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Abstract

Tn this paper, unit root test of bounded AR (2) model with constant and with
independent errors has been derived, where estimation of the model, asymptotic
distributions of OLS estimators under different tests of hypothesis and
asymptotic distributions of the r—ppe statistics under different tests of
hypothesis have been derived. Also, the simulation results of the bias, mean
squared error (MSE), Thiel's inequality coefficient (Thiel’s U) and power of the
test for OLS estimators of bounded AR (2) model with constant and with

independent errors approved the alternative hypothsis H, more than the nuil ’
hypothsis H

KeyWords: Bounded AR (2) model, asymptotic distributions, OLS
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1. Introduction

Many unit root tests have been developed for testing the null hypothesis of
a unit root agalnst the alternatwe of statlonarlty, the tests for umi; roots in AR (1)
processes were first propesed and mveshgated by chkey and Fuller (1979, 1981)
but these unit root tests are proposed to unbounded time series in case of
independent error terms. o | .

Cavaliere (2000) tested the presence of unknown boundaries which
constrain the sample path to lie within a closed interval that is in the framework. - '
of integrated processes of AR (1) model with a unit root or random walk model
(with and without linear trend). In (2002), he introduced the logged nominal
exchange rates {y,} that change in time accordingly to a first-order integrated
process, { (1) within the framework: of nen_-managed flexible exchange rates.
Then in (2005), he developed an asymptotic fheory for integrated and near-
integrated time séries” whose renge is eonstrained in some ways. Such a
framework arises when integration and cointegration analysis are applied to
persistent series which are bounded either by construction or because they are
* subjéct to’ coritrol. '
Cavaliere and Xu (201 i) defined bounded process as time series X . with

(fixed) bounds at b, b ; b<b , is a stochastic process satisfying x, e[4,5] for all ¢.

Carrion and Gade.a (2013) showed that the use of general_ized least squares
(GLS) detrending r;arocedur'eS leads to important efnpirieal power gains compared
to ordinary least squares (OLS) detrending method when testing the null
~ hypothesis of unit root for bounded processes. In (2015), they discussed the unit
root testing when the range of the time series is bounded considering the

presence of multiple structural breaks.

Form the previous researches it can be notice that the concentration was on
~ the model of bounded AR (1) with constant (without constant) under various
assumptions for the error terms, and in this paper the concentration will be on the

model of bounded AR (2) with constant in the case of independent errors.
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2. Unit Root Test of Bounded AR (2) Model with Constant

'The bounded second order autoregressive AR (2) model with constant takes
the following form: I o |
y,=a-F PVt Pyt e, t=1,...,T7. . )
Under the following assumptions: | _ | |
1. y, is bounded time series with ﬁxed bounds w1th lower bound at b - and upper
-boundatble y,e[b b]a;ndy0 yl—O |
2. b=cT", b= T"*, T is the sample size, Q,EER/{O} and ¢ <@,
3. e,~1ID N(0,c?%), |
4. py, p, are the autoregresswe coefﬁcxents and o is the constant term. |

= 2.1 Estlmatlon of the Model

Equat10n (1) can be rewntten n matr1x form as foHows

Y =X/ +e S | @
Where: : ' |
v o yb”.'y—l I a o 'e].'
Y:_': -"_/;2. ., . = 1: -):)1 - J:)O , ﬁ: ‘pl '. : and ei e:?'
Yr o VYra Vr—2 o ler

Then, under the assumptions of model (1) the OLS estimators of parameters
“of model (1) can be obtained as follows: | o
,6' (XX)_I X'y

Then, the OLS estimators &, 3, and. 25 will be as follows:

| (a T _ Z,=1 Yioi S ZrT=l Yoz th:l e _
B= ﬁl Zf 1 Vi Zil _ytz—l _ " Z:i[ y;;lyxmz_ ZLi YeVia
£r) Xy Taviayes  Eiavis Zim Y Vi
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P2 e

d:L”M“+ LM ,+L M - =Lmj‘;/.l“‘.+ Ly,M,,+L,;M,,
- D P D

‘A HL31M11+L3'2M12+L33M13 '

_D det(XX)_l 11_[2 lyt 1][2}11 yr 2] [z 1yr 1Ve- 2]
“"Tzrtyzz (i Ve 2] 35“T2f1y,1 [Z =1 Vi 1]
le‘“Lu-‘[Z =1 Vi 2][Z aViaYeal— [2: 1yz—1][z lyt 2]

L13 [ZTA yr_1][z Ve Vi l— [Z -t Vi 2][2 1.}’; 1]
.L23 [Z =1 Vi 1][Z:.Iytm2]_TZt Iyt—lyf 2
Mu Zflyt H Mlz 2313’:.)’:-1 > Zflyt.yr .2

| - 2 2 Asymptotlc Dlﬂtrlbutlons of OLS Estumators under leferent
"~ Testsof Hypothesns |
Concepts of relative ma;gnitude or order of ‘magnitude are useﬁll in

investigating limiting behav1or of random Vanables Where if h (x) and g(x)are
- two real functions that have a common domam DCR and if the followmg

' relatlonshlp is ex1sts for any p051t1ve constant k(k >0) -

_'xl.gxﬁ g(x) S'k .’I__'x’E(D:-x(}l).
- Then: o

Schatzman (2002)
which means that A#(x)is .at most of order g(x). ' o

- One of the uses of Brownian Motion process is the poseibility to obtain a
more general formulation of the central limit theorem, where the simplest
formulation of the central limit theorem is if e, ~IIDN (0 c?), then the sample

mean € of these “random - variables achleved thu followmg asymptotlc

distribution:
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78, =T Zite,/T=ﬁ_2f:1e,—df>N(O,azj | 4

o ‘ ' - Amer (2015)

And if the sequence e, ~IIDJ\f_ (O,qZ), X, (1) :'%'ZEEE"'e, , where the random

variable X, () represents the sampie .m'ean thét calculated from the first () ratio

of observation »= [T] —0,1, c Tand fe[O,l], _ theﬁ the asymptotic - |

distribution of ;/FXT_(r)/ & is as follows: |

Tx0lo—swe ©)

Wheré; W) is a Standard Browaian Motion process, 7&[0,1] and when B

r=1 't'hé'n‘ W(i)r’uN(O, l.),‘ and «/fXT () o, T=1, 2 ".. : 1s a'sequence of stochastic

~ functions that have an a.symptofic distribution tha't. can be described by Standard
Brownian Motion W (-) as follows: - _ |

X, () o—2s W () | o (6)

The result i m equatlon (6) is called the Functlonal Central Limit Theorem

(FCLT) for independent errors, where X, (isa stoc_hastlc function and X,(+)is .

‘the value of this SfochaStic ‘funct'ic')h"a:t time r ie. X () is a f'unction and -
‘X, (#) is a variable, when r=1 then the functlon in equat10n (S) 18 as follows:

fXT(1)=— 1 ,—)aW(l) ~0'N(0 1) =N (0,0 ) | (7) |

Davidson (1994) |

If y is a pure random walk without drift as y,=y,, +¢,, where

e, ~1IDN (0 oc?), y0 Vo= 0 and when Y, is bounded time series with fixed

bounds at b,b, b<b ie. Y, e[b b] , b= ci””2 b =¢ T"'*then the Standard

Brownian Mot:_on in equation (5) will be replaced by the Regulated Brownian

“Motion W (Ir) with boundaries at ¢, ¢ and re-[‘O:, 1] as folloﬁs:

OVTX, () =20 62 o W/ (r)
and at (r=1) (8)
DVTX, ()= e ——->0-W“(l)

Ilt

Cavaliere (2005)
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Phillips (1986, 198::7) used the Functional Central Limit Theorem to derive
the asymptotic distributions for the statistics that are based on the unit root

processes in the random walk process without drift as follows

If y is a pure random walk without drift_-as Y=Yt é, where _

e, ~IIDN(0,5%)," y,=y_, =0, based on Phillips (1986, 1987) and using
equation (8) then, the following results are obtained: _. . |

1) T'melyH—> ale(r) dr R

2)T'[Zflyne——> 30 {[W(l)] } . &)

3)T‘2zj“,y,_l-——>aljl[W(r) 7 dr |

If the results of equations (8) and (9) in case of 1ndependent errors are hold

and by using equatlon (3) then the results for the orders of convergence of
- estimators in these equations will be as follows: | |
1) T=0,(T) I8
) >F .8, =0,(T"?)
3) T Ve —0;,(173’2)"

A .

ST =0T 1o
5)ZL .J’,-l , =0, (T)
6)S7, e2=0,(T).
Amer (2015)

The asymptotlc dlstr1but1ons of OLS estlmators a, p,and P, for bounded
‘AR (2) model that‘ represented by equation (1) under - the . test
H;:a=0,p =1, p,=0, (ie. y,=

(.e. y,=o+p, J’m + s y,ﬂé- + e, ). will be derived as follows:

" Lemma (1): If y, is a pure random walk without drift‘.as Y=y, te,
and has the same assumptions of equation (8) then as T —w the following results
are obtamed |
1)7 3 zfly, 2——-—>0f1 Wi (r)dr
DTy, e —> 1o {7 D] -1
DT yh, —s LW ()P dr
ST YV — > S [ P dr

L.

(1)
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Proof:
Part (1)

From the suCcessive substituting of - ¥, fhen:

Yea=Vasen )
From equatlon (12) then: | _
T Yoy, =T" e T—-l V=T E e, - (13)

By using equatlon (8 (2)) then:

T2YT o 450, L | a4

By using equatlon (9 (1)) then: | o

73250y, 1*——> ol W (r)dr . B SRR ( 1))
_ Then, by substituting from equatlons (14) and (15) in equanon (13) it can |
- be concluded that: o | '

T30y~ tsoiWimdr . (3,=0)

Part (2) | N | |

TSy e = =T Z?:l y,;le,:.—T;IZf;*l"e,_l e | N (1'6)‘

Since, e, ~ IID'N(O a'.z)then:l | |

By using equation (9 (2)) then: . |

TS Y e—2> Lo (D] -1} | (18)

Then, by substltutmg from (17) and (18) in equation (16} it can be
concluded that:

r*z:f;ly,_z'e,—£’—+%a%{tm?(inﬂ—l} . (y4=0)
Part (3) | o |
TSy =T V2, 2T S e TS, (9)
From equation (10) the order of convergence of X,., ¥, =0,(T ?) and the

order of convergence of ZLI e’ =0,(T) then:
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DT23" EFAN S n
) ZZtTIyt 181 . | o (20) -
DT~ e, —2 50 ‘ ‘

By using equation (9 (3)) then:

T35 v —4s LW dr 21

Then, by substltutmg from equations (20) and (21) in equatwn (19) it can
be concluded that: '
LTy ot WP dr (v, =0)
Part(4) LS o .
T_ZZfly, 1 Y- 2‘._T Zfiyz—l_T_ZZ?1yz—1 €1 ' - (22)
By using equation (9 (3)) then: | |
TSy — s S dr @
- Then, by subst1tut1ng from equations (20 (1)) and (23) in equation (22) it
can be concluded that:
| LT Zf 1 Yeet Yo 2-—)0'2]'1 [Wc(r)] dr | |
Lemma (2) For model (I) and under the test H ra=0, p, -1 p2 =0, , the
| asymptotic distributions of T2 &, T(p—-D and Tp, will be as follows

[szl[Wc(f‘)] dr]lo Wc(l)] [UII[WC(F)]dF][ZC’ {[W ) —1}]
SO dr= (ol (] drf
1 c c c 2
2Ty ~1)—L. >['7Q'j ALY LA O+ Lo {0 -1} ~
| N A R (r)]dr}
3)Tp2—-)z3,2360 Torc.\/_ ;
Proof:

Since:

1)T1/2& d

| B=(XXY'X'Y
By using equation .(2) then:
B-B=(xx)"X'e |
Under the null hypothesm that H,:a=0 p,-l p, =0 or ﬁ (0 1 0)then:
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-1

o T Zil Vo ZTA Yi—a ?:iet
/a] -1|= Zt lyt—l ZT lyt2 1 2 P 1y: 2 --'z;l-yt—lez . (24)
P> ZT—l y:- 24T—1 Y. 1y1 2 Zflyt 2. Zfzi y:—zez '
From equation (10), the order of convergence of T, f_l e,

Xy 1(2 2 Vi2)s Z SV O3, s 2)and Z, ly, e, will be O,(T),
0,(T"), 0,(T*"™), 0, (T and O,(T) respectwely Also from equatlon
(11 (2)) and by using the role of equation (3) then the order of convergence of
| S Yiae, _=OP(T ), and from equation (11 (4)) and by using the role of
equation (3) then the order of econvergence of Zf;‘, Vi Via ‘="OP:(T Bh

Then, the order of convergence of the elements in equation (24) will be as

tollows: o
. & . *._ Op e | O;, (T 3/2) ‘.”.OP.-(.T--;,JZ_) —-l. Op (T-.yz.)
{ﬁl—l} o,(T¥) O, (T 0,T* | |o,@)
Ps O (T O, (T?) o, (T?) O, (T)

Then, to obtain the asymptotlc distributions of the estlmators equatlon (24)

will be multlphed by the followmg scahng matrix:

(T2 0.  0)
‘--;= A Woep = O T 0
0 0 T

Then, equatxon 24) Wlll be as follows:

v (B=pr=lw (XX 7 ) s e

TVZ G 1 T2 ZT . j’:—: T-32 'Zz":'l 'yl_z T'”2 D _1- e
T(éi =D = 3" ZT—} Yo T7 23;1 yt—l T ZLI Yu Yoo | | T ZgT Ve [(23)
’ sz _3."2 ZT—! yr 2 _2 Zf;l y{—'l y:»—2 T_z ZrT:l y;2—2 : T—! ZT =1 yt 2

From equatmn (8 (2)) T;?z,ile,—_i—g& weE D, frorn equation  (9),
Y ED W y, T B ZT (Y, € and T Ll yilconvergence in distribution

to O‘Il W(r) a’r 1o [W (1) ] 1} and 2] }){W .(r)é]z.drr i'esgie'ctively.
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Also, from equation (11), T >3/ v,_,, T'XL,».,e and
Ty, yfiz(:T_z ZL y,'_'; V,_,) convergence in ,di:stribution' to ol :) Wj(r—) dr,
Lo [Wj (1)1*>—-1}and *J} [W (r)]* dr respectively.

Then, as TS and by uéing the 'ablc')ve results equation (25) will be as

follows: . _
x,=A7h,, x, € R, (i.c. vector of order (3x1) of real nuri_]bers) o (26)
Where: | | : _ |
Tveg Y 1 ohwreldr sl Oldr )
5= lm |73 =D | 4= ol O dr o [TV dr o LT dr
TNTh oKW dr oW dr o [ (] dr
W)

and b= 4o {7 M) -1} |-
R O

C

Where in matricés if 4= B

} is ‘an mxn matrix with

r* =rank(4) where B is " xpt and invertible tlll‘_eq,-‘ .

_|B™ 0] _: | o -_
'G"[o 0} o _' __(.27) :

\

is the generalized inverse of 4 , where .the “0”s in équation_ (2) represent
matrices of zeroes of diiﬁgnsion sufficient to make G an. nxm matrix. And if an '
equation can be represeﬁted as Ax ='h_ , x € R ,where the v.al'ue of determinant
of 4 equal t.:o zero ie. it’s a non-i;ivertible_: or ‘g singular matrix then to obtain the
inverse of the matrix 4 a éeneraliZed inverse ,is.neéd_lto be used, X is'a vector or
a matrix of unknown elements, & is vector or a matrix that has the same 'order as
the product of AXx énd to obtain the forms éf unknown elements of x fhe _

following equation is need to be used:

x=Gh+(I—-GA)z, ze R | - (28)

*The Egyptian Statistical Journal- Cairo University Vol. 64, No., 2020
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where. I is an identity matrix, Z is a vector or a matrix of real numbers and G
is the generaliied inverse of the matrix 4 that satisfied AGA=A4. Sawyer (2008)
' Since the value of the determinant of Al is equal to zero, a generalized
inverse for 4, is ﬁeed to be used. There is a generalized inverse G, of A, will
 obtained by using equation (27) as follows:

SN Edr <ol Wi dr 0
G = _' . 1 N _ ‘—O‘J},[Wf(r)]‘dr_” 1 0
ol (W} ()] dr — {O'H,[W; ("] dr}

- 0 0 0 J3x3)
Now to obtéin the forms of elements of x, in equation (26), equation (28)_4 .

will be used as foIl_oWs:

Since:
: 1 0 0 l,
G“_Al-: = 0-_ 1 V| and G, A= 1,
0 0 0} Iy,
Wh [sz' [Wc(f‘)] dr][O‘ Wc(l)] [O'P[Wc(r)] dr][ld A (1)]2—1}]
er .

R
[~o [ W2 (D] drilo WS D]+ Lo { W, (H]° -1}
o2 [ (1 dr — {aI' [W"(r)] dr}
Then, by using equation (28) it can be concluded that:

1, =

x, =1, |+31,-l0 1 1 ¥z
\ 4, 0 0 0j)i\z

Where 2'S are real numbers, then the asymptotic distributions of
TV G, T(p p,~1) and T p, will be as follows: _
[crzf‘ (W2 (1)) dr] [o- W7 (1] —-[af‘ LAQ) dr]{ia AGK —1}]
o O dr— (o I (]
—crI‘ W ()] drllo WM+ 3o { ;O -1}
o W () dr - {cn“ [WC(r)} dr}

I)TIIQ& d

DT (P —T)—~ )

?

3)Tp2—>z3, 236(: Toch_

"The Egyptian Statistical Journal- Cairo University Vol. 64, No.1, 2020
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Corollary (1): If there is another generalized inverse Glz' of 4, th_af can
be obtained by using equation (27), it will be as follows:
S LT dr 0 —oly W) dr

— ! e o "0 o0 - (30) -
crlﬁ,[W;_(r)]zdr—{JIL[W;”_(P)]d”} —elW@ld 0 1 |

/(3x3)
"Then, . the. asymptotlc distributions of T &, T(p—)and TP, can be
obtained as above. ' o |
2.3 Asymptotic Dlstrlbutlons of the 1 —fpe Statistics Under leferent
Tests of Hypothesis |
In addition to the previous tests in (2. 2), the tests that are based on

t—hpe statistics for : he estlmators . a, p1 ‘and o ‘under the test

H,:a=0, p,=1,p,=0, (1e Y, = yt1+e)aga1nst H, :a#0,

(1.e Y =0+ Yy + p2 y,‘_2 + e,) will be derwed- as foIIOWS'

Lemma (3) If the variance-covariance matrlx of the estimators of model

_.(1) under the null hypothes1s H c@=0 pl—l 2, =0 that can be written in

matrlx form as:

Var (8)=S; (XX)™ - o 6y
Such that, _

Var(&) COV(}BI,&) . COV_(ﬁZa&) .
DVar (B)=| Cov(pn@) -~ Var(p) — Cov(py,p,)

Cov(py,a)y  Cov(p,p,) Var ( p,)
. . ) . -1
T ZT:I yt-l .Zz;l yt-—Z . (32)

2)(XX)_1 Z;Flyt 1 Z:T=1 yrz--l : 23;1 YiorViea

zfiyz 2 -'Zz;ryz—lyr_—z. Z?:lyrz—é

3)S; = T:l(y:'—&"la1y:1_ szr 2) /(T 3)= Z: 1 :/(T 3)
Then, the asymptotic distributions for 7, ,z, and#, will be as follows:
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Dt =[T"* (@) T Var(@&)]"* —= >1, Vl-1/2 5 |
D, =[T(H— DIT* Var( pOTV* —2> (I,—z,) v, "'*
3)tb1_=[T)52][T2Var (_[)2)]‘”2 4 z, V3—1/2 :
22, EC Torzﬁ,zﬂeg' T ,z,¢€ ¢ T
. A UAD

Where, /,and /, are defined as in lemma (2), v, = - . o
| AR A

1- O' * 2z, o’z,,
V= - - r andv,= = = 7"
| SHUAGIR 2 ( ff)[W;(r)];-dr) IR A I (I;[W;(r)] dr)
Proof: R - ' '
By multiplying equation (31) by the scaling matrix y/, as follows:
v Var (BYyy =S7 (w7 XXy )™ -Gy

Where /7 is defined as in lemma (2).
Then, by substituting from  equations (32 (1,2)) in equation (33), the

variance-covariance matrix will be;

TVar (&) T Cov(p,&). T Cov(p,,q) :
T2 Cov(p,&) T’Var(p) = T Cov(p.p,) |-S2B, ~ (34)
T3!2 Cov(‘ﬁp&) TZCOV([aI,ﬁz) TZVar(ﬁz)

Where; _
. A/ N -1
I - T .M'Zf;l Yia T3 X Yiz
B, = " Zf;l Yia T Zil y:2—1 T Z;F:i Vi1 Yiaz

T %y TPXLyaye,  TPELYL
‘As T'—>ooand from the wgak law of large number, Bell (2015), thén the
convergence in probability of S7 is as follows:
S2 =37 & /(T—3):#>\crz o - 33)
From equations (9 .3, T SRy yand T2YT .y,z_l convergence in
~ distribution to o/} W(r)ﬁ dr and GZI:][W(F)E]ZdF respectively. Also, from
equations (11 (1,3,4)), T3 vy, ,and T7° Zf;lyrz_z( T2 YY)

convergence in distribution to ol Wi(r) dr and o2 If_] [WLE (M1’ dr respectively.
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Then, as T — oo and by using the above resulis equation (34) will be as
follows:

-1
x,=4,h, , xze.R(:;xs)

(36)
Where:
» 3/2 A oA 3/2 " ~ a

TVar(c) T Cov(p,a) T'°Cov(p,.&)

x ,= lim T*2 Cov(p,, &) T*Var(p) T*Cov(p,,p,) |.h,=1,,
T2 Cov(p,,&) T>Cov(p,,p,) T>*Var(p,)

1 1 z 1 p

— - Wi dr =W ()] dr

o o a :

Cdam| IRIWEON @ BRI A Wi

LA E A A O R N U TR

and A, is the asymptotic distribution of the matrix §2 B,.
- Since, |A2l=0 a generalized inverse G,, of 4, will be obtained by using

equation (27) and it will be as:

LA L R A

o’ | 1 ftppre 1

Gy = | Gh e — 0
B de- (w1 ) e

. U 0 0 (3x3)

- Now to obtain the forms of elements of x; in equation (36), equation (28) ;

will be wused, the forms of the asymptotic distributions - of

TVar (&), T*Var(p) andT*Var (p,;), and the asymptotic distributions for

t;,t;andz; will be derived as follows:

Since:’
1 0 0
Gyd,=|0 1 1
0 0 0
et ar - —LEmwiendr o
Gy =—— o AR L 0
0w o2 dr— (1 w2 ) e o

¢ 0 0
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Then, by using equation (28) it can be concluded that:

0_2

CRWEOE dre- (IR ar )

0 0 b
L—-10 1 113 2z,
0 0 0] zy

Where z's  are real

IR AGI

0
23 Zy3 ).
Z33 Z23
z. z.

32 33

~ L dr

LA

numbers, the asymptotic

TVar(Q),T*Var( [),)andT *Var (p,) will be as follows:

v

o[l [Wz(r)]idr

i)TVar(&) 4

[W‘(r)] dr - ([ (w7 )] dr)

2T > Var( p,) —2 1~ o 2y,

>0

TR ar - (B iwE e ar)’

3N 2 Var (p,) —2 o’z

=~ >0

I‘ [ (r)] dr — (Il (w7 ] dr)

>0

e

1
7z

To aclneve the variances in equatlon (37) to be positive, z5, <

assumed tobe z,, ¢ cﬁ and Z3; > 0 and it is assumed to be z,,e ¢JT .

The t-fa;)pe statistics for the estimators &, p, and p, will be:

Dz, =[T"> (&) [T Var ()]
2)¢, =[T(p— DT Var (B
3)1,, =[T 5, 1T > Var (5T

0

distributions  of

37

<9 and it is-

(38)

Then, by substituting from _eqﬁation_ (29) that contains the asymptotic
distributions of OLS estimators 7% &,7( 5, —1)and T 5, , and equation (37) in

equation (38), the asymptotic distributions for 1, tzand ¢, respectively will be:

D, =[TY2 (@) T Var(@)"> —4—s1, v,

2Dt =[T (D~ DT> Var(pT? —2> (1, —z,)v,”"*
3)¢,, =[T 1T * Var (p)I'? —2s z,v,”""?
»Z; €C To‘r_c-\/?,z32 egﬁ 2234 € ¢ T

(39)

Corollary (2): If there is another generalized inverse G,, of 4, that can

be obtained by using equation (27), it will be as follows:
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hw o e -Lipreene o

0 | 0 0
-Liwienar o L
c | o’ J(3x3)

. 2
a
GZZ

) INUAGIR = (J;[Wj(r)] a’r)2

Then, the asymptotic distributions for 155t ﬁ" and¢ 5, can be obtained as above. |

3. Simulation Study
A simulation study is used to obtain bias, MSE, Thiel’s U under the null
hypothesis H,: y, =y, +¢,. Also, the same measures and the power of the test
under the alternative hypothesis H, with constant term will be obtained in case
of five samples size T = 30, 50, 100, 200 and 500 for five boundaries value
c=—¢=0.3,05,0.7,0.9 and 1.1 by 5000 replications as follows:
- OLS estimators of bounded AR (2) model with constant and with
- independent errors which obtained in lemma (2) that used the generalized inverse -
'G“'and_ in corollary (1) that used the generalized inverse G, are used to obtain
the bias, MSE, Thiel’s U and the power of the test and from table (1) in appendix

the results can be summarized for five samples size T = 30, 50, 100, 200 and 500

. in the following table:
- Table (1)
O G, _ - G
~ | MSE | ThielsU| MSE [ ThielsU
0.3 | H, H,
0.5 :
0.7 - H, H
0.9 _ a
.1

It can be notice from table (1) that both G, and G,,approve the alternative
hypothesis H, for all values of c=—¢c except G,, for value of Thiel's U and

c=—¢=0.3. Also, the values of the power of the test for both G, and G,, are

equal to integer one and approve the alternative hypothesis H_ for all values of

c=—cC.
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4. Conclusions |
1. The asymptotic distributions of OLS estimators and the r—ape statistics of

OLS estimators of bounded AR (2) model with constant and with independent

errors under different tests of hypothesis have been derived.
2. For each sample size T when the values of c=- c are increasing the values of

MSE are increasing and the values of Thiel’s U are decreasing for both

gerieralized inverses G, andG\,under both the null hypothesis H, and the
alternative hypothesis H,. | | |
3. For generalized inverse G, when the sﬁmples size T are increasing at ther
same values of c=—c, the. values of MSE are decreasing for all values of
~ ¢=—c under the null hypothesis H,, constant for ¢=—c=0.3and0.5and constant
or décreasing for E:—gx0.7,0.9 and 1.1 under the alfe’rnative hypothesis Hﬂ,..
while the values of Thiel’s U are decreasing for all values of ¢=—c¢ under both
the null hypothesis /7, and the alternative hypothesis # .
4. For genefé.lized iﬁvér.se.' Gy, When. tiﬁé samples size T are iriéféaéing af t.he_‘
‘same values of c=-c, the values of MSE are decreasing or constant. for
c==¢=0.3 and 0.5 and constant ot increasing for c=—¢=0.7,09 and1.1 under the -
null hypothesis H,, decreasing or constant for c=—c=0.3 and 0.5, fluctuate for |
c=-c=0.7 and increasing for c=—c=10.9 and1.1 under the alternative hypothcsis
H,, while the values of Thiel’s U are decreasing fof all values of ¢=—¢ under
both the null hypothesis H, and the alternative hypothesis H .
5. For generalized inverse G,, for all sample sizes 7 and for all values of
c=—c the values of MSE and Thiel’s U approved the alternative hypothesis H .

6. For generalized inverse G,, for all sample sizes 7 and for all values of

¢=—¢ the values of MSE and Thiel’s U approved the alternative hypothesis #,
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except for value of ¢ =—¢ =0.3 the value Thiel’s U approved the null hypothesis
H,. |
7. The values of the power of the test for both G, and G, are equal to integer

one and approved the alternative hypothesis H, for all sample sizes T and for all
values of c=—c.
References

[1] Amer, G. A,, (20_15),- "Econometrics and Time Series Aﬁalysis (Theroy,
Methods, Applications) ", Cairo University. . ' :

~ [2] Cavaliere, G., (2005), "Limited Time Series With A Unit Root", Econometric
Theory, Vol. 21, No. 5, pp. 907-945,

[3] Davidson, I., {1994), "Stochastic Limit Theory" ISt ed., New York Oxford
Un1vers1ty Press. ‘

[4] Dickey, D. A. and Fuller, W. A., (1979),' .“Distribution of the Estimators for
Autoregressive Time Series With a Unit Root", JASA, Vol. 74, No. 366, pp. 427-
431. ' ' '

{5] Dickey, D. A. and Fuller, W. ‘A., (1981), "Likelihood Ratio Statistics for
Autoregressive Time Series with a Unit", Econometrlca Vol. 49 No. 4, pp
1057-1072. ' ' :

[6] Phillips, P.C.B. (1986), "Understanding Spurious Regression in
Econometrics", Journal of Econometrics, Vol. 33, No. 3, pp. 311-340.

[7] Phillips, = P.C.B. (1987), "Time series Regression with a Unit Rodt“,
Econometrica, Vol. 55, No. 2. pp. 277-302.

[8] Schatzman, M. (2002), "Numerlcal analy31s a mathematical introduction”,
Clarendon Press, Oxford

- Web sites
[9] Bell, J., (2015), "The Weak and Strong Laws Of Large Numbers", University
of Toronto,

https://pdfs.semanticscholar.org/4786/984d97527d81b1 7ba34bbfdbbb46f1 6914
8.pdf.

[10] Cavaliere, G., (2000), "A Rescaled Rahge Statistics Approach to Unit Root
Tests", Econometric Society World Congress 2000 Contnbuted Papers 0318,
httn //fmwww.bc.eduw/RePEc/es2000/0318.pdf. -

The l:gyptlan Stat|st|cal Journal- Cairo Un:versﬁy Vol. 64, No.1, 2G20
(s1)



Unit Root test of Bounded AR (2) Model with Constant and with independed errors

(Sayed Meshaal — Ahmed El-Sheikh = Mohammed A Farouk )

[11] Cavaliere G., (2002), "Testing undeclared central bank intervention in
foreign exchange markets", ,
https://www. forskmngsdatabasen dk/en/catalog/2398120236.

[12] Cavahere, G. and Xu, F., (2011), "Testmg for unit roots in bounded time
series”, University of Bolo gna, European Un1vers1ty Institute Christian-
Albrechts-University of Kiel,

http://www.cecon.queensu.ca/files/event/Cavaliere_Xu.pdf

[13] Carrion,l.'S. and Gadea, M.D., (2013), "GLS based unit root tests for
bounded processes",

http://www.ub.edw/irea/working papers/2013/2013 04.pdf

~ [14] Carrion,. S. and Gadea, M.D., (2015), -"Bounds, ‘Breaks and Unit Root
Tests", https:/core.ac. uk/download/pdf/78633 760.pdf '

[15] Sawyer, S. (2008), "Generahzed Inverses How to Invert a Non-Invertlble
Matrix", _
https://www.math. wustl. edu/~sawyer/handouts/Genrllnv.pdf

The Egypttan StatlsttcaiJournai Cairo UniversityVol. 64, No.1, 2020
(52)



Unit Root test of Bounded AR (2) Model with Constant and with independed errors

(Sayed Meshaal — Ahmed El-Sheikh — Mohammed A.Farouk )

Appendix of Tables

Table (1)

Bias, MSE, Thiel’s U and Power of the test of bounded AR (2) model with constant and

with independent errors
- Under H Under H,
re= bias p, | MSE [ Tt |bias o |bias p, |bias o, | msE | TS | power
0.3 Gy -0.205 | 0.046 0.230 -(3.086 -0.157 0.025 (L0030 0.182 1
i Gz 0.055 0.032 0.180 -0.086 0.105 -0.237 | 0.031 0.181 1
0.5 Gy -0.229 | 0.147 0.236 | -0.087 -{).182 0.061 0.083 0.178 I
) Gy 0,691 3.097 0.177 -0.087 0.141 -0.262 | 0.085 0.174 i
30 0.7 Gy -0.244 6.355 6.231 -0.087 -0.196 0.098 0.167 0.163 1
Gy» 0.128 0.217 0.166 -(L087 0.178 -0.276 | 0.161 0.156 1
0.9 Gy | -0.259 | 0.758 0,226 -0.087 -().210 0.134 0.282 0.147 1
) G 0.164 0.437 8.155 -0.087 0.214 -1.290 | 0.254 0.136 1
L1 Gy -0.274 1.589 0.225 ~-0.094 -0.226 0.171 0.429 0.131 1
i Gy 0.201 0.871 $.147 -0.094 0.251 -0.306 | 0.358 0.116 1
0.3 Gy | -0.137 0.042 0.168 -0.091 -0.089 0,012 0.030 0.143 1
) Gy, 0.042 0.632 0.141 -0.091 .| 0.092 -0.169 | 0.030 0.143 1
! Gu -0.154 0.134 0.163 -0.090 -0.106 0.041 0.083 0.136 1
0.5 Gy 0.071 0.696 0.137 -0.090 0.121 -0.186 | 0.083 0.135 1
50 0.7 Gy -0.170 | 0.325 0.163 -0.092 -0.121 0.069 0.165 0.124 1
i Gz 0.099 | 0.218 0.128 -0.092 0.149 -0.201 | 0.158 0.120 1
0.9 Gy -0.184 0.714 0.160 -0.097 -0.135 0.097 0.278 0.112 1
j Gy, 0.127 0.453 0.121 -0.097 0.177 -0.215 | 0.252 | 0.105 1
L1 Gy -0.200 1.518 0.158 -0.091 -0.150. 0.126 | 0.422 0.098 1
) G 0.156 0.930 0.115 -0.091 | 0,206 -0.230 | 0.359 0.089 1
03 Gy -0.079 | 0.038 0.113 -0.096 | -0.030 0.000 | 0.030 ; 0.103 1
" | Gp 0.030. | 0.032 0.102 -0.096 0,080 =0.110. | 0.03¢ | 0.103 - L
05 Gy -(3.093 0.121 0,111 . | -0.097 -0.044 0.020 | 0.083 0.097 1
’ Gy, 0.050 0.096 0.698 -0.097 0.100 -0.124 | 0.082 0.096 1
100 07 Gy -L.106 | 0.292 0.107 -0.097 -0.056 0.040 0,164 0.087 1
Gy 0.070 0.219 0.091 -0.097 0.120 -0.136 | 0.158 0.085 1
0.9 Gy, -0.118 | 0.645 0.103 -0.097 -0.063 7 0.060 0.274 0.077 1
i Gy 0.0%0 0.465 0.685 -0.097 0.140 -0.148 | 0.255 0.073 1
11 Gy -0.131 1.396 0.102 -0.098 | -0.081 0.080 | 0.416 | -0.068 1
) Gy, 0.110 0.987 0.083 -0.098 0,160 -0.161 | 0.368 0.063 1
03' Gy -0.046 | 0.035 0.077 -0.697 0.003 -0.009 | 0.036 | 0.073 1
i G, 0,021 0.032 0.072 -0.097 0.071 -0.077 | 0.030 0.073 1
05 Gy -0.058 | 0.113 0.076 -0.699 -0.048 0.005 0.083 | 0.068 1
3 Gy 0.035 0.096 0.069 -0.099 0.085 -0.088 | 0.082 0.068 1
200 07 Gy -0.067 | 0.266 0.073 -0.1_00 -0.018 0.019 0.163 0.062 1
) Gy, 0.049 0.219 { - 0.066 -0.100 | 0.099 -0.098 | 0.159 0.062 1
0.9 Gy | -0.077 | 0.589 0.070 -0.097 -0.028 0.034 0.272 0.054 1
) Gy, 0.064 0.469 0,062 -0.697 0.114 -0.168 | 0.258 0,053 1
Ll Gy -(.088 1.350 0.068 -0.101 -0.038 0.048 0.410 0.046 1
' Gy, 0.078 1.045 0.058 -0.101 0.128 -0.118 | 0.375 0.044 1
03 Gy -0.023 0.034 0.047 - | -0.099 0.027 -0.017 | 0.030 0.045 1
i Gy, 0.013 0.032 0.645 -1.099 0.063 -0.053 | 0.030 0.045 1
0.5 Gy -0.031 0.106 0.046 -0.098 0.019 -0.008  0.083 0.043 1
) Gz 0.022 {.096 0.644 -0.098. 0.072 ~0.061 | 0.083 0.043 1
500 0.7 Gy -0.038 | 9.248 0.044 -0.101 0.612 0.001 0.163 $.039 1
) Gz 0.031 $.220 0.042 -0.101 0.081 -0.068 | 0.160 0.039 1
0.9 Gy -0.046 0.551 0.042 -0.099 0.004 8.010 | 0.270 0.034 1
- Gy 0.044 0.476 0.039 -0.099 0.090 -0.076 | 0,261 0.033 1
11 Gy -.053 1.257 | 0.041 -0.098 -0.003 0.619 | 0.406 0.028 1
' Gy, 0.049 1.071 0.037 -0.098 £.099 -0.083 | 0.383 0.028 1
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