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ABSTRACT 
Water relations parameters, proline content as well as leaf anatomical characteristics were studied in 
olive cultivar (Olea europea (L.) cv. picual) grown under different levels of available water. The 
results clearly show that total osmotic adjustment increased and the relative water content decreased 
with increasing severity of drought. Drought stress resulted in an increase of the upper and lower 
epidermis and significantly decreased the palisade parenchyma, spongy parenchyma and the total leaf 
thickness with a parallel increase of the free proline content. 
Key words: Olea europea, water relations, praline, leaf anatomy. 

 
INTRODUCTION 

In arid and semi-arid regions, like Egypt, water stress 
is often the most limiting factor for agricultural 
production. Plants grown in such conditions have 
evolved a series of adaptations, which confer tolerance 
to water stress. Lowering of osmotic potential in 
response to water stress is a well established mechanism 
where by many plants adjust to low soil water 
availability (Morgan, 1984, Nabli and Coudret, 1995; 
Dichio et al., 2003). One of the most common stress 
responses for osmotic adjustment is overproduction of 
different types of compatible organic solutes (Serraj and 
Sinclair, 2002; S?nchez-Blanco et al., 2004). Proline 
appears to be the most widely distributed metabolite 
accumulated under stress conditions (Bellinger et al. 
1991; Delauney and Verma, 1993). Changes in leaf 
anatomical characteristics are known to alter the CO2 
conductance diffusion components from the substomatal 
cavities to sites of carboxylation and thus contribute to 
maintenance of photosynthetic rates despite the low 
stomatal conductance (Evans et al., 1994). The olive 
tree (Olea europea L.) is well known for its resistance 
to severe and prolonged drought and is traditionally 
grown under drought conditions (Logullo and Salleo, 
1988; Larsen et al., 1989; Gimenez et al., 1997; Giorio 
et al., 1999; Sofo et al., 2004,). It possesses adaptive 
mechanisms to allow it to tolerate quite severe drought 
(Larcher et al., 1981). Its leaves show several 
sclerophyllous characteristics such as small size and 
thick cuticle and trichome layers (Bacelar et al., 2004). 
However, Moriana and Orgaz (2003) recorded that the 
yields of mature olive orchards are often affected by 
water deficit. Some differences among olive cultivars 
have been observed concerning their ability for 
adaptation and production under drought conditions. 

To select drought-resistant cultivars, breeders 
commonly evaluate several traits. High water-use 
efficiency and net photosynthesis rates under drought 
conditions are often sought (Moriana et al., 2002). 
Although several active olive breeding programmers 
exist in many countries, old cultivars still dominate 
olive orchards worldwide. Part of the reason could be 

the slow-growing nature of olive, and the length of its 
juvenile phase, which make field trials time-consuming 
and costing (Bongi and Palliotti, 1994). It is, therefore, 
useful to take advantage of anatomical and 
physiological traits relevant to drought tolerance to 
facilitate the selection process. 

The main purposes of this work are (1) to investigate 
the effects of available water on the Picual olive cultivar 
(Olea europaea L.) in arid region in Egypt and (2) to 
improve the knowledge about its adaptative strategies at 
low water availability. 

 
MATERIALS AND METHODS 

Plant material and growth conditions 
The experiment was conducted at the Horticulture 

Research Station at Seds, Beni Suef, Egypt. One year-
old olive Transplants, (Olea europea L., cv ‘Picual’) 
were used. The plants were grown outdoors in pots 
(25cm diameter and 30cm depth) with three holes in the 
bottom to regulate drainage. Each pot filled with 6Kg of 
loamy sand soil taken from a farm located at south west 
Beni Suef Governorate. Table (1) showing the chemical 
and physical properties of the soil used. with EC (1:1) 
of 1.48dS m-1, pH 7.5, field capacity 13% and 
permanent wilting point 4.5%. Different soil water 
regimes were imposed to olive plants during the dry 
season (from May to October) of the years 2005 and 
2006. 

Olive plants were divided into four groups 
(treatments). Each of three replicates of five plants. The 
four irrigations levels were: (1) Irrigation after 20% 
depletion of the available soil water, (2) Irrigation after 
40% depletion of the available soil water, (3) Irrigation 
after 60% depletion of the available soil water, and (4) 
Irrigation after 80% depletion of the available soil 
water. 
 
Measurement of leaf growth 

For leaf growth determination, leaves of three plants 
per treatment were collected and the dry weight per 
each was measured at the end of each season. 
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Table (1): Some chemical and physical properties 
of the soil used in the experiment. 

Parameter Measure 
Na (meq/L) 48.0 
Ca (meq/L) 27.4 
Mg (meq/L) 8.8 
K (meq/L) 3.0 
CO3 (meq/L) 0 
HCO3 (meq/L) 3.71 
Cl (meq/L) 40.74 
SO4 (meq/L) 42.75 
CaCO3 (%) 9.66 
Ec (dSm-1) 1.5 
pH  7.5 
Total Sand (%) 72.84 
Silt  (%) 9.04 
Clay (%) 18.12 
Soil Texture  Loamy sand 

 
Water relations measurements 

Several indices of leaf water status were calculated in 
the same leaves: relative water content (RWC), 
calculated as RWC = (FM - DM)/ (TM - DM) X 100, 
water content at saturation (WCS = (TM - FM)/DM and 
leaf tissue density (D), calculated as D = (DM/FM) X 
1000 (Dijkstra, 1989). Where FM is leaf fresh mass, TM 
is the fresh mass at full turgor and DM is leaf dry mass. 
Dry mass was determined after drying the leaf samples 
at 80°C for 24h. For TM determination, leaves were 
rehydrated by immersing the petiole in distilled water in 
a beaker sealed with parafilm. Full rehydration was 
achieved in 24–48h in complete darkness at 2–4°C. 
 
Proline content and Osmotic potential measurements 

Proline was quantified by the acid-ninhydrin 
procedure of Bates et al. (1973). Leaf samples (0.5g) 
were ground with 3% sulphosalicylic acid (10 ml) and 
clarified by centrifugation. Supernatant (2ml) was 
mixed with the same volume of acid ninhydrin and 
acetic acid, the mixture was oven incubated at 1000C for 
1h, and the reaction was finished in an ice bath. The 
reaction mixture was extracted with toluene (4ml) and 
absorbance was read at 517nm, using toluene as a blank. 
The proline concentration was determined from a 
standard curve and calculated on a fresh weight basis. 
Three replicates were measured for each sample, and 
mean values are displayed. 

For osmotic potential measurements, 4–5 leaf-
samples per treatment were collected predawn at 05.00 
clock, wrapped in damp paper and enclosed in a plastic

bag and stored at −800C. Before analysis these samples 
were equilibrated at room temperature for about 15 min. 
Cell contents were extracted using plastic syringes, to 
squeeze homogeneously the tissue and to extrude 100?L 
cell-content samples. Each sample was analyzed by 
osmometer (Wescor model, 2000). 
 
Leaf anatomy 

Leaf anatomical measurements were obtained at the 
end of the experiment (October 2006). Thus, they refer 
to the long-term effects caused by the repeated cycles of 
stress during the dry season of both years. Leaf pieces 
take at the end of the experiment (October, 2006) were 
fixed for 3h in 5% glutaraldehyde buffered with 0.025M 
sodium phosphate to pH 7.2. Samples were then washed 
in the respective buffer and postfixed for 5 h in 1% 
osmium tetroxide similarly buffered. Tissue dehydration 
was carried out in an alcohol series followed by 
infiltration and final embeddent in Spur’s resin. Sections 
for light microscopy (1?m thick) were obtained in a 
Reichert Om U2 ultramicrotome, stained with 1% 
toluidine blue O in borax, and examined with a Zeiss III 
photomicroscope. Total leaf thicknes, upper and lower 
epidermis, palisade parenchyma and spongy 
parenchyma were measured. 
 
Statistical analysis 

All measurements were expressed as means of three 
measurements (± SE) from four plants per treatment. 
Significant differences were detected at P = 0.05, 
according to Snedecor and Cochran (1980). 

 
RESULTS 

Effect of available water on leaf growth 
Leaf dry weight per plant decreased by increasing 

water deficiency (Fig. 1a), recording 45% and 40% 
reduction at high stress (80 % available water depletion) 
plants at the first and the second season, respectively. 
 
Effect of available water on water relations 

Relative water content (RWC) decreased by about 
9% and 20% at 40% depletion of the available soil 
water in the 1st and 2nd season respectively and still 
nearly constant at the other two higher levels of water 
stress around 44% (Table 2). WCS increased with

 

Table (2): Density of the leaf tissue (D), relative water content (RWC) and water content at 
saturation (WCS) of O. europea L. cv. picual cultivar under contrasting water availability 
regimes (n = 4). 

 RWC %  D (gKg-1)  WCS (g H2O g-1DM) 
 (1st season) (2nd  

season) 
 (1st season) (2nd  season)  (1st season) (2nd  season) 

T1 49.03±2.81 74±17.6  543.1± 6.1 512.2±9.85  0.87±0.07 0.83±0.2 
T2 44.7±2.62 59±2.57  550.7±22.1 520.5±13.65  1.00±0.02 0.96±0.02 
T3 44.03±3.28 54.9±5.4  556.1± 6.98 535.6±52.25  1.09±0.12 1.02±0.01 
T4 44.53±9.94 52.7±5.19  563.7± 60.7 567.7±19.90  1.08±0.16 1.00±0.06 
LSD At 5% 4.53 16.30  14.53 16.00  0.04 0.05 
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decreasing available water content recording 24% and 
20% increasing in the highest stress plants in the first 
and second seasons respectively. Leaf density showed 
slightly increasing with increasing water stress (Table 
2). 
 
Effect of available water on osmotic potential and 
proline content 

Measurements using the osmometer method showed 
that osmotic potential decreased by increasing water 
shortage recording 69% and 50% reduction in the 
highest stress plants at the first and second season 
respectively (Fig. 1b). In contrast proline content 
increased by decreasing water availability. High water 
stress (80% depletion of the available soil water) 
increased proline content by more two folds than those 
at 20% depletion of the available soil water in the two 
seasons (Fig. 1c). 

 
Effect of available water on leaf anatomical 
characters 

Anatomical characteristics of leaves showed palisade 
parenchyma in both leaf sides, which considered as an 
indicator for xeromorphy. There were changes in leaf 
anatomical characteristics induced by water stress. The 
obtained results (Table 3) showed that water stress 
slightly increased the thickness of the upper and lower 
epidermis by about 5.5% and 6% respectively and 
significantly (P = 5%) decreased the palisade 
parenchyma, spongy parenchyma and the total leaf 
thickness by about 7.8%, 9% and 7.5% respectively. 

 
DISCUSSION 

The plants which grow under water deficit have 
developed strategies allowing photosynthesis to 
proceed. Water stress affect leaf growth of the studied 
cultivar, as it has been observed in other plant species 
(Pita and Pardos, 2001; S´anchez-Blanco et al., 2002; 
Anyia and Herzog, 2004). (Maroco et al. (2000) stated 
that under water stress a different strategy imposes a 
different pattern of allocation of assimilates, resulting in 
the decrease of investment in leaves relative to other 
organs, or the alteration of the relative amounts of 
photosynthetic and non-photosynthetic tissues. 

Water stress can increase leaf density since 
reductions in turgor pressure and cell expansion result in 
the same dry mass within a smaller leaf area (Pena-
Rojas et al., 2005). According to Witkowski and 
Lamont (1991), variations in leaf density, manifested as 
variations in the dry mass to fresh mass ratio, may be 
the result of differences in thickness and density of the 
cuticle and cell walls, inclusions in the cells (starch 
grains and crystals) and abundance of air spaces, 
sclereids, fibre groups and vascular bundles. Mediavilla 
et al (2001) stated that leaves with high density (D) are 
better able to survive a severe drought because of a 
higher resistance to physical damage by desiccation. 
The leaves with high D are also mechanically more
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Figure (1): (a) Effect of water availability on leaf dry 

weight/plant, (b) leaf osmotic pressure, and (c) proline 
content in leaves. 

 
stable than leaves with low D, and this may be the 
fundamental cause for their longer life-span (Niinemets, 
2001). RWC measurement describe the internal water 
status of plant tissues and is also a convenient parameter 
for following changes in tissue water content without 
errors caused by continually changing tissue dry weight 
(Erickson et al., 1991). The stability of high RWC in the 
studied cultivar at high water shortage (T3 and T4) can 
be considered drought resistance rather than drought
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Table (3): Effect of water stress on leaf thickness and thickness of leaf anatomical component of O. europea L., cv. 
Picual. 

 Upper epidermis Palisade parenchyma Spongy parenchyma 
(with lower palisade) Lower epidermis Total leaf thickness 

T1 16.3±0.91 130.3 ±2.4 210.2±5.3 16.1 ±0.87 372.9±5.4 
T2 16.5±1.12 125.2 ±2.5 201.3±3.4 16.3±1.03 359.3±7.3 
T3 17.1±1.02 120.3±3.1 195.5 ±4.6 16.9±1.05 349.8±5.9 
T4 17.2±1.01 120.1±2.1 190.3 ±2.3 17.1±1.21 344.7±3.6 
LSD at 5% 1.85 12.10 8.75 1.90 11.42 

 
escape mechanism. It is consequence of adaptive 
characteristics such as osmotic adjustment and/or bulk 
modulus of elasticity (Grashoff and Ververke, 1991). 
The increase by about 20% only of WCS in the high 
stress plants means that this cultivar has a greater 
capacity to withstand arid environments (Abd-El-
Rahman et al., 1966; Bacelar et al., 2004). 

The increase of proline content in leaves under 
drought stress associated with lowering cell osmotic 
potential, can be consider a drought tolernat strategy of 
the studued cultivar (Boggess et al., 1976; Morgan, 
1984; Wright et al., 1997). In recent study Rejskova et 
al. (2007) observed an increase in the amount of proline 
in salt stressed plants; however, the increase was not 
greater than two-fold. The increase of proline 
concentration in response to water deficit is a well-
documented fact (Hanson et al., 1977; Ferreira et al., 
1979; Hasegawa et al., 1994), and a large body of data 
indicates a positive correlation between proline 
accumulation and enhanced tolerance to drought and 
salt stress (Van Rensburg and Krüger, 1994; Kishor et 
al., 1995). Proline has been suggested to play multiple 
roles in plant stress tolerance. It acts as a mediator of 
osmotic adjustment (LeRudulier et al., 1984; Hu et al., 
1992; Delauney and Verma, 1993; Kishor et al., 1995; 
Yoshiba et al., 1997), protects macromolecules during 
dehydration (Yancey et al., 1982), and serves as a 
hydroxyl radical scavenger (Smirnoff and Cumbes, 
1989; Alia et al., 1995). Sofo et al. (2004) reported that 
olive trees under drought-stress conditions activate 
osmotic adjustment mechanisms not only in leaves, but 
also in roots, in such a way increasing their capacity to 
extract water from dry soil. 

Leaf anatomy was reported to be modified 
significantly with drought, which showed a significance 
increase in epidermal cells thickness, while the total 
thickness and palisade tissues was found to decrease as 
water available decreased. The increase in upper and 
lower epidermis (including upper cuticle) under water 
deficiency in this cultivar may enhance survival and 
growth under low available water conditions by 
improving water relations and providing higher 
protection for the inner tissues (Bacelar et al., 2004). 
The reduction in cell size under water stress conditions 
may be considered as drought adaptation mechanism 
(Cutler et al., 1977; Steudle et al., 1977). 
The above anatomical characteristics are in accordance 
with relevant physiological observations and contribute 
to the interpretation as to how olive cv. Picual is 
drought-tolerant. 
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  الجفافالناتج عن تغیرات فى العلاقات المائیة ومحتوى البرولین وتشریح الورقة 
  نبات الزیتون صنف بكوالفى  

 
   2 و عادل جوده1على الشریفعماد 

  قسم النبات، كلیة العلوم، جامعة بنى سویف، بنى سویف، مصر 1
  محطھ البحوث الزراعیة، سدس، بنى سویف، مصر2

 
 

 الملخص العربـــى
 

تم دراسھ معاییر العلاقات المائیھ ومحتوى البرولین وتشریح الورقھ لنبات الزیتѧون صѧنف بكѧوال النѧامى تحѧت مѧستویات            
ن الجھѧد  أو. سѧموزى والمحتѧوى المѧائى النѧسبى قلѧت بزیѧادة شѧدة الجفѧاف        أن الѧضغط الأ وأظھرت النتѧائج  . ة من الماء المتاح   مختلف

مك سѧفنجیھ والѧسُ   والبارانѧشیما الإ عامیѧھ خلایا البѧشرة العلویѧھ والبѧشرة الѧسفلیھ ونقѧص البارنѧشیما الدُ      سُمك الجفافى تسبب فى زیادة   
  . الكلى للورقھ مع زیاده فى محتوى البرولین

 
 

 
 


