be considered in the evaluation of human parasites' prevalence. These factors are sampling time throughout the seasons as well as the circadian time of the host himself.

#### MATERIALS AND METHODS

#### Study site and sampling strategy:

Human fecal samples (n=428) were monthly obtained in the morning, afternoon and evening from patients visiting urine and stool section in laboratory of Meet-Ghamer general hospital, Dakahlia governorate along the period 2007 to 2009. The specimen bottles collected from the patients were labelled with patient name, occupation, age and sex. Patients were divided into 4 age-categories: 1-10, 10-20, 20-30 and over 30 years, as shown in table (1). Table (1): Sample size according to different considered

|          |      | and the second |       |             |             |             |           |       |
|----------|------|------------------------------------------------------------------------------------------------------------------|-------|-------------|-------------|-------------|-----------|-------|
| Season N | lale | Female                                                                                                           | TOTAL | < -10 years | 10-20 years | 20-30 years | >30 years | TOTAL |
| Winter   | 63   | 82                                                                                                               | 145   | 47          | 19          | 29          | 50        | 145   |
| Spring . | 41   | 89                                                                                                               | 130   | 36          | 31          | 19          | 44        | 130   |
| Summer 2 | 27   | 55                                                                                                               | 82    | 30          | 13          | 12          | 27        | 82    |
| Autumn 🕻 | 38   | 33                                                                                                               | 71    | 19          | 11          | 19          | 22        | 71    |

#### 1. Stool collection and parasitological examination:

Microscopical examination was done by two methods for confirmation of the presence of infection; direct smear and formalin-ether sedimentation according to Soulsby (1982).

\* Corresponding Author: alaadin60@hotmail.com

#### 2. Antibody test for schistosomiasis:

Sera were monthly collected in the morning, afternoon and evening from 279 patients and examined for antibody detection by indirect haemagglutination test following the procedures of the manufacturer.

#### 3. Data analysis:

Epidemiological characteristic represented in the infection prevalence was calculated according to Bush *et al.* (1997) for analyzing the factors considered in this study.

#### RESULTS

Results revealed the presence of eight intestinal parasitic species in the study area. Their prevalence in a descending order were as following: *E. histolytica* (52.34%) and *S. mansoni* (37.63%), *A. lumbricoides* (26.86%), *H. nana* (16.35%), *G. lamblia* (5.14%), *E. vermicularis* (3.73%), *T. trichiura* (0.46%), and *T. hominis* (0.23%), as shown in figure (1).







**Figure (2):** Monthly prevalence of the parasites throughout the year in Meet-Ghamr city, El-Dakahlia governorate. Note: Both *Trichomonashominis* and *Trichuristrichiura* are not included because they were rare in the study area.



**Figure (3):** Seasonal prevalence of the parasites throughout the seasons in Meet-Ghamr city, El-Dakahlia governorate. Note: Both *Trichomonashominis* and *Trichuristrichiura* are not included because they were rare in the study area.

1. **Monthly and seasonal variation of the infection:** As shown in figures (2 and 3), the monthly and seasonal fluctuations illustrated that some parasites recorded its highest prevalence in summer such as *E. histolytica* (87.80%) and *G. lamblia* (14.63%) (Fig. 3a and e), whereas others demonstrated its highest prevalence in winter such as *H. nana* (22.07%)(Fig. 3d). Meanwhile, data elucidated that *S. mansoni* and *A. lumbricoides* have the highest prevalence in autumn (73.08% and 36.62%, respectively) (Fig. 3b and c).

#### 2. Circadian time variation of the infection:

Circadian time of the host appeared to play a role in the infection prevalence of the intestinal parasites under investigation. Evening sampling was characterized by highest prevalence of *E. histolytica* (75.41%) and *A. lumbricoides* (36.07%) (Tables 2a and c). On the other hand, afternoon sampling revealed highest prevalence of *H. nana* (33.33%), *G. lamblia* (22.22%) and *E.*  *vermiculoris*(11.11%), as shown in tables (2 d, e and f). Morning sampling recorded high prevalence of *S. mansoni* (38.27%) (Table 2b).

# 3. Host occupation, age and sex variations of the infection:

Table (3) shows the variation in the prevalence of the parasitic infections according to the host occupation, age category andsex. Results showed that the highest infection prevalence was recorded in males as compared to females, except for *H. nana* where the prevalence was the highest in females. The prevalence of *E. histolytica*, *H. nana*, *G. lamblia* and *E. vermicularis* was the highest among patients  $\leq 10$  years. The infection prevalence of *S. mansoni* and *A. lumbricoides* reached the highest among patients from 20-30 years and 10-20 years, respectively. The highest prevalence was recorded among farmers, except for *G. lamblia* where the infection was only recorded among the student.

**Table (2):** Prevalence of the intestinal parasites versus sampling time. Note: Both *Trichomonashominis*an *Trichuristrichiura*are not included because they were rare in the study area.

# (a) Entamoeba histolytica

#### (b) Schistosoma mansoni

|               |           | 1. Mar. 1 |               |              |               | 2 · · · · · · · · · · · · · · · · · · · | 1.4      |              |            |
|---------------|-----------|-----------|---------------|--------------|---------------|-----------------------------------------|----------|--------------|------------|
| Sampling Time | Examined  | Infecte   | d Non Infecte | d Percentage | Sampling Time | Examined                                | Infected | Non Infected | Percentage |
| Morning       | 349       | 165       | 194           | 47 38%       | Morning       | 243                                     | 93       | 150          | 38.27%     |
| Afternoon     | 18        | 13        |               | 72.23%       | Afternoon     | 6                                       | 2        | 4            | 33.33%     |
| Fuening       | 18        | 15        |               | 72.22%       | Evening       | 30                                      | 10       | 20           | 33.33%     |
| Evening       | 61        | 40        | 15            | 75.41%       |               |                                         |          |              |            |
| Total         | 428       | 224       | 204           | 52.34%       | Total         | 279                                     | 105      | 174          | 37.63%     |
| (c) Ascaris l | umbricoid | des       |               |              | (d) Hymend    | olepis nai                              | na       |              |            |
| Sampling Time | Examined  | Infected  | Non Infected  | Percentage   | Sampling Time | Examined                                | Infected | Non Infected | Percentage |
| Morning       | 349       | 89        | 260           | 25.50%       | Morning       | 349                                     | 53       | 296          | 15.19%     |
| Afternoon     | 18        | 4         | 14            | 22.22%       | Afternoon     | 18                                      | 6        | 12           | 33.33%     |
| Evening       | 61        | 22        | 39            | 36.07%       | Evening       | 61                                      | 11       | 50           | 18.03%     |
| Total         | 428       | 115       | 313           | 26.87%       | Total         | 428                                     | 70       | 358          | 16.36%     |
| (e) Giardia   | a lamblia |           |               |              | (f) Enterob   | ius verm                                | icularis | •            |            |
| Sampling Time | Examined  | Infected  | Non Infected  | Percentage   | Sampling Time | Examined                                | Infected | Ncn Infected | Percentage |
| Morning       | 349       | 15        | 334           | 4.30%        | Morning       | 349                                     | 9        | 340          | 2.58%      |
| Afternoon     | 18        | 4         | 14            | 22.22%       | Afternoon     | 18                                      | 2        | 16           | 11.11%     |
| Evening       | 61        | 3         | 58            | 4.92%        | Evening       | 61                                      | 5        | 56           | 8.20%      |
| Total         | 428       | 22        | 406           | 5.14%        | Total         | 428                                     | 16       | 412          | 3.74%      |

 Table (3): Prevalence of the intestinal parasites versus host occupation, age category and sex.

Note: Both Trichomonas hominisand Trichuristrichiuraare not included because they were rare in the study area.

| (a) | Entamoeba | histo | lytica |
|-----|-----------|-------|--------|
|-----|-----------|-------|--------|

(b) Schistosoma mansoni

| •                            |          |           | -      |         |       |         |         |       |        |       | • •                       |          |           |        |         |       |         |         |      |        |       |
|------------------------------|----------|-----------|--------|---------|-------|---------|---------|-------|--------|-------|---------------------------|----------|-----------|--------|---------|-------|---------|---------|------|--------|-------|
| Ę                            |          | Occupa    | ation  | ,       | Age   | e categ | ory (ye | ars)  | S      | ex    | tor                       |          | Occupa    | ition  | ,       | Age   | e categ | ory (ye | ars) | S      | ex    |
| Fac                          | Employee | Housewife | Farmer | Student | >30   | 20-30   | 10-20   | <=10  | Female | Male  | Fac                       | Employee | Housewife | Farmer | Student | >30   | 20-50   | 10-20   | <=10 | Female | Male  |
| No.<br>Examined              | 64       | 89        | 86     | 187     | 143   | 79      | 74      | 132   | 259    | 169   | No.<br>Examined           | 57       | 85        | 84     | 53      | 135   | 74      | 53      | 17   | 167    | 112   |
| No.<br>infected              | 25       | 40        | 52     | 105     | 71    | 34      | 41      | 78    | 127    | 97    | No.                       | 16       | 25        | 56     | 8       | 54    | 31      | 14      | 0    | 62     | 43    |
| Prevalence of<br>infection % | 39.06    | 44.94     | 60.47  | 56.15   | 49.65 | 43.04   | 55.41   | 59.09 | 49.03  | 57.40 | Prevalence of infection % | 28.07    | 29.41     | 66.67  | 15.09   | 40.00 | 50.00   | 26.42   | 0    | 37.13  | 38.39 |

(c) Ascaris lumbricoides

| tor                       |          | Occupa    | tion   |         | Ag    | e categ | Sex   |       |        |       |
|---------------------------|----------|-----------|--------|---------|-------|---------|-------|-------|--------|-------|
| Fac                       | Employee | Housewife | Farmer | Student | >30   | 20-30   | 10-20 | <=10  | Female | Male  |
| No.<br>Examined           | 64       | 89        | 86     | 187     | 143   | 79      | 74    | 132   | 259    | 169   |
| No.<br>infected           | 9        | 11        | 29     | 66      | 23    | 16      | 33    | 43    | 66     | 49    |
| Prevalence of infection % | 14.06    | 12.36     | 33.72  | 35.29   | 16.08 | 20.25   | 44.59 | 32.58 | 25.48  | 28.99 |

### (d) Hymenolepis nana

| Factor                       |          | Occupa    | tion   |         | Ag   | e categ | Sex   |       |        |       |
|------------------------------|----------|-----------|--------|---------|------|---------|-------|-------|--------|-------|
|                              | Employee | Housewife | Farmer | Student | >30  | 20-30   | 10-20 | <=10  | Female | Male  |
| No.<br>Examined              | 64       | 89        | 86     | 187     | 143  | 79      | 74    | 132   | 259    | 169   |
| No.<br>infected              | 1        | 1         | 4      | 64      | 1    | 4       | 10    | 55    | 47     | 23    |
| Prevalence of<br>infection % | 1.56     | 1.12      | 4.65   | 34.22   | 0.70 | 5.05    | 13.51 | 41.67 | 18.15  | 13.61 |

(e) Giardia lamblia

| tor                       |          | Occupa    | tion   |         | Ag  | e categ | Sex   |       |        |      |
|---------------------------|----------|-----------|--------|---------|-----|---------|-------|-------|--------|------|
| Fac                       | Employee | Housewife | Farmer | Student | >30 | 20-30   | 10-20 | <=10  | Female | Male |
| Na.<br>Examined           | 64       | 89        | 86     | 187     | 143 | 79      | 74    | 132   | 259    | 169  |
| No.<br>Infected           | 0        | 0         | 0      | 22      | 0   | 0       | 1     | 21    | 10     | 12   |
| Prevalence of infection % | 0        | 0         | 0      | 11.76   | 0   | 0       | 1.35  | 15.91 | 3.86   | 7.10 |

#### DISCUSSION

The prevalence rates of the investigated parasites were ranging from high to rare. The most prominent pathogenic parasite was *E. histolytica*(52.34%). Similar high incidence has been reported; it reached in Menufiagovernorate 21.7% (Abd-Alla*et al.*, 2000) and in Gharbia governorate 37.5% (Abo-Al-Azm*et al.*, 1997).

Microscopic stool examination is not an effective method for detection of S. mansoni. Results revealed that the infection was recorded only in one specimenwith prevalence of (0.23%).Contrarily, using antibody detection indicated that its prevalence reached (37.63%). Therefore, the antibody tests for schistosemiasis may be much effective than the classic stool examination. The observed S. mansonihigh incidence was within the previously reached range. El-Khobyet al. (2000) reported that the average prevalence range in 5 governorates in Lower Egypt was (17.5-42%). Diagnosis of schistosomiasis by detection of specific antibodies is likely to be more sensitive than the traditional method of diagnosis by detection of eggs in stool or urine (Hamilton et al., 1998). A possibility of detection of past infection using the immunological technique is taking into consideration.

A. lumbricoideswas recorded in high prevalence rate (26.86%). It reached (27.31%) in Menoufia governorate (Bakret al., 2009) whereas Abo-Al-Azmet al. (1997) recorded 6.2% in Gharbia governorate and El-Shazlyet (2006) recorded only 1.8% in Dakahlia al. governorate.Different prevalence rates for H. nana were previously recorded: (3.9%) in Dakahlia governorate (El-Shazleyet al., 2006), (2.96%) in Menoufeia governorate (Bakret al., 2009) and (6.2%) in Gharbia governorate (Abo-Al-Azmet al., 1997). Meanwhile, the present results revealed a higher rate (16.35%).During the present study, G. lambliawas recorded in low rates (5.14%) compared with that recorded in Gharbia governorate (27.8%) (Abo-Al-Azmet al., 1997), in Dakahlia governorate (19.6%) (El-Shazlyet al., 2006) as well as in Menoufia governorate (10%) (Bakret al., 2009).

The incidence of infection of *E. vermicularis* was (3.73%) in the present work. Nevertheless, this parasite was recorded in higher prevalence in Gharbia governorate (9.6%) (Abo-Al-Azmet al., 1997) and in Dakahlia governorate (4.1%) and (3.9%) (El-Shazlyet al., 2006). Routine stool examination methods, such as formalin-ether concentration showed that only a limited portion of *E. vermicularis* infections can be detected as

(f) Enterobius vermicularis

| tor                       |          | Occupa    | tion   |         | Age  | e catego | Sex   |      |        |      |
|---------------------------|----------|-----------|--------|---------|------|----------|-------|------|--------|------|
| Fac                       | Employee | Housewife | Farmer | Student | >30  | 20-30    | 10-20 | <=10 | Female | Male |
| No.<br>Examined           | 64       | 89        | 86     | 187     | 143  | 79       | 74    | 132  | 259    | 169  |
| No.<br>infected           | 1        | 1         | 3      | 10      | 2    | 2        | 4     | 8    | 9      | 7    |
| Prevalence of infection % | 1.56     | 1.12      | 3.49   | 5.35    | 1.40 | 2.53     | 5.41  | 6.06 | 3.47   | 4.14 |

compared to the anal swab test (Lee *et al.*, 2000). Consequently, the present data may be just an indicator for a higher prevalence of *E. vermicularis* in the study area.

The presence of rare species in the study area, e.g. *T. hominis*(0.23%) and *T. trichiura* (0.46%), was observed in the current work. Meanwhile low incidence rate of *T. hominis* (4.2%) in El-Mansoura was documented by El-Shazly*et al.* (2006). For *T. trichiura*, low rates were also recorded by El-Shazly*et al.* (2006) in Dakahlia governorate (0.7%) and by Abo-Al-Azm*et al.* (1997) in Gharbia governorate (2.4%). This low rate may be due to the improvement of the socio-economic status. Meanwhile applying colonoscopy examination may be helpful for better diagnosis as being applied by Kim *et al.* (2003) and Ok*et al.* (2009).

Generally, depending on the temperature, humidity and various environmental factors, parasite prevalence rate could be influenced. High and low incidence of intestinal parasites in different Egyptian governorates may be due to socio–demographic and environmental conditions, also unsafe water supply and unhygienic personal habits. High incidence may always be attributed to the rural areas since the socio-economic, hygienic conditions and medical services were relatively less in the rural than urban areas (Mohammad *et al.*, 2012).

Omar (2002) and Olusgumet al. (2011) reported that seasonal and environmental parameters may have a role in prevalence of parasites. In addition, Sharif (2002)mentioned that the highest incidence of parasites occurred in summer while, the lowest incidence of parasites evident in winter. He attributed the peak incidence of intestinal parasites in summer to the increase in contamination of drinking and swimming waters and irrigation of vegetable by waste water. In this study, highest prevalence recorded during summer (e.g. E. histolytica and G. lamblia) as well as in winter (e.g. H. nana) indicating that season may have a role to assess the parasite incidence. It is suggested that the adaptive importance of the "gate" mechanism is associated with the concentration of S. mansonicercariain the water at times when the vertebrate is present, optimizing the contact between the parasite and the host (Bogéaet al., 1996).

Circadian time of the host must be considered when applying different diagnostic methods for the detection of parasites in biological samples ranging from traditional to more recent molecular methods. Sampling time must be taken into account (López*et al.*, 2007 and Manguinet al., 2010). Current results confirmed high prevalence of evening sampling (e.g. in *A. lumbricoides*) or afternoon sampling (e.g. in *G. lamblia*), therefore the host circadian time must be considered in diagnosing the parasite incidence.Doehringet al. (1983) confirmeda circadian rhythm of *S. haematobium* egg excretion, with a peak around noon.The cercarial emergence pattern of *S. mansoni* from Oman is circadian, exhibiting either a diurnal or a nocturnal phenotype (Mouahidet al., 2012).

Results showed a marked sex-related difference regarding the infection prevalence with the intestinal parasites, where the males were slightly susceptible to the parasitic infection as compared to the females; exception for H. nana. Al-Naemyet al. (2012) attributed the high prevalence of gastrointestinal parasites in males to their usual behaviour by spending more time outdoors in road and streets playing or even working. In contrast, susceptibility to the parasitic infection in male hosts was attributed to testosterone. Testosterone may increase the movement, display rates and aggression of the host, which can lead to higher exposure to parasites (Klein, 2000). In addition, it may increase susceptibility to infection or infestation by directly lowering the immunocompetence of the individual, via suppression of the immune system (Ulter and Olsson, 2003). Barnard et al. (2002) correlated reduced resistance and thus greater parasite intensities in rodents to the larger adrenal glands, testes and seminal vesicles of the host. In the present study, the prevalence of the intestinal parasites in males was slightly higher than females indicating the possible effects of the usual behaviour of the individual.

Gastrointestinal protozoa and helminths flourish in areas characterized by warm temperatures, humidity, poor sanitation, dirty water, and substandard and crowded housing (Harhay*et al.*, 2010). Unfortunately, this is the case in the study area. Most of the parasitic infections recorded in this study were the highest in age

10 years indicating firstly the poor health education in the surrounding community and secondly the susceptibility of young individuals than older one to the infection. Interestingly, age-related difference was mainly parasitic-species dependent. Rayan*et al.* (2010) found age-related differences in their study about parasitic infestations in school children.

In conclusion, this study is an attempt to focus on the concept of chronobiological approach in sampling periods which may help in evaluating accurate survey of parasite incidence in Egypt. The current preliminary results indicated that investigating the host circadian time and the sampling month may have a crucial role to get proper infection incidence of parasites in Egypt and consequently optimize monitoring and controlling of the parasite community. Therefore, detailed further studies are necessary for analyzing the Egyptian parasitic fauna.

# REFERENCES

- ABD-ALLA, M.D., A.A. WAHIB, AND J.I. RAVDIN. 2000: Comparison of antigen-capture ELISA to stoolculturemethods for the detection of asymptomatic *Entamoeba* species infection in KafrDaoud. Egypt. American Journalof Tropical Medicine and Hygiene**62**(5): 579–582.
- ABO AL-AZM, A., M. EL-SHEIKH, AND A. YASSIN. 1997: Prevalence of *Schistosomamansoni* and intestinal parasites with evaluation of hepatic schistosomiasis in a rural area after governmental efforts (Gharbia Governorate). Egypt public Health Association**72** (5–6): 479 – 494.
- AL-NAEMY, B.S., S. AL-KALAK, AND Z.I.F. RAHEMO. 2010. The intestinal parasites of Bashiqa District, Nineveh Governorate, Iraq. International Journal of Molecular Zoology2(6): doi: 10.5376/ijmz.2012.02.
- BAKR, I.M., N.A. ARAFA, M.A. AHMED, M.H. MOSTAFA, AND M.K. MOHAMED. 2009. Prevalence of intestinal parasitosis in a rural population in Egypt, and its relation to sociodemographic characteristics. Journal of the Egyptian Society of Parasitology**39** (1): 371–381.
- BARNARD, C.J., J.M. BEHNKE, A. BAJER, D. BRAY, T. RACE, K. FRAKE, J. OSMOND, J. DINMORE, AND E. SINSKI. 2002. Local variation in endoparasite intensities of bank voles (*Clethrionomysglareolus*) from ecologically similar sites: morphometric and endocrine correlates. Journal of Helminthology**76**(2): 103-113.
- BOGÉA, T., T.C. FAVRE, L. ROTENBERG, H.S. SILVA, AND O.S. PIERI. 1996. Circadian pattern of cercarial emergence in *Schistosomamansoni* (Platyhelminthes: Digenea) from isolated *Biomphalariaglabrata*. Chronobiol Int.**13**(2): 93-101.
- BUSH, A.O., K.D. LAFFERTY, J.M. LOTZ, AND A.W. SHOSTAK. 1997. Parasitology meets ecology on its own terms: Margolis *et al.*, revisited. Journal of Parasitology**83**: 575-583.
- CHAUDHRY, Z.H., M. AFZAL, AND M.A. MALIK. 2004. Epidemiological factors affecting prevalence of intestinal parasites in children of Muzaffarabad District. Pak. Journal of Zoology **36**(4): 267-271.Cook, G. 1996. Manson's tropical diseases. 20<sup>th</sup> Ed., W.B. Saunders, London.
- DOEHRING, E., H. FELDMEIER, AND A.A. DAFFALLA.1983. Day-to-day variation and circadian rhythm of egg excretion in urinary schistosomiasis in the Sudan. Annals of Tropical Medicine and Parasitology**77**(6): 587-594.
- EL-KHOBY, G.N., A. FENWICK, R. BARAKAT, A. EL-HAWEY, Z. NOOMAN, M. HABIB, F. ABDEL-WAHAB, N. GABR, H. HAMMAM, M. HUSSIEIN, N. MIKHAIL, B. CLINE, AND T. STRICKLAND. 2000. The epidemiology of schistosemiasis in Egypt: Summary findings in nine governorates. Am. Journal of Tropical Medicine and Hygiene., **62**(2): 88-99.
- EL-SHAZLY, A.M., S.E AWAD, D.M. SULTAN, G.S SADEK, H.H KHALIL, AND T.A MORSY. 2006.

- Intestinal parasites in Dakahlia governorate, with different techniques in diagnosing protozoa. J. Egypt. Soc. Parasitol. **36**(3): 1023–1034.
- HAMILTON, J.V., M. KLINKERT, AND M.J. DOENHOFF. 1998. Diagnosis of schistosomiasis: antibody detection, with notes on parasitological and antigen detection methods. Parasitol., **117**: 41-57.
- KIM, J.S., J.S. PARK, Y.W. KIM, J.H. SUK, J. CHOI, C.H. KWAK, S.K. PARK, H.U. PARK, AND H.S. KIM. 2003. Four cases of *Trichuristrichiura* in the colon. Kor. J. Gastroint. Endosc., **27**: 158–161.
- KLEIN, S.L. 2000. The effects of hormones on sex differences in infection: from genes to behavior. Neurosc. Biobehav. Rev., **24**: 627-638.
- LEE, K., I. LEE, AND K. IM. 2000.*Enterobiusvermicularis* egg positive rate in a primary school in Chungchongnam-do (Province) in Korea. Kor. J. Parasitol., **38**: 177-178.
- LÓPEZ, G., J. FIGUROLA, AND R. SORIGUER. 2007. Time of day, age and feeding habits influence coccidian oocyst shedding in wild passerines. Int. J. Parasitol. 5: 559–564.
- MANGUIN, S., M.J. BANGS, J. POTHIKASIKORN, AND CHAREONVIRIYAPHAP. 2010. Review on global cotransmission of human *Plasmodium* species and *Wuchereriabancrofti* by *Anopheles mosquitoes*. Infection, Genetics and Evolution **10**: 159–177.
- MICHAEL, O.H., J. HORTON, AND P.L. OLLIARO.2010. Epidemiology and control of human gastrointestinal parasites in children. Exp. Rev. Anti. Infect. Ther., 8(2): 219–234.
- MOHAMMAD, K.A., A.A. MOHAMMAD, M.F. ABU EL-NOUR, M.Y. SAAD, AND A.G. TIMSAH. 2012. The prevalence and associated risk factors of intestinal parasitic infections among school children living in rural and urban communities in Damietta Governorate, Egypt. Academia Arena, **4**(5): 90-97.
- MONTRESOR, A., D.W.T. CROMPTON, A. HALL, D.A.P. BUNDY, AND L. SAVIOLI. 1998. Guidelines for the evaluation of soil-transmitted helminths and

schistosomiasis at community level. A Guide for Managers of Control Programmes, World Health Organization, Geneva, p 1-45.

- MOUAHID, G., M.A. IDRIS, O. VERNEAU, A.THÉRON, M.M.SHABAN, AND H. MONÉ. 2012.A new chronotype of *Schistosomamansoni*: adaptive significance. Trop. Med. Int. Health.**17**(6):727-732.doi:10.1111/j.1365-3156.2012.02988.x.
- OK, K.S., Y.S. KIM, J.H. SONG, J.H. LEE, S.H. RYU, J.H. LEE, J.S. MOON, D.H. WHANG, AND H.K. LEE. 2009.*Trichuristrichiura* infection diagnosed by colonoscopy: Case reports and review of literature. Korean J. Parasitol. **47**(3): 275–280
- OLUSGUM, A., O. EHIS, AND R. OMOREGIE. 2011. Seasonal variation of Intestinal parasitic infections among HIV–Positive patients in Benin City, Nigeria. Ethiop. J. Health Sci., **21**(3): 191-194.
- OMAR, M.A. 2002. Seasonal prevalence of Intestinal parasites in the United states during 2000. Am. J. Trop. Med. Hyg., **66**(6): 799–803.
- RAYAN, P., S. VERGHESE, AND P.A. MCDONNELL. 2010. Geographical location and age affects the incidence of parasitic infestations in school children. Ind. J. Pathol. Microbiol., **53**:498-502.
- SHARIF, A. 2002. Prevalence and seasonal fluctuations of common intestinal parasites in Khan Younes. 1996–2000. J. Islam. Univ. G. V. **10**(2): 57-68.
- SOULSBY, E.J.L. 1982.Helminths, arthropods and protozoa of domesticated animals. 7<sup>th</sup> Ed., BailliereTindall, London, UK.
- ULTER, T., AND M. OLSSON. 2003. Parental exposure to testosterone increases ectoparasitensusceptibility in the common lizard (*Lacerta vivipara*). Proc. Roy. Soc. Lond., **270**: 1867-1870.
- W.H.O. 2012. Parasitic Diseases. Web. June 2012. http://www.who.int/topics/epidemiology/en/

Received July 1, 2012 Accepted October 10, 2012 التغيرات الموسمية واليومية للطفيليات المعوية في الانسان في محافظة الدقهلية – مصر

علاء الدين سلام' ، مها سليمان'، خيري هلال' ، صبري أحمد' قسم علم الحيوان - كلية العلوم - جامعة قناة السويس - جمهورية مصر العربية قسم علم الحيوان - كلية العلوم - جامعة الزقازيق - جمهورية مصر العربية

الملخص العربسي

تهدف هذه الدراسة الى رصد معدلات تواجد الطفيليات المعوية وتغيراتها الموسمية فى محافظة الدقهلية. ولقد تم تجميع عينات مريض خلال زيارتهم لمستشفى ميت غمر العامة، وذلك فى أوقات مختلفة خلال اليوم : فى الصباح، والظهيرة - يولقد تم إجراء الفحص الميكروسكوبى للطفيليات باستخدام تقنية المسحة المباشرة وتقنية الترسيب باستخدام الفورمالين والايثر وكذلك تم تشخيص الأجسام المضادة فى عينات المصل فى

وتقدية الترسيب باستخدام القور مالين والايتر وكذلك تم تسخيص الاجسام المضادة في عينات المصل في باستخدام تقنية " ". ".

أظهرت النتائج وجود ثمانية أنواع من الطفيليات في منطقة الدراسة حيث بلغ معدلات انتشارها كالتالى: انتاميبا هستوليتكا (%52.34) ، البلهارسيا المعوية (%37.63) (%26.66) ، هيمينوليبس نانا (%16.35) ، جيارديا لامبليا ( . %) ، الانتروبيس فرميكيولاريس (%37.6) ، تراكيورس تراكيورا (%0.46) ، وتريكوموناس هومينيس (%2.0). وأوضحت النتائج أن أعلي معدلات إصابة تم تسجيلها خلال موسم الصيف لطفيل الانتاميبا هستوليتكا ( . %) وطفيل الجيارديا لامبليا ( . %) بينما بلغت أعلى معدلات الإصابة بالبلهارسيا ( . %) ( . %) خلال موسم الخريف ولطفيل هيمينوليبس نانا ( . %) خلال موسم الصيف الطفيل الانتاميبا هستوليتكا ( . %) خلال موسم الخريف ولطفيل هيمينوليبس نانا ( . %) بينما بلغت أعلى معدلات الإصابة بالبلهارسيا ( . %) ولطفيل هيمينوليبس نانا ( . %) وفي فترة الظهيرة كانت لطفيل الجيارديا لامبليا ( . %) و هيمينوليبس نانا ( . %) والانتروبيس فرميكيولاريس ( . %)، بينما بلغ أعلي معدل إصابة في عينات المساء لطفيل الانتاميبا هستوليتكا ( . %)

أعلي الاصابات قد انحصرت في الشريحة العمرية (<= ).

خلصت النتائج من الدراسة الحالية الى أن تجميع وتشخيص العينات في وقت محدد خلال اليوم والشهر سيعطى دلالة أكثر دقة على معدلات انتشار الطفيليات. و هذا بالتالى برتقى بمستوى دراسات الرصد ومكافحة انتشار مجتمعات الطفيليات. وبناءأ عليه فمن الضروري إجراء مزيد من الدراسات التفصيلية لتحليل بيئة الطفيليات المصرية.