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_ Abstract

Testing zero variance components is a common practice under random-intercept
models. Various tests exist to check the need for random effects in such models.
Although many of those tests have correct Type-I error rates even when the error
components are not normally distributed, an empirical assessment of the performance
of these tests when the distribution is contaminated in the form of possessing heavy
tails, heavy skewness, or contains outliers does not exist. This article investigates the
performance of four recently proposed variance .components tests under such
violations using extensive simulation studies. Results indicate that the simulation-
based test based on the likelihood ratio test statistic is much preferred to the other
tests unless the response space suffers from the presence of outliers. Under the latter
case, none of the competing tests revealed satisfactory performance.

Keywords Heavy-Skewed Distribution, Outliers, Variance Components, L1ke11hood
Ratio Test.

1. Introduction

The random-intercept model is a famous two-level model that can be used in various
applications (Goldstein, 2011). Assume that the data is collected from m main groups,

and nested within those groups are n; observations per group where i = 1, ...,m. The
model can be represented as '

[1] | Yij = X8 +u; + ey,

where y;; denotes the j™* respor_lse (¢ =1,..,n;) in the i** group, 3} is a p-vector of
explanatory variables, f is a p: t of fixed effects, u; denotes a common random
effect in the it" group, and e;; denotes the residual error. Both u; and e;; i are

mdependently assumed to follow a dlstrlbutlon with mean zero and constant variance,
say o2 and o2, respectively.

Generally, testing zero variance components gained fame over the last two decades.
Although the null hypothesis of this test simply equates o2 = 0, the test remains
challenging as the asymptotic distribution of the likelihood ratio test statistic is not
tractable. Crainiceanu and Ruppert (2004) proposed obtaining the finite sample
distribution of the likelihood ratio test (LRT) using a simulation-based approach.
Fitzmaurice et al. (2007) proposed a permutation test for evaluating the performance
of the LRT under the random-intercept model. A wide range of simulation
comparisons of various tests have been considered in Scheipl ez al. (2008). Samuh e7
al. (2012) proposed a permutation test for approximating the distribution of the
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analysis-of-variance F statistic. The authors showed that the F statistic can detect the
departures from the null hypothesis when the zero variance components are evidently
positive. Drikvandi ef al. (2013) proposed a permutatlon test using a simple test
statlsuc that depends on directly estimating o2 under the alternative hypothesis
o2 > 0. Most of those tests used simulation-based tests to assess the performance of
the proposed test statistics therein. Importantly, estimation methods such as the
maximum likelihood, least squares, or variance least squares (VLS) Amemiya (1977)
are commonly employed in calculating the corresponding test statistics.

In this article, we focus on assessing the empirical size and power of those existing
tests when u; and e;; have contaminated distributions such as the contaminated
normal distribution and heavy-tail distribution. We also assess the performance_ of t the '
1::Sests in the presence of outliers in the response space. This is performed, &S %@ oW it

' scenario.

The rest of this paper is organized as follows. Section 2 provides a detailed
description of the tests that will be covered under the simulation experiments where
the distributions  of the error components are co temmated T results
empirical 1nvest1gat10n are presented in Sect1on 11 apphicatl

Sectmn 5 concludes the performance of the competmg tests and prov1des
recommendations for the most appropriate test according to the scenarios that have
been investigated. It also provides some directions for future work.

" 2. Variance Components Tests

The hypothesis under consideration is given by
2] HO = 0 versus Hy:02 > 0.

Note that, under the null hypothesis, model [1] reduced to the traditional multiple
regression model with independent observations. Thus, estimation methods such as
least squares or maximum likelihood are commonly employed before the test statistics
are calculated under each test. Differently, Drikvandi et al. (2013) employs the VLS
method in calculating the test statistic used in their proposed test. Next, we present
each test that will undergo our simulation experiments in some details.

2.1 ANOVA-Type F-test

The analysis of variance (ANOVA) famous F test statistic is defined under model [1]
as follows

3] Faov = tam (6. 8) /2m 2, (8- &)
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where § =n;* 30L, 8y, $ = m ™ B, &, &y = vij — 2B oss, and By denotes the
least squares estimate of #. Note that the degrees of freedom in [3] are ignored since
the test statistic is not approximated by the F-distribution any further. The algorithm
for obtaining the empirical p-values of the test statistic in [3] are presented in the
sequel. Note that under the null hypothesis the indices j = 1, ..., n; over all groups are
exchangeable and thus permutable. Thus, Samuh et al. (2012) proposed a permutation
test for testing the hypothesis in [2] using the F,qy test statistic in [3].

' 2.2 4 Direct Test Based on VLS Estimation of 6

- In order to test the null hypothesis in [2], Drikvandi et al. (2013) used the following
test statistic

(4] - Tprgg =mT'6E L My,

where 87 is obtained using the VLS method as follows. Rewrite model [1] in a
compact form as B '

[5] 'Y=XB+Zu+e

where Y is a vector of n = /%, n; observations, B is a vector of p unknown fixed
cffects, u is a vector of m unobservable random effects, X and Z are known n X p
~ and n X m matrices for the fixed effects and the random effects respectively, and e is
a vector of n unobservable residual errors. Note that Z = diag(Z,,, ..., Z, ) and
Z,, = 1,,. Further, E(u) =0, var(u) = o’l,,, E(e)=0, var(e) = oil,, and
cov(u,e) = 0.

The VLS method can be employed as follows. By first defining that w = (X7X)™1

and &; = ¥; — X;B,;s where B,;; = wXTY, an unbiased VLS estimator of 62 under
model [5] can be explicitly derived from the following equation

Uyis = %({QH_l + H 'cc"H™ 1} Eﬁ;(ﬂéi® 17e)—H 'eXl, éiTa’i)

where .
c=vec QR {Z]Z, - Z[X;wXIZ}),q=3Y"ni—m—c"H *c, and
H=3"(2]2,®2]Z, —Z]Z,® I]X;wX|Z; - Z'X,wX'Z;® ZTZ;)
+HIR, ZIXw @ ZIXwiE, XTZ; ® X7z}

The value of 87 is then extracted from Uy,s = vec(var[u]). For further details, see
Demidenko (2004). :
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2.3 Simulation-based Distributions for the LRT Statistic

Under the compact model in [5], suppose that the loglikelihood functions that can be
maximized under null and the alternative hypothesis in [2] are denoted by IM* and
1ML, The asymptotic distribution of the LRT statistic Torr = —2[I} — [ML] does not
have the familiar chi-square density, but can be approx1mated (as m — ) as the
mixture 0. 5)((0) + 0. 5)((1) or the mixture 0.65 }((0) + 0.35 X(1) (Stram and Lee, 1994;
Self and Llang, 1987; Fitzmaurice et al., 2007) where )((0) denotes a point mass at

zero and ,‘!((1) is a chi-square distribution with one degree of freedom.

Using the eigen-decomposition of the LRT statistic, Crainiceanu and Ruppert (2004)
provide a simulation-based algorithm to obtain the finite sample distribution of the
test statistic Teg = —2[1§™ — 14*] under a linear mixed models framework. Zhang et
al. (2016) extended the algorithm to test multiple variance components in the class of
linear mixed models. Fitzmaurice et al. (2007) proposed a permutation test that
provides a one-sided p-value for the LRT statistic PLRT = —2[{}L — [ML],

3. Simulation Study

In our simulation experiments, we consider four tests whose test statistics are
mentioned in Section 2. Namely, the test statistics under consideration are FADV
(Samuh er al., 2012), T,y (Drikvandi ef al., 2013), Teg (Crainiceanu and Ruppert,
2004), and PLRT (Fitzmaurice et al., 2007). We distinguish our investigation by
evaluating the size and power of these tests when the distribution of the error
components is contaminated. The choice of a reliable test in such case comes at the
cost of maintaining a correct size while proving a high power since the violations are
~ known to influence the power of those tests. Indeed, this is not surprising as the
violations are expected to increase the var1ab111ty of the estimates of the fixed effects
and the variance components cven when the null hypothesis is true.

Using the following Monte Carlo (MC) algorithm, the permutation p-values can be
calculated where needed:

1) Compute the test statistic (for each of Fygy, Tpri, or PLRT) using the original
sample data (y;j, x;;) for i = 1, ...m and denote the test statistic by TS°PS.

2) Randomly permute the cluster indices holding fixed the number of
observations within cluster. Then, recalculate the test statistic as in each
particular test for the new permutation sample.

3) Repeat the process in the previous step B tlm
test statistic, denoted by TS, g =1,...,B .

4) Compute the empirical p-value as the proportlon 0 permutatlon samples w11:h
TS greater than or equal to TS°PS,

5) Given the nominal level, say @, reject the null hypothesis if @ exceeds the
empirical p-value,

B w values of the
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3.1 Simulation Setup

In the simulations, the model for y;; given the random effects u; is -
[6] ‘ Yy =n+tu tey

where j=1,...,n;, i=1,..,m, m=30,40 clusters, n; = 3,10 observations
within a cluster and n = 2, Without loss of the generality of the simulation results,
model [6] assumes that § = 0 in model [5]. Let the intra-cluster correlation (ICC)
take the values 0.1, 0.2, and 0.3 where ICC = p = 62/(a2 + 62). The value of p = 0
is used to examine the empirical size (Type I error) of the tests under consideration.

Evaluating the empirical power of the tests (i.e. p > 0) is considered as long as we
detect that the competing tests possess the correct size under the nufl hypothesis
Hy: 0 = 0. Power considerations are investigated under the following violation
_ schernes We assume that the residual error term e;; follows: (1) a symmetric
contaminated normal distributed and (2) a skewed contaminated normal distribution.
We further consider the sitwation where the random error components follow a normal
distribution involving outliers. Note that the Value of g% is chosen such that the ICC
takes its aforementioned values. The value of 62 is mentioned under each scheme

separately. The detailed setup under each of these schemes of contamination is
explained next.

3.1.1 Symmetric Contaminated Normally Distribution

A symmetric contaminated normal distribution is a mixture of two normal
distributions with mixing probabilities (1 — &) and § where 0 < & < 1. For any
" random variable, say ¢, that follows a normal distribution with density function
f(& u,0) where u and o denote, respectively, the mean and the standard deviation of
the distribution, the contaminated normal density can be expressed as f(&) = (1 —
8)f (& n,0) + 6 f(g p,Ag) where- 2 > 1 is a parameter that determines the
standard deviation of the wider component. In the simulations, we consider § =
209%, 30% as levels of contamination in the distribution of the residual errors e;;,
A=05, u =10 and 62 = 1. The random effects u; are assumed to follow a normal

distribution with zero mean and variance ¢;2. Table 1 summarizes the outcomes under
this scheme.

3.1.2 Skewed Contaminated Normally Distribution

Here we investigate the performance of the tests when e;; is generated from a normal
distribution that is contaminated, as defined in Section 3.1.1, with a skewness
parameter equal to 5. The level of contamination is set at & = 20%, 30%, where
A=5, g =0 and 6 = 1. The random effects u; are assumed to follow a normal

distribution with zero mean and variance oZ. The results under this scheme are

tabulated in Table 2.
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3.1.3 Qutliers

Assuming that under the null hypothesis e;~N{u = 0,02 = 0. 5) this scheme
by random vanables from

methods are known to } nt under the presence of outliers. Table 3

emphasizes this fact by displaying the Type I error rates that are achieved by each of
the competing tests.

Table 1 Empirical size and power (as percentage) of tests when the residllal errors are
generated from symmetric contaminated normal distribution

Contamination (20%) =~ = Contamination (30%)

Fagy PLRT Tep Toryg  Faoy PLRT  Tor  Tppye
0.0 {230 7.00 440 4.60 2.70 6.90 6.00 5.80
0.1 {720 4.00 520 5.60 5.10 4.20 5.00 - 4.80
02 1460 400 740 5.00 4.20 4.40 6.90 4,80
30 0.3 1480 500 980 960 5.10 © 4.90 8.70 7.50
0.0 1340 3.00 620 4.60 3.20 3.00 6.80 6.20
0.1 465 400 880 7.45 | 435 4.20 7.90 6.25

m n; ICC

10 92 | 6.40 6.00 204 100 | 5.80 5.80 172 8.90
031|785 800 360 198 | 7.15 7.80  33.0 16.4

0.0 | 400 350 620 6.00 | 3.80 350 670 6.50

3 0.1 [500 550 6.00 580 | 5.00 530 540 500

02 | 600 550 760 640 | 5.60 5.30 7.00 6.20

40 03760 7.00 102 845 | 7.00 680 950 .7.95
_ 0.0 | 6.00 550 460 3.00 | 670 590 590  3.60
10 0.1 | 645 7.00 132 940 | 600 6.0 11.3° 820

02 {820 750 252 108 | 7.50 7.10 22.8 9.20

031985 105 436 276 9.05 9.50 35.6 24.6
"Nominal Level is set to be 5% '

From Table 1 and Table 2, the follovwng notes can be taken. Under the null

Then we proceed in Table 1 and Table 2 by reportmg
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the empirical power of the tests (i.¢. ICC > (). We conclude that both the test statistics
Faov and PLRT have close power values where both tend to be less powerful
compared to the power produced by the statistic Tp,. Interestingly, the test statistic
Tcr remains the champion under all schemes and this suggests its reliability and
resistance in producing higher power values even when the error distribution is
contaminated. '

Table 2 Empirical size and power (as percentage) of tests when the residual errors are
generated from skewed contaminated distribution

o inati 04 : s ati 0
m n ICC Contamination (20%) Contamination (30%)
Faov PLRT Tep Tpux Fioy  PLRT  Tep Torix
00 | 3.80 500 7.80 8.00 3.50 - 4.00 7.90 8.40
3 0.1 | 860 850 6.60 560 7.30 7.40 6.10 4.90

02 | 960 105 9.80 720 8.90 9.95 920 6.70
30 03 1136 145 154 11.8 12.8 13.9 14.9 11.1
0.0 | 6.00 650 540 420 720 6.30 640  3.80
011170 160 242 178 16.1 15.4 22.0 15.9

10 02 1202 240 302 284 212 234 284 269
03 | 502 53.0 546 530 488 520 528 510
0.0 | 470 500 460 460 580 620 340  3.40

; 01 (685 700 780 820 555 620 630  7.60

02 | 700 750 11.0 9.00 590 6.40 10.0 8.15
40 03 | 124 120 162 142 11.0 11.5 14.9 12.2
0.0 | 6,00 650 420 5.00 6.80 6.95 3.65 4.10
0.1 | 885 135 162 140 725 11.5 15.0 12.8

1045 23.8 305 352 338 224 297 339 319
03 | 576 610 652 620 546 600 638 608
Table 3 Erd

(m,ny) | Faoy PLRT Ter  Torie  Faov PLRT  Teg  Tpeg
(30,3) | 1.30 1,70 190 1.40 1.55 1.85 .70 1.35
(30,10) | 0.99 1.35 125 092 1.59 1.45 1.35 1.52
(30,20) | 1.80 175 195 1.52 1.30 1.55 1.55 1.72
(40,3) 1.10 1.67 1.52 .~ 0.86 120 1.77 1.35 1.95
(40,10) | 0.95 081 055 140 0.85 0.85 0.95 1.50
(40,20) | 2.05 1.81 225 2.00 2.15 1.85 2.05 240

From Table 3, it is obvious that all the four tests have been severely influenced by the
presence of outliers due to the inefficiencies in the estimation methods that are used in
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‘the calculations of the four tests statistics. To sum up, the simulation experiments in
this section have revealed the possibility of using any of the four tests to check the
need for random effects (i.e. test zero variance components) while favoring the T.p as
most powerful. This conclusion holds as long as the response variable does not suffer

from the presence of outliers in the response space. Indeed, thls opens door for further
the research.

- 4. Application to Real Data

In this section, we consider the rat pup dataset (Pinheiro and Bates, 2000) that comes
from a study in which 30 female rats were randomly assigned to receive one of three
doses (high, low, or control) of an experimental compound. Under random intercept
modelling framework, the study was originally designed to compare the birth weights
of pups from litters born to female rats that received the high and low dose treatments
to the birth weights of pups from litters that received the control treatment. The data
consists of 27 litters, which are randomly assigned to a specific level of treatment, and
322 rat pups are nested within these litters. The study has an unbalanced design, since
the numbers of pups per litter are unequal, where the smallest litter has a size of 2
pups and the largest litter has a size of 18 pups. In addition, the numbers of litters per
treatment are also unequal, such that 10 litters were assigned to the control level of

“treatment, 7 to the high level of treatment and 10 11tters were a551gned to the low level
of treatment. : : :

A summary for weights by treatment and sex is shown in Table 4. We note that the
experimental treatments, high and low, appear to have a negative effect on mean birth
weight. That is the sample means of the birth weights for the pups born in litters that
received high and low treatments are lower than the mean of the birth weights for
those born in litters that received the control dose. Besides, the sample mean birth
weights of male pups are higher than those of females within all levels of treatment.

Table 4 Summary statistics for weight by treatment and sex

Treatment Sex Number .Of Mean Star.lde.trd Minimum Maximum
Observation : deviation .

High Female 32 5.85 0.600 448 7.68
Male 33 5.919 0.691 5.01 7.70

Low Female 65 5.838 0.45 4,75 7.73
Male 61 . 6.025 0.380 5.25 7.13

Control Female 54 6.116 0.685 3.68 7.57
Male 77 6.471 0.754 457 8.33

Figure 1 describes the litter effect on the rat pup birth weights using 27 box plots such
that the first 10 belong to control level followed by 7 box plots that belong to a high
level and the last 10 belong to the low level of treatment. It is obvious that the
medians of the 27 box plots are not same where the largest medians appear in litters 8,
17 and 27 and the smallest medians are in litters 1, 11, 12 and 18. Potential outliers
are also recognized in Figure 1 since some pups appear to have either lower or higher
weights than the other pups that belong to the same litter. Former analyses of this
dataset (e.g., Pinheiro and Bates, 2000) focused on using the conventional likelihood-
based methods to infer about the effect of the different treatment levels on the birth
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weight. Nevertheless, these methods did not figure out the potential effect of outliers
(see Figure 1) on the efficiency of the estimates and the consequent inference under
the random intercept modelling framework. In the rest of this section, we highlight the
gains from using the robust rank-based estimation method in terms of estimating both

the fixed effects and the variance components with higher efficiency compared to the
likelihood-based estimates.

Figure 1 Box plots for rat pup birth weights by litter

Figure 1 indicates a potential varying litfer effect on the distribution of the values of
the rat pup birth weights in each litter. Considering this effect to be random, the
individual birth weight observation (WEIGHTy; ) of the j™ rat pup within the k"

litter can be modeled using the following two-level random intercept regression
model: ‘ '

WEIGHT;; = fy + 8, TREAT1,, + B, TREAT2;, + B3 SEXy; + B4 LITSIZE,
+ Bs TREAT 1y SEXy; + B TREAT2), SEX,j + by, + €y;

k=1,.,27,j=1,..n

where n, refers to the litter size that fanges between 2 and 18 pups per litter,
WEIGHT;; is the response variable, TREAT1,, and TREAT2, denote level-2 indicator

variables for receiving the high and low levels of treatment, respectively, SEX, jisa

level-1 indicator variable for female rat pup and, LITSIZE, refersto the size of litter
k, where k = 1,...,27, The random litter effect, by, is assumed to have normal
distribution with mean zero and constant variance o %, and the residual error term,

€xj 1s also assumed to have a normal distribution with mean zero and constant

variance o 2 osiquals (Pinheiro and Bates, 2000).
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- Testing the need of random effect is conducted to decide whether the random effects
that associated with the intercepts for each litter can be omitted from the above model.
Based on the original rat pup data set, the four test statistics were calculated where all
of them yielded p-values that are less than the 5% nominal level which allows the
random effect by, (where k = 1, ..., 27) interpretation and that the random litter effects
should be retained in this model.

5. Conclusions

In this article, we gond 4l investigations of the performance of four most
commonly used tests fo mponents in the literature under random-intercept
models. Our comparison criteria are distinguished in the sense that we explored the
size and power of the tests when the error components distribution is contaminated.
Our simulation studies revealed that the simulation-based test using the LRT statistic
(T¢gr) is much powerful compared to the remaining tests. Nevertheless, the results
pointed out the unfortunate poor performance, in terms of the empirical test size, of all
competing tests when outliers are present in the response space. This opens the door

for future research where outlier resistant test statistics can solve the latter problem.
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