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ABSTRACT 

The aim of the present work is to make use of the human biomechanical energy to harvest 

ESC generated from the contact and separation as well sliding of the fabrics of the cloths 

with each other. The generated ESC can be used as power supply for the personal medical 

sensors like thermometers, electrocardiograph, wearable watches and wireless radio-

frequency communication system used in condition monitoring of the health of people.  In 

the present study, the behavior of electrostatic charge (ESC) generated from sliding of 

high density polyethylene (HDPE) on polyester fabrics is investigated. In addition, the 

coefficient of friction is studied. The relation between coefficient of fraction and 

electrostatic charge is discussed.  

 

The experiments revealed that as the weave size and the thickness of the strings increased 

friction coefficient and ESC decreased. This can be attributed to the fact that the number 

of fibers in contact with the counerface increased as the weave size and thickness of the 

strings decreased. This observation can be recommended for the manufacturer of the 

fabrics to control the strength of ESC of fabrics. 
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INTRODUCTION 

Harvesting renewable and green energy from ESC resources is of great need to 

compensate the consequences from fossil energy, [1]. Harvesting local energy is more 

efficient than constructing power plants of high cost and expensive infrastructure, [2, 3]. 

The conventional way to provide power for the electronics is to install batteries that have 

limited life. The replacement, management, and recycling of the huge number of batteries 

can represent high challenge, [2, 4, 5].  

 

The triboelectrification can result from contact and separation as well as sliding, [6, 7]. 

Materials are electrostatically charged after contact and sliding on each other, where the 

strength of the charges depend on the rank of the materials in the triboelectric series, [8 - 

12]. Materials are ranked in the triboelectric series due to their ability to gain or lose 

electrons depending on their physical property. Generally, the build-up of ESC would 
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result in failure of electronic appliances. Triboelectric series can be applied to select 

materials of certain value of ESC. Moreover, there are some practical applications. On 

the other hand, triboelectrification has found extensive interest to fabricate triboelectric 

nanogenerators (TENGs), that can be used for converting friction  into ESC for energy 

harvesters, [13]. 

 

The increase use of energy-harvesting textiles has received intensive attention due to their 

applications in wearable smart electronics. The blend of steel wire and polyester fibers 

coated by energy harvesting material generated ESC from textile and worked as 

nanogenerator (TENG). The collected ESC can light up a warning indicator, charging a 

capacitor, and provide energy for smart device. It was found that a smart blanket was 

designed to convert body movement and biomechanical energy into energy,[5]. 

 

The present work, ESC generated from sliding of high density polyethylene (HDPE) on 

polyester fabrics of different weave size and string thickness is investigated. Besides, the 

coefficient of friction is studied.  
  

EXPERIMENTAL 
The test rig shown in Fig. 1 is used to measure coefficient of fraction (COF) by using the 

load cell output. The output of the load cell signal was calibrated with normal load by 

Arduino program to determine the coefficient of friction, Fig. 3. Moreover, ESC in mV 

was measured by Arduino as shown in wiring diagram, Fig. 4. In addition, the vice is used 

to control the movement of fabrics is in perpendicular direction of the normal force as 

illustrated, Fig. 1, back and forth. However, using of two copper plates is essential to 

measure the output values of ESC. The fabrics were chosen in different polyesters weaves 

(A, B, C, D and E), Fig. 5. The normal load was 2, 4, 6, 8 and 10 N.   

 

Fig. 1 Test rig for measuring electrostatic charge and coefficient of friction.  
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Fig. 2 Illustration of the ESC generated from sliding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Wiring diagram for load cell signal.  

(A) 

(B) 
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Fig. 4 Wiring diagram of Arduino kit for DC volt measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Microphotographs of the tested fabrics. 

 

RESULTS AND DISCUSSION 
The coefficient of friction plays a major role in the tribological properties. Coefficient of 

friction (COF) is a dimensionless number and defined as the ratio between friction force 

and normal force. COF depends on the nature of the materials and surface roughness in 

both material sides. The normal force in this test is equal to the gravity force of the weight. 

 

Coefficient of friction drastically decreased with increasing the normal force, Fig. 6. It 

was observed that the type of fabrics influenced the friction values, whereas the weave 

size and the thickness of the strings increased, friction coefficient decreased. It seems the 

number of fibers in contact with the counerface increased as the weave size and thickness 

of the strings decreased. Fabric (A) represented the highest friction values, while fabric 

(E) showed the lowest values. The friction decrease with increasing the normal force may 

be explained on the bases that the load is ironing the fabrics, Fig. 7, and consequently the 

friction of the fibers drastically reduced.  
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Fig. 6 The relation between normal load and coefficient of friction for different fabrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Illustration of fabric interact in loading stage (A) no load, (B) in normal load stage 

& (C) full load. 
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Fig. 8 The relation between normal load and electrostatic charge for different fabrics 

 

 

Fig. 9 the relation between electrostatic charge and coefficient of fraction. 
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Figure 8 describes the relation between ESC and normal load. It is clearly observed that 

some of the tested fibers showed an increase in ESC up to maximum then decreased with 

increasing the normal load. While the others decreased down to minimum then slightly 

increased with increasing load. It is observed that the values of ESC recorded significant 

variance for the fabrics. The values of ESC increased as the weave size increased. The 

explanation of that behavior depends on the fact that the number of contacting fibers 

increased with decreasing both the weave size and string thickness as discussed in Fig. 6. 

This conclusion can be recommended for the manufacturer of the fabrics to control the 

strength of ESC of fabrics. 

 

The recorded values for ESC versus coefficient of fraction at different normal load for the 

tested fabrics is represented in Fig. 9. It can be observed that fabric (E) showed the highest 

ESC values up to 2900 mV at 0.55 COF, while fabric (A) displayed the lowest ESC 

compared to other tested fabrics. COF for (A) reached to 0.89.  

 

CONCLUSIONS 
From the present investigation, it can be concluded the followings: 

1. Coefficient of friction decreases with increasing the normal force due to ironing of the 

fabrics. 

2. Values of ESC recorded significant variation for the tested fabrics. The values of ESC 

increased as the weave size increased. 

3. ESC and COF decreased as the weave size and the thickness of the strings increased. 

This observation can be recommended for the manufacturer of the fabrics and TENGs to 

control the strength of ESC of fabrics. 
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