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Abstract 

Graphene is a crystalline form of carbon that is regarded as a novel and innovative product. carboxylated 

nanographene oxide sheets (NGO-COOH) was synthesized using a modified Hummer's method and assess their medical 

significance. NGO-COOH were successfully synthesized with an average size of 40 nm. FT-IR, UV–Vis, XPS 

spectrophotometry, and TEM were used to thoroughly describe them. The cytotoxicity function of NGO-COOH nanosheets 

were tested against cell line. The radiosynthesized [99mTc]Tc-NGO-COOH had a high radiolabeling yield (97.3±0.45 %). The 

tumor uptake of [99mTc]Tc-NGO-COOH nanosheets in an in vivo biodistribution model in tumor-bearing mice was high. 

NGO-COOH nanosheets may be a promising imaging agent, based on these findings. 

key words: Nanographene sheets, Technetium-99m, Nanosynthesis, Tumor imaging, Radiolabeling 
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1. Introduction 

Cancer is one of the major deaths in the 

globe. Chemotherapy and radiotherapy are two 

traditional anticancer treatments that are frequently 

hindered by toxicity and a lack of specificity[1]. 

Some anticancer drugs bioavailability and 

effectiveness are impaired by their low water 

solubility, limited blood half-life, small therapeutic 

indexes, and high systemic toxicity [1-3]. 

Nanotechnology advancements have sparked new 

uses in cancer therapy and diagnosis [4]. 

Nanoparticles (NPs) are particles with a 

diameter of 100 nm or less that can readily pass-

through cell membranes since their size is tiny. In 

terms of size and form, They can be prepared as 

stable, uniform and clearly defined characterized 

structures. For diagnosis or treatment, In highly 

selective biological mediums, NPs must be safe and 

biocompatible [4, 5]. The accumulation of NPs in the 

intended site is decreased because NPs are taken up 

by the reticuloendothelial system (RES). Many 

studies have been conducted with the aim of lowering 

RES uptake and rising particulate carrier 

concentrations at the target sites in the body[5]. 

Recent research has shown, nanoparticle size is 

critical factors in preventing RES uptake and 

achieving higher concentrations in the targeted site 

can be applied to study cell binding in both normal 

and cancer cells, as well as their tissue-targeting 

potential. Because of their small size, nanoparticles to 

easily permeate cell membrane through active and 

passive mechanisms, enabling them to serve as drug 

and contrast agent carriers [6, 7]. Tumor tissues have 

an entirely distinct vasculature system than normal 

tissue blood vessels. [8]. The vascular system that 

develops in tumour tissue has abnormal dynamics, 

with features such as, the lack of a basement 

membrane and hyperpermeability. [9]. Blood vessels 

have irregular diameters, irregular shape and blind 

ends. When tumour tissues' diffusion is restricted, 

they develop new blood vessels for waste 

elimination, and oxygen supply. Angiogenesis is the 

term for the process of neovascularization (the 

formation of new blood vessels) [10]. Enhanced 

permeability and retention (EPR) effect describes this 

type of cancer tissue phenomena. [8, 11-14].  

Nanoparticles should ideally remain in the 

blood, spread in the body for a reasonable amount of 

time, and target the same studied (cancer) cells in 

order to achieve high relative activity rate and allow 

for long-term treatment. It should be degraded and 

excreted after the imaging process is completed [3, 

15, 16]. 
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Graphene has recently been investigated for 

biomedical applications by a few research groups. It 

has been investigated for biological imaging due to 

its good biocompatibility, rapid cellular uptake, 

versatile chemical changes, and unique optical 

characteristics.[17]. All these previous characteristics 

are unique characteristics for graphene nanosheets 

against any other nanoparticles [18-20]. There are 

many nanoparticles are used in radiomedicine as 

radiocarrier for the radiosotopes used in medicine. 

Radiolabeled nanoparticles are used for diagnosis or 

therapy such as 99mTc-chitosan nanoparticles, 99mTc-

bovine serum albumin nanoparticles, [99mTc]Tc-

Aspergillus flavus synthesized copper oxide, all these 

nanoparticles are for diagnosis while Indium-111 

labeled multifunctional superparamagnetic iron oxide 

nanoparticles is an example of radiolabeled 

nanoparticles for therapeutic action[21-26] 

 Due to its ideal half-life of around 6 hours, 
99mTc is a radionuclide frequently utilized in 

radioactive tracers investigations as a single-photon 

emission computed tomography (SPECT) imaging 

agent[27], ensuring that the patient is not subjected to 

harmful radiation. [28-30]. 99mTc also is of favorable 

energy (140 KeV) of γ -ray yielding a high counting 

efficacy [31-33]. 

In this context, we're looking at using 

carboxylated nanographene sheets to carry [99mTc]Tc 

for imaging (e.g. for image-guided drug delivery). 

We introduce the preparation and characterization of 

carboxylated nanographene sheets made from a 

biocompatible and biodegradable graphene and 

labeling of these carboxylated nanographene oxide 

sheets with 99mTc. The cellular absorption and a 

preliminary in vivo evaluation of [99mTc]Tc-

carboxylated nanogaraphene oxide sheets in a tumor 

bearing mice are also presented and discussed. 

 

1. Experimental: 

1.1. Materials  

1.1.1. Chemicals  

Graphite, NaNO3, H2SO4, KMnO4, H2O2 and NaOH 

were bought from Sigma (St. Louis, Mo., USA). 

Fetal Bovine serum, DMEM, RPMI-1640, 

HEPES buffer solution, L-glutamine and 

gentamycin were purchased from Lonza 

(Belgium). 

1.1.2. Radioactive material 

Technetium-99m was eluted as pertechnetate from 
99Mo/99mTc generator that was received as a gift 

from Radio-isotopes Production Facility (RPF), 

Egyptian Atomic Energy Authority (EAEA), 

Cairo, Egypt. 

1.1.3. Mammalian cell lines:  

Normal human lung fibroblast cells (MRC-5) were 

collected from the American Type Culture 

Collection (ATCC, Rockville, MD). 

1.2. Synthesis of carboxylated nanographene 

oxide sheets (NGO-COOH) 

The sheets of carboxylated nanographene 

oxide were synthesized. To form graphite oxide 

suspension from natural graphite powder, researchers 

used a modified Hummers' process1.0 g graphite and 

1.0 g NaNO3 were first added to 50 mL H2SO4. After 

that, for 10 minutes, the mix was stirred in an ice 

bath, 6 g KMnO4 was added gradually as it warmed 

to room temperature. For 2 hours, in a water bath at 

35 °C, the suspension was regularly stirred. The 

suspension that has been prepared was then mixed 

with 100 mL deionized (DI) water. During the 

diluting step, the temperature of the suspension was 

kept below 60 °C. Finally, 6 mL H2O2 (30%) diluted 

in 200 mL DI water was added to the suspension to 

soluble manganese ions to prevent the suspension 

from forming residual permanganate at 6000 rpm for 

10 minutes. The acids and salts that remained were 

extracted. The supernatant solution was centrifuged 

several times to remove all of the acids and salts. 

After ultrasonicating the obtained nanographene 

oxide suspension for 30 minutes, a yellow-brownish 

graphene oxide suspension was obtained. Any 

remaining unexfoliated graphitic platelets were 

dissolved by centrifugation at 2000 rpm for 15 

minutes, and the precipitates had been eliminated. 

For carboxylation of nanographene oxide 10 ml 

NaOH (12mg/ml) was added followed by sonication 

for 2 hours at 800 W to convert OH groups to COOH  

[34-39]. 

1.3. Characterization of NGO-COOH nanosheets 

Various techniques were used to 

characterize them to ascertain their form, size, 

surface area, chemical composition, and dispersion. 

Transmission electron microscopy (TEM) with an 

acceleration voltage of 200 kV (Ted Pella, Redding, 

CA, USA), and dynamic light scattering (DLS) at an 

acceleration voltage of 200 kV (Ted Pella, Redding, 

CA, USA) are two approaches for characterization 

(DLS), The XPS peak was deconvoluted by using 

Gaussian components after a Shirley background 

subtraction. The O/C atomic ratio of the GO sheets 

was evaluated using peak area ratio of the XPS core 

levels and the sensitivity factor of each element in 

XPS. Raman spectroscopy was carried out at room 

temperature using a HR-800 Jobin-Yvon equipped 

with a 532 nm Nd-YAG excitation source. UV–

Visible spectrophotometry using Visible recording 

spectrophotometer UV-160A, Shimadzu, Japan and 

Fourier transforms infrared spectroscopy (FT-IR), 

(Mattson Instruments, Inc., New Mexico, USA was 

used for (FT-IR) Fourier transforms infrared 

spectroscopy. Samples were prepared for TEM 

measurements by putting 5–20 µL of NGO-COOH 

dispersed solution on a Cu grid and then dried under 

an IR lamp while the sample had been diluted by 
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utilizing the same sample quantity of bidistilled water 

for DLS measurements. 

1.4. Radiolabeling of NGO-COOH nanosheets 

[99mTc]TcO4
− was eluted from 99Mo/99mTc 

generator in hepta-oxidation state since this form is 

not able to label any compound on direct addition, it 

was eluted. So just before labeling procedure, 

reduction of 99mTc is required for converting 99mTc+7 

from the hepta state to a favourable lower oxidation 

state, that can complexes with the ligand to form the 

radiopharmaceuticals[40]. 

1.5. Evaluation of Cytotoxic Effects of NGO-

COOH nanosheets 

1.5.1. Cell line Propagation: 
The cells were grown on RPMI-1640 

medium supplemented with 10% inactivated fetal calf 

serum and 50µg/mL gentamycin. The cells were 

maintained at 37ºC in a humidified atmosphere with 

5% CO2 and were subcultured 2-3 times per week.  

1.5.2. Cytotoxicity evaluation using viability 

assay 

 For cytotoxicity assay, the cell lines were 

suspended in medium at concentration 5x104 cell/well 

in Corning® 96-well tissue culture plates, then 

incubated for 24 hr.  nanographene oxide was then 

added into 96-well plates (three replicates) to achieve 

twelve concentrations for it. Six vehicle controls with 

media were run for each 96 well plate as a control. 

After incubating for 24 h, the numbers of viable cells 

were determined by the MTT test. the concentration 

required to cause toxic effects in 50% of intact cells 

is called 50% inhibitory concentration (IC50) and was 

estimated using Graphpad Prism software (San 

Diego, CA. USA) from graphic plots of the dose 

response curve for each conc. [41, 42]. 

1.6. Biodistribution study of [99mTc]Tc-NGO-

COOH nanosheets 

The animal study was conducted in accordance 

with the EAEA Committee on Animal Ethics 

(EAEA/2020/193) which follows the criteria set upon 

by the European Community for the use of animals as 

an experiment. 

1.6.1. Tumor induction in mice  

To form a solid tumor, a 0.2 ml solution of 

Ehrlich Ascites Carcinoma was administered 

intramuscularly in the right thigh of female Swiss 

Albino mice. The animals were well-cared for until 

the tumors became obvious (10-15 days). The parent 

tumor line (Ehrlich Ascites Carcinoma) was taken 

from 7-day-old Swiss Albino donor females and 

diluted with sterile physiological saline solution to 

yield 12.5 x 106 cells/ml[43]. 

1.6.2. In vivo biological study of [99mTc]Tc-

NGO-COOH nanosheets 

Biodistribution studies were carried out by the 

percentage injected dose per gram (%ID/g) values 

obtained from radioactivity distribution measured ex 

vivo. At 0.5, 1, 2, 4 h p.i., mice were euthanized and 

blood, solid tumor, and major organs/tissues were 

collected and wet-weighed. In addition, separate 

cohorts of the solid tumor-bearing mice were 

intravenously injected with [99mTc]Tc-NGO-COOH 

nanosheets (four mice per group). Radioactivity was 

detected in each tissue by a gamma-counter (Perkin 

Elmer) and presented as %ID/g (mean_SD)[44-46]. 

 

2. Result and Discussion: 

2.1. Characterization of Carboxylated 

Nanographene oxide sheets (NGO-COOH 

nanosheets) 

All small sheets within a size range of 10-77 

nm (Figure 1 a), which was corroborated by DLS 

data that determined the average diameters of 

Carboxylated Nanographene oxide sheets to be 6.5 ~ 

77 nm. The carboxylated nanographene oxide sheets 

are morphologically studied using transmission 

electron microscopy (TEM) images (Figure 1 b). The 

lateral width of the carboxylated nanographene oxide 

sheets was reduced by sonication from several 

hundreds of nanometers to less than 150 nanometers, 

while the thickness remained unchanged at 1–2 

nanometers as measured by TEM. The presence of 

COOH groups in the NGO was also confirmed by 

FTIR measurements. As shown in (Figure 2 a) the 

appearance of absorption peaks at 3437 (sharp peak) 

and 1638 cm-1, carbonyl group stretched due to C=C 

of cyclic carbon in the hybrid structure of 

nanographene  while NG-OH can be assigned as a 

broad band at 3471 cm-1 as shown in (Figure 2 b) 

[47]. (Figure 2 c) presents XPS peak deconvolution 

of C(1s) core levels of the GO sheets. In the peak 

deconvolution, the peak centered at 285.0 eV was 

attributed to the C-C and C=C bonds. The other 

deconvoluted peaks located at the binding energies of 

286.6, 287.4, 288.3 and 289.4 eV were assigned to 

the CـOH, C-O-C, C=O, and O=C-OH oxygen-

containing functional groups, respectively [49–51]. 

The O/C atomic ratio of the GO sheets was found to 

be 0.47. This is consistent with the oxygen content of 

chemically exfoliated GO sheets reported previously 

[52,53]. COOH groups of NGO was confirmed by 

UV/Vis measurement, a peak at 232nm appears due 

to presence of COOH group as shown in (Figure 3) 

while NGO sheets appear at 270 nm [34, 47, 48]. 

Carboxylation of NGO nanosheets is done to be 

coated with hydrophilic moiety such as carboxylic 

group that helps to prevent the RES mechanism by 

reducing in vivo adsorption. 
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Fig. 1 Size analysis of NGO-COOH nanosheets (a) DLS scan, (b) TEM image  
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Fig. 2 The FT-IR spectra of (a) NGO-COOH nanosheets, (b) NGO-OH nanosheets and (C) XPS spectrum of NGO-COOH 

nanosheets 
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Fig. 3 UV/Vis spectra of the NGO-COOH nanosheets 

 

2.2. Radiolabeling of NGO-COOH nanosheets 

Nanosheets of [99mTc]Tc-NGO-COOH were 

radiolabeled as follow; 200 μl of freshly eluted 

[99mTc]TcO4
− (20 MBq) was added to 15 mg sodium 

dithionite as reducing agent followed by adding of 

500 μL carboxylated nanogaraphene oxide sheets and 

before measuring, the mixture was incubated for the 

appropriate amount of time [99mTc]Tc-carboxylated 

nanogaraphene oxide sheets yield. [99mTc]Tc-

carboxylated nanogaraphene oxide sheets 

radiochemical yield was determined using (13 cm x 

1 cm) strips of ascending paper chromatography and 

two different mobile phases were used for developing 

[49-53]. Acetone was used as a mobile phase to 

check the free [99mTc]TcO4
−% (Rf=1) and the percent 

of reduced hydrolyzed [99mTc]Tc-colloid (RH-99mTc) 

was determined using saline as a mobile phase 

(Rf=0). [99mTc]Tc-NGO-COOH sheets percent was 

calculated as following` 

Radiolabeled complex % = 

100−(free_99mTc_TcO−
4%+RH −99m Tc%) 

At PH 6, 15 mg Sodium dithionite as 

reducing agent, 500 μl substrate amount and after 

30min, We reach the optimum condition of 

[99mTc]Tc-carboxylated nanogaraphene oxide sheets 

which is 97.3% radiochemical yield as shown in 

(Figure 4) 
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Fig. 4 Radiochemical yield of [99mTc]Tc-NGO-COOH nanosheets. (a) pH, (b) reducing agent, (c) substrate amount, (d) 

reaction time 
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2.3. In vitro stability study 

[99mTc]Tc- NGO-COOH nanosheets were tested 

for in vitro stability of saline/serum as indicated 

(Figure 5). At 0.5, 2, 4, 6, 8 and 24 hours of post-

incubating, radiochemical yields were estimated to 37 

°C. The data indicated adequate radiochemical rates 

up to 8 hours above 97.3%. It is obvious from this 

work that the [99mTc]Tc- NGO-COOH nanosheets 

were stable enough in saline/serum, showing stability 

of up to 6 hours in vitro. 
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Fig. 5  [99mTc]Tc- NGO-COOH nanosheets in vitro 

stability in saline/serum at 37 °C followed in time 

2.4. Cytotoxicity evaluation of NGO-COOH 

nanosheets 

Inhibitory activity was detected using MTT 

assay under these experimental conditions with IC50 

= 30.45 ± 0.27 µg/mL as shown in (Figure 6). This 

result illustrates the biocompatibility of NGO-COOH 

and how much the safety of this organic compound. 
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Fig. 6 Relative cell viability of NGO-COOH 

 

2.5. Biodistribution study of NGO-COOH 

nanosheets 

Since the hydrodynamic diameter of the 

NGO-COOH conjugates studied in this analysis is 

considerably greater than the cutoff for renal 

filtration (5 nm), they were cleared mainly via the 

hepatobiliary pathway[54]. [99mTc]Tc-NGO-COOH 

absorption in the liver was 12± 1.7, 16 ±1.2, 14.3 

±1.1, and 13 ±1.3 percent ID/g at 0.5, 1, 2, and 4 h 

p.i., respectively (n = 4), while blood radioactivity 

was 8± 1.4, 7.5±1.2, 5.5±1.1, and 5±0.4 percent ID/g 

at 0.5, 1, 2, and 4 h p.i., respectively. The tumor 

quickly acquired [99mTc]Tc- NGO-COOH (clearly 

apparent at 0.5 h p.i.) and the tumor uptake remained 

stable/time (6.5± 0.4, 7± 0.4, 9± 0.3, and 7± 0.4 

%ID/g at 0.5, 1, 2, and 4 h p.i. respectively; n = 4) as 

shown in (Figure 7 and Figure 8).  

Target/non-target ratio (T/NT) was used to 

determine the selectivity of [99mTc]Tc- NGO-COOH 

nanosheets for tumor sites. (Figure 9) showed that 

[99mTc]Tc-NGO-COOH nanosheets accumulated 

quickly in the tumour cell. The T/NT ratio for 

[99mTc]Tc-NGO-COOH is the ratio of tumour muscle 

uptake to normal muscle uptake. After 2 hours of IV 

injection, [99mTc]Tc-NGO-COOH nanosheets 

attained their peak value 9±0.5 after 2 h after IV 

injection. The rapid and large concentration of 

[99mTc]Tc- NGO-COOH nanosheets in the solid 

tumor suggests that it may be used as a tumor 

imaging agent. The high absorption of [99mTc]TcO4
- 

in the stomach (14.2 ±0.35 an hour after injection) 

was seen in the biodistribution of the radioisotope 

(Figure 10).  

NGO-COOH nanosheets with [99mTc]Tc 

didn't show a high stomach, suggesting no in vivo 

radiolysis, so [99mTc]Tc indicating no in vivo 

radiolysis [55]. Since more than half of the 

nanosheets have size larger than 25 nm, significant 

tumor aggregation and accumulation were reached, 

which may be due to the enhanced permeability and 

retention (EPR) effect [6, 56-59], Since tumor tissues 

lack a drainage lymphatic system, EPR is 

encouraged. Nanosheets being coated with 

hydrophilic moiety such as carboxylic group help to 

prevent the RES mechanism by reducing in vivo 

adsorption [25, 60, 61]. The stabilization of 

nanosheets with a hydrophilic groups are the most 

efficient methods for reduction of RES uptake [36, 

62-65]. Since a hydrated water membrane offers 

strong steric hindrance, phagocytes are unable to 

invade remained stable during its in vivo studies [55, 

66-68].The advantage of our prepared radiolabeled 

nano-system ([99mTc]Tc- NGO-COOH) is the high 

target/nontarget ratio which was 9 after two hours 

after administration while recently published 

radiolabeled nanosystems were with maximum T/NT 

ratio 3.7±0.45-7±0.5[24, 69, 70]. It is good to 

mention here that NGO T/NT ratio was 2±0.5 as 

reported[71].  
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Fig. 7 In vivo biodistribution of [99mTc]Tc-NGO-COOH 

nanosheets in normal Albino mice at different time 

intervals post intravenous injection; I.V. (% ID/g) 

blo
od

liv
er

kid
eny

sp
le

en

in
te

st
in

e

st
om

ach
lu

ng
heart

bone

m
usc

le

tu
m

or

0

2

4

6

8

10

12

14

16

18

20

22

24

I.D
./g

 (
or

ga
n)

 0.5 h

 1 h

 2 h

 4 h

 
Fig. 8 In vivo biodistribution of [99mTc]Tc-NGO-COOH 

nanosheets in solid tumor-bearing Albino mice at different 

time intervals post intravenous injection; I.V. (% ID/g) 
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Fig. 9 T/NT ratio of [99mTc]Tc-NGO-COOH nanosheets at 

different times post I.V. Injection in solid tumor- tumor 

bearing Albino mice 
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Fig. 10 In vivo biodistribution of [99mTc]TcO4

- 

   

3. Conclusion: 

NGO-COOH nanosheets as a modified 

derivative of Nanographene oxide (NGO) sheets, has 

large surface area and capacity to carry a large 

payload so it is a novel nano-wall material that tracks 

to tumors in vivo. NGO-COOH holds promise as a 

versatile scaffold material for the development of 

molecular imaging probes. This study illustrates the 

feasibility of using functionalized nanographene 

oxide sheets for 99mTc labeling, which may have 

clinical effects in terms of improved tumor imaging. 
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