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ABSTRACT

Studying of foundation behaviour under different loading cases is one the most important

topics that has occupied a great deal of interest. Foundation closely correlated with factors and

surrounding conditions such as type of active load and type of soil bearing foundation. Non-

static load (dynamic) is one of the most dangerous types of loads that affect the foundations

such as earthquakes, which in turn depends heavily on the weight of the building, which

depend on the number of floors, as well as the type of soil bearing foundations. To study the

effect of variable load on the foundations, a model of two different types of foundations was

presented (Raft — Raft with inverted beam) and exposed to El_centro earthquake with constant

soil type and changing the number of floors (5, 10 and 15). From analysis results, it showed

that:-

1- Raft and raft with inverted beam have almost equal stresses and deformations.

2- Raft with inverted beam is better in resisting H.Z displacement resulting of dynamic loads
than raft.

3- Raft with inverted beam improved results although it is equal to 70 % of raft inertia, so that
it is better to use it with dynamic loads.

KEYWORDS - Raft, Inverted Beam, (PGA) Peak Ground Acceleration, FE (Finite
Element).

I. INTRODUCTION



BEHAVIOUR OF DIFFERENT TYPES OF FOUNDATION SUBJECTED TO DYNAMIC LOADS AND RESTED ON SAND SOIL

Foundation is the name given to the interfacing element that any construction need to be
stable by resting on it. The foundation is the part of an engineered system that transmits to,
and into, the underlying soil or rock the loads supported by the foundation and it’s self-
weight. The resulting soil stresses -except at the ground surface- are in addition to those
presently existing in the earth mass from its self-weight and geological history. The term
superstructure is commonly used to describe the engineered part of the system bringing load
to the foundation, or substructure. a numerical analysis is used to investigate any interaction
between soil and foundation and the behaviour under different loads.

2. BACKGROUND

Analysis of flexible rectangular raft foundations under dynamic loading was studied by
Molla, A. K. M. and Ray, P. D. (1994) [5]. The raft is assumed to be supported on a Winkler
medium. Different types of foundation soils, namely sand, soft clay and peat, are considered.
The subgrade modulus of these soils is determined in the laboratory. Dynamic response
curves for four aluminium plates are obtained both by analytical methods and experimental
investigations and the results are compared. The agreement was quite good in respect of the
qualitative nature of the curves and reasonable in respect of quantitative values. Response of
shallow foundations subjected to strong earthquake shaking was investigated by Gazetas «G.
and Apostolou, M. (2004) [3]. It is observed that nonlinear soil foundation effects associated
with large deformations due to base uplifting and soil failure are examined in comparison
with the conventional linear approach. Analysis of soil raft structure system subjected to
dynamic loads was studied by Kumar, V. (2009) [4]. The study revealed two important points.
Firstly variation of Young’s modulus of soil effectively influences frequency response of soil-
raft-structure system whereas variations of Poisson’s ratio of soil have a modest influence on
the frequency of soil-raft-structure system. Secondly dynamic interactive analysis of soil-raft-
structure consists of horizontal, vertical and rocking modes of vibration where as in non-
interactive case horizontal mode of vibration is predominant. Seismic analysis of R.C
structure in different zones and soil types considering soil structure interaction with fixed base
comparing with spring base was studied by Bhutia, L. T. T. and Et al (2016) [2]. SAP2000
software is used to achieve the scope of this research. The comparison of base shear for fixed
support and spring support in Different Zones of India in X and Y direction showed that there
will be an increase in base shear by 70-75% from zone 2 to zone 5. The comparison of base
shear for fixed support and spring support from hard to soft soil showed that there will be an
increase in base shear by more than 30% and from hard to medium soil showed that there will
be an increase in base shear by more than 20%. The structure with spring base showed good
result when compared with fixed base in different zones of India.

3. Numerical model

Description and modelling of any engineering problem to show the actual behaviour of this
system mathematically is the main purpose of a finite element analysis. In other words, the
mathematical model must be represent accurately the real physical prototype. For real
representation of the physical system, the mathematical model must include all components of
the system such as the nodes, elements, material properties, real constants, boundary
conditions, and other features. Three-dimensional analysis of the soil-structure interaction was
performed using the finite element code ANSYS. ANSYS is a very large general-purpose
finite element program and can be adapted to the solution of virtually any engineering
problem whether it was simple or complicated. These problems include static/dynamic,
structural analysis (both linear and nonlinear), heat transfer, and fluid problems, as well as
acoustic and electromagnetic problems. To study foundation behaviour under dynamic loads 5,
10 and 15 floors on raft with and without inverted beam rested on sand soil were modelled
with ANSYS V15.0. Different elements and material models are used in present study.
SOLIDG65 element type was used for soil and concrete elements. SOLIDG65 is an 8-node brick
element used for the 3-D modelling of the different layers in the soil. The element has 3
degrees of freedom at each node: translations in the nodal x, y, and z axes as shown in figure

[1].
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Fig. 1. Solid65 — 3-D reinforced concrete solid [ANSYS (1998)].

Additionally, the element is capable of representing orthotropic material properties, and has
plasticity, creep, swelling, stress stiffening, large deflection, and large strain capabilities. Two
material models are used for simulating soil in linear and nonlinear behaviour. The two
models are linear elastic and Drucker-Prager. The elastic model uses Hooke’s law of isotropic
linear elasticity. This model uses two elastic stiffness parameters, namely Young’s modulus
(E), and Poisson’s ratio (v). The Drucker-Prager uses three parameters, namely the cohesion
(c), the friction angle (), and the dilatancy (flow) angle (). The soil properties are presented
in Table [1].

Table [1]. Soil material table.

Layer ID Yary C (MPA) 7 E (MPA) OJ [7
(Kn/m3)
Sand 19.5 0.07 35° 60 0.35 5°

A small value for cohesion (0.07 MPA) is used to improve the numerical conversion and does
not affect the overall predictions of the model Akl, S. A., and K. G. Metwally (2017)
[1].From another side the concrete is capable of cracking (in three orthogonal directions),
crushing, plastic deformation, and creep. The rebar are capable of tension and compression,
but not shear. They are also capable of plastic deformation and creep. The properties of
Concrete materials taken for deformation prediction are presented in Table [2].

Table [2]. Structural (Concrete) material table.

Layer ID Ye (Kn/m3) E (MPA) []

Concrete 25.0 23.025 X 10° 0.30

Raft foundation with square shape is suggested for analysis operation and with dimensions
(17.0 X 17.0 X 1.50) m. Also raft with inverted beams foundation with 70 % of raft inertia
and with the same previous dimensions, but raft thickness (1.00) m and with inverted beam at
columns positions with thickness (1.00) m is suggested as the second parametric study in our
research. Superstructure that is resting on raft foundation consists of flat slab with dimensions
(17.0 X 17.0 X 0.20) m supported by columns with dimensions (0.50 X 0.50) m and the
height of floor is (3.0) m. To be able to convert any solid model to FE model can be solved it
must be meshed. Meshing is the step which model components are divided to small parts to
make its results more accurate. Soil media is divided to small parts with dimensions (2.0 m X
2.0 m X 2.0 m), Raft is divided (0.50 m X 0.50 m X 0.50 m), Slabs are divided to (0.20 m X
0.50 m X 0.50 m), Columns are divided to (1.00 m X 0.50 m X 0.50 m) and beams are
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divided to (0.50 m X 0.50 m X 0.50 m). Meshing is a very important step to convert any
model from solid model to finite element model can be solved as shown in figures [2].

Fig. [2]. 3-D finite element mesh for model components.

For connecting two materials and finding interaction between two materials, contact element
must be used. ANSYS provides several elements that can be utilized to model the interface
between two elements that are in contact. Contact between two surfaces can conveniently be
modelled in ANSYS by utilizing the surface-to-surface contact elements TARGE170 and
CONTAL173. Each of these “contact pairs” is capable of representing contact and sliding
between two 3-D surfaces, with the “target” elements (TARGE170) defining the stiffer
surface, and “contact” elements (CONTA173) defining the deformable surface as shown in
Figure [3].

Brick Element
Surface Normal Interface Element
(Pointing away from Element) (Contact or Target)

Figure [3]. Orientation of interface element.
There are different types of loads that we will use in our study. These types can be explained
as the following:-
= Dead loads: - own weight of model elements.
= Live loads: - all loads of non-static elements, it is taken 3.0 KN/m2.
= Wall loads: - all loads of static walls, it is taken 5.0 KN/m2.
= Dynamic loads: - El_centro earthquake loads will be represented by time history method as
shown in figure [4] and model is exposed to earthquake excitation to time 2.20 second.
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Figure [4]. El_centro earthquake.

To be able to solve any FE model we must assign boundary conditions. Boundary conditions,
also called support conditions, have great influence on the computed results. Boundary
conditions can be defined by two types: displacement or force (also called stress or traction).
Fixation is considered in Y-direction, Z-direction and to represent infinity length of soil in
earthquake direction (X-direction), elastic part with linear material and fixed final points in x-
direction is suggested in the start and the end of soil model, Nguyen, V. Q. And Et al (2016)
[6].

4. RESULTS

In this section, results of 3D model as contact pressure between foundation and soil,
deformation and stresses of soil and foundation, acceleration response with time and relative
H.Z displacement with time, some results for raft model supporting 15.0 floors without
basement are shown in figures [5] to [14] and these results are discussed. Some points are
selected for showing results and comparison between different parameters as shown in figures
[9] to [62]. For soil under foundation points (1 and 3) are selected in center and corner
respectively. For raft points (1* and 3*) are selected in center and corner respectively. For
superstructure point (4) is selected in center.

NODAL SOLUTION

15 storey without basement rested NODAL SOLUTION

on raft foundation subjected to STEP=1
dynamic loadirg (El Centro) SUB =107

SME =-.044084

15 storey without
basement rest=d
on raft
foundation
subjected to
dynamic loading
(El_Centro)

—.07381 —_083195

-.083402 -.04z388 -.022373 -.00z1s -018256 -.o0szoss -_0s0043 -_028061 —.045073

03278 - 012366 008043 —_0s3032 —_0s1044 —_043055 — 047087 —.045078
2

—.042084

Figure [5]. Vertical displacement for 3D model. Figure [6]. Vertical displacement for raft.
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NODAL SOLUTION 15 storey without basement rested

STEP=1 on rzft foundation subjected to
SUB =107 dynamic loadirg (El Centro)
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Figure [7]. Vertical stress for plan.
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Figure [8]. Vertical stress for raft.
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Figure [9]. Contact pressure.
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Figure [10]. Relative horizontal displacement for final slab.
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Figure [11]. Vertical displacement at center.
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Figure [12]. Vertical stress at center (5.0 floors).
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Figure [13]. Vertical displacement at edge (5.0 floors).
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Figure [14]. Vertical stress at edge (5.0 floors).
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Figure [15]. Vertical displacement at point (1).
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Figure [16]. Comparison vertical displacement at point (1).
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Figure [17]. Vertical displacement at point (3).
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Figure [21]. Vertical displacement at point (3%).
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Figure [18]. Comparison vertical displacement at point (3).
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Figure [19]. Vertical displacement at point (1%).
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Figure [20]. Comparison vertical displacement at point (1*)
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Figure [22]. Comparison vertical displacement at point (3*)
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From previous results it is clear that vertical displacement increase with increasing number of floors and two
types of foundation almost have nearby values. For soil central point is more critical, but for foundations two
points sufficient have nearby values.
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Figure [23]. Vertical stress at point (1). Figure [25]. Vertical stress at point (3).
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From previous results it is clear that vertical stress increase with increasing number of floors and two types
of foundation almost have nearby values for corner, but raft with inverted beam has large values for central
point. For soil corner point is more critical, also for foundations corner point is more critical.
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Figure [31]. Contact pressure at point (1).
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Figure [33]. Contact pressure at point (3).
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Figure [32]. Comparison contact pressure at point (1).
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Figure [34]. Comparison contact pressure at point (3).

From previous results it is clear that contact pressure increase with increasing number of floors and two
types of foundation almost have nearby values. For contact pressure, corner point is bigger than central point.

acceleration (x) (m/sec2)

5,10 and 15 storey rested on (raft - raft with fnverted beams) foundation subjected to
dynamic loading (E1_contro)

020 040 060 080 100 120 140 160 180 2.00
time (sec)

Figure [35]. Acceleration (x) at point (1).
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Figure [36]. Comparison acceleration (x) at point (1).
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Figure [37]. Acceleration (x) at point (1%).
Figure [39]. Acceleration (x) at point (4).
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Figure [38]. Comparison acceleration (x) at point (1%). Figure [40]. Comparison acceleration (x) at point (4).

From previous results it is clear that acceleration is almost nearby for soil and foundation, but for last floor it
decreases with increasing number of floors and two types of foundation almost have nearby values. For
acceleration points closer to ground is bigger than others.
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Figure [41]. Relative horizontal displacement at point (4). Figure [42].Comparison relative horizontal displacement at

point (4).

From previous results it is clear that relative H.Z displacement increase with increasing number of
floors and two types of foundation almost have nearby values, although raft with inverted beam
has small value of H.Z displacement.



BEHAVIOUR OF DIFFERENT TYPES OF FOUNDATION SUBJECTED TO DYNAMIC LOADS AND RESTED ON SAND SOIL

5. CONCLUSION
From the finite element results it can be concluded the following points:

1- Vertical displacement in soil is near to be equal for two foundations types, also for raft.
Vertical displacement increases with increasing number of floors.

2- Vertical stress of soil is near to be equal for two foundations types but for raft in case of
raft with inverted beam at center is bigger than case of raft. Vertical stress increases with
increasing number of floors.

3- Contact pressure between soil and foundation is near to be equal for two foundations types
at center and corner. Contact pressure increases with increasing number of floors.

4- Acceleration in x-direction for raft is smaller than raft with inverted beam at center of soil,
raft and final slab for 5.0 floors, but it is equal in case of 10.0 floors except at final slab it is
bigger for raft and it is smaller in case of 15.0 floors in all cases. Acceleration in x-
direction almost equal at center of soil and raft, but it decreases at center of final slab with
increasing number of floors.

5- Relative horizontal displacement in x-direction for raft is bigger than raft with inverted
beam at center of final slab. Relative horizontal displacement in x-direction increases with
increasing number of floors at center of final slab.

All previous points strongly prove that raft with inverted beam behaves better and improved

results as relative horizontal displacement, also it is cheaper than raft, although it is equal to

70 % of raft inertia. So that in dynamic it is better to use raft with inverted beam than raft

foundation because it is expected to resist dynamic loads better.
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