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PLATE GIRDER COMPOSITE BRIDGES

Ghada M. El-Mahdy”

ABSTRACT

Mono-symmetric plate girders are often used in simply supported composite bridges to
eliminate local plate buckling in the compression flange during construction. This causes the
neutral axis of the plate girder to shift downwards subjecting more of the web to compressive
stresses due to bending. In slender webs this increases the possibility of local buckling in the
compression part of the web during construction. However, depending on the slenderness
(width-to-thickness ratio) of the web, the post-buckling reserve capacity may accommodate this
local buckling within the elastic limit of the web for during construction loads. Hence, this
would allow for the use of more slender websin composite plate girder construction without the
need for longitudinal web stiffeners or the reduction of the overall composite section due to
local plate buckling in the web. Recommended values of stress level are given for mono-
symmetric plate girders in the non-composite stage based on the results of a non-linear finite
element analysis.
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1- INTRODUCTION

Plate girders in conjunction with a reinforced
concrete slab are often used as composite plate
girder bridges in positive bending. This has the
advantage of reducing the possibility of local plate
buckling in the plate girder’s web and compression
flange as aresult of composite action under service
loads. In addition to this, the during construction
loads acting on the plate girder section alone, DL,
may be designed to alow for local buckling in the
web while keeping the stresses within the elastic
limit of the plate girder section during
construction.

For plate girders with webs having a width-to-
thickness ratio in the very dender range, the cri-
tical stressiswell below the yield stress, and under
the effect of construction loads only, Fig. (1-a), the
post-buckling state of the slender web may cause a
nonlinear stress distribution, but the stresses in the
web may dtill be in the elastic range. This would
alow for the use of more dender webs for
composite plate girders keeping in mind that the
neutral axis will shift upwards with the onset of
composite action, as shown in Fig. (1-b). Hence,

preventing residual strains due to the yielding of
the section during the construction non-composite
stage and the after construction composite stage.
The stress distribution for both the non-composite
and composite stages for un-shored construction is
shownin Fig. (2).

Other researchers to study composite |-girders
are Gupta [1], Gupta et al. [2], Basker et al. [3],
and Y akel and Azizinamini [4].
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2- LOCAL PLATE BUCKLING

Loca plate buckling occurs in dender plate
elements when the compressive stress in the plate
element exceeds the critical plate buckling stress of
the plate element, as shown in Fig. (2), after the
onset of plate buckling, a wave-like propagation of
out-of-plane deformations breaks out increasing in
amplitude with the increase in loading. This causes
the compressive stresses to redistribute in the plate
element, concentrating in the regions supported by
stable boundary conditions. Due to the loss of in-
plane stiffness of the unsupported regions, compre-
ssive and tensile bending stresses develop through
the thickness of the plate, fluctuating along the
length of the plate. The stress at the stable edges
gradually increases with the increase in loading
after the onset of local buckling up to the yield
stress, oy. Once the edge stress has reached the
yield stress, the plasticization of the plate element
propagates in the nearby regions till the supported
parts of the plate element are assumed to have
reached the yield stress. Whereas, the unsupported
unstable internal part of the plate element is assu-
med to be ineffective. Hence, the plate element
does have a post-buckling reserve capacity which
can be within the elastic limit of the element if the
edge stress does not reach the yield stress capacity.

Actual stress distribution.
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Fig.2 - Concept of effective width

The elastic buckling stress, o, of dender plates
asderived by von Karman et al. [9] is:

B k7T2E t)z
12(1-2)\b

Ocr

which isinversely proportional to the square of the
width-to-thickness ratio, b/t, of the plate element.
The plate buckling factor, k, depends on the
longitudinal boundary conditions of the plate
element and the normal stress distribution in the
plate, ¥ = 0,/01, shown in Fig. (1). Expressions for
k for different boundary conditions can be found in
the Eurocode EC3 EN 1993-1-1:2003 [6] or the
Egyptian Code of Practice for Steel Construction
and Bridges ECOP-ASD [7]. The modulus of

elasticity, E, can be taken as 210,000 MPa and
Poisson’sratio, v, can be taken as 0.3.

From the expression for the uniform elastic
critical stress, given in Eq. (1), acting on a plate
with a width-to-thickness ratio of b/t we get:

Assuming an effective width of b, and a
uniform stress acting on it of ge, which can have a
value anywhere from the critical stress o to the
yield stress oy as shown in Fig. (2), then by
analogy we get:
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Hence, the ratio of the effective width b, to the
original width b, known as the effective width
parameter p, is:

b
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Assuming that the average uniform stress of the
nonlinear post-buckling stress distribution is o, as
shown in Fig. (2), the effective width is assumed to
be the width subject to a stress equal to the edge
stress, 0., of the nonlinear stress distribution such
that it develops a strength equal to the average
stress acting on the whole width.

Hence,

giving:

b
Gavz(flaea / OopOg o, (6)

Taking the non-dimensional slenderness para-
meter A, as:
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and substituting thisinto Eq. (6) gives:
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To account for the effect of residual stresses in
the moderately dender and the non-compact
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denderness ranges, the American Iron and Steel
Institute (AISI) [8] suggests the following express-
ion for the average stress.

Ap—0.22
Oy =g O 9)
An

Both Egs. (8, 9) are plotted in Fig. (3).
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Fig. 3- Normalized plate buckling curves

3 - EFFECT OF STRESS GRADIENT ON
LOCAL PLATE BUCKLING

To include the effect of stress gradient in the
plate element due to combined compressive and
flexural stressesin the member, as shown in Fig. 4,
the effective width parameter, p, is assumed to take
the form:
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Where x and y can be determined from the limits of
b/t for dtiffened dender plate elements in pure
compression, ¥ = +1.0, and pure bending, ¥ = -

1.0.
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Fig. 4- Schematic representation of stress gradient, ¥, due to
combined compressive and flexural stresses

This is the same method used by El-Mahdy and

Abu-Hamd [9, 10, and 11] to derive the current
equation for the effective width of stiffened slender
plate elements subject to a stress gradient in the
Egyptian Code of Practice for the Design of Steel
Construction and Bridges [7]. For example, using
the limits for pure compression and pure bending
given in the Eurocode EC3 [6],

$:423 for w=+10
$=1243 for y=-10

Where;

= 1/235/ o,

and taking
k = 4.0 for the case of pure compression and k =
23.9 for the case of pure bending and assuming o,
= oy gives the values 0.144 and 0.048 for x and y,
respectively. Hence, according to the limits of the
EC3[6]:
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Factorizing and approximating this leads to the
expression:
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which is close to the expression given in the EC3
EN 1993-1-5:2006 [12].
Oav be A —0.055(3+y)
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The normalized average stress for the cases of
¥ =+1.0 and ¥ = -1.0, according to Eq. (12), are
plotted in Fig. (3).

4-FINITEELEMENT ANALYSIS

A finite element parametric anaysis, using
COSMOS 2.6 software, is conducted on models of
plate girders having a web depth of 1000 mm and
varying the web thickness, t,, from 5 mm to 11
mm giving a width-to-thickness ratio for the web
varying from 200 to 91. The compression flangeis
kept constant in the non-compact range having a
size of 200 x 11 mm, whereas, the size of the
tension flange is increased to achieve a stress
gradient in the web of ¥'=-1.0, -0.8, -0.6, and -0.4,
asshownin Fig. (5).
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Fig. 5- Schematic representation of parametric plate girder
Cross-sections

A model with asimply supported span of length
L = 10 m is used. In the actua finite element
model the height of the web is modelled having a
depth of 1000 mm plus half the thickness of both
the compression flange and the tension flange.
This causes a dlight decrease of the stress gradient
in the web due to a minor change in the position of
the model’s neutral axis, but this decrease is
negligible. Both flanges are laterally supported as
shown in Fig. (6 -a) to prevent any out-of-plane
lateral torsional-flexura buckling occurring in the
compression flange. Elastic-plastic shell elements
are used to model the flange and web plate
elements, however, the end parts of the top and
bottom flanges are stiffened by increasing their
thickness and taken as elastic shell elements to
overcome local deformations due to loads applied
to these flanges. The material of the model is
taken as elastic-perfectly plastic with a modulus of
elasticity of 210 GPa and a yield stress of 350
MPa.

The compression and tension flanges of each
model are loaded to cause a moment equa to the
yield capacity of the section. This is achieved by
applying equivalent end compression and tension
forces in the top and bottom flanges, respectively,
according to the following formulas:

Fet:Atf Fy 1+)gt—l‘\:’L ........................ (15
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This gives ayield moment, My, of:
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Where:

Fe¢ and Fg, are the equivalent compression and
tension forces assumed to be concentrated at the
centroids of the flanges that cause a moment equal
to the yield moment capacity of the section,
respectively; Ay and Ay are the areas of the top and
bottom flange plates, respectively; and h,, and A,
are the depth and area of the model’s web plate,
respectively.

The results of the linear analysis conducted on
the finite element models verify that the gross
dtiffness of the model, caculated from the
midpoint deflection, A, compare accurately with
the analytic expression for a simply supported
beam subject to a uniform moment, M, viz, | =
ML%8EA. The position of the neutral axis can also
be determined from the normal stress distribution
in the deflected model. Excessive stresses are
noted in the flanges near the loaded edges. Figure
(6-b) shows the normal stress distribution in the
deformed model with aweb thickness of 5 mm or a
web slenderness of 200 and a bottom flange sized
to give astress gradient of ¥ =-0.6.

RC CLR v
-

a- Finite element model

b- Deformed shape and stress distribution
Fig. 6- Typical finite element model and normal stress
distribution of linear analysis

A nonlinear analysis which follows the
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Newton-Raphson incremental-iterative procedure
is used to detect the propagation of local plate
buckling in the slender web. Aninitial 1 mm out-
of-flatness at the center-point of the web is used in
the model to initiate local web buckling.

Finally, afinite element analysis of the compo-
site section, shown in Fig. (7), using aslab of 2000
x 200 mm with a concrete cube strength, f.’, of 40
MPa and uniformly loaded above the dlab gave
approximate values of the residual capacity of the

composite section in the after construction phase.

Fig7- Normal stressdistribution in composite section

5- DISCUSSION OF RESULTS

Figure (8) illustrates the in-plane membrane
normal stress distribution and the out-of-plane
local plate buckling of the web in flexural com-
pression for the model with a web slenderness of
200 (i.e., t, = 5 mm) and a stress ratio of ¥ =-0.6.
At a stress level of 1.720,, shown in Fig. (8-a), it
can be seen that a notable amount of local buckling
in the compression part of the web has occurred
without causing any distortional buckling in the
non-compact adjacent compression flange, and
without exceeding the elastic limit as shown by the
maximum compressive stress of 146 MPa. Where-
as, for astresslevel of g,= 350 MPa, shown in Fig.
(8-b), the local buckling of the web in compression
is greatly magnified causing distortional buckling
in the adjacent compression flange. Figure (8-C)
shows the stress distribution along the web for the
same model at different stress levels. It can be
seen that the stress distribution along the web
remains relatively linear even after local buckling
has initiated at the critical stress level, however,
considerable nonlinearity in the stress distribution
occurs near the end of the nonlinear analysis as the
stress level approaches the yield stress. This is
also demonstrated by the load-deflection curves
shown in Fig. (8-d). It can aso be noted that the

neutral axis tends to shift upwards with the
occurrence of loca plate buckling in the web and
the nonlinear stress distribution.
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Figure (9) shows the deformed shape and normal
membrane stress distribution for the model with a
web slenderness of 125 (i.e, t, = 8 m) and a bottom
flange proportioned to give a stress ratio of ¥ = -
0.6. A dlight amount of local web buckling can be
detected at a stress level of 1.470. where the
maximum compressive stress is 337 MPa and
hence is still below the yield stress, as shown in
Fig. (9-a8). However, at a stress level of oy the
local buckling in the web is magnified causing
distortional buckling in the compression flange, as

shown in Fig. (9-b.c) shows the stress distribution
along the web for this model at different stress
levels. It can be seen that the stress distribution
along the web remains relatively linear even after
local buckling has initiated at the critical stress
level, however, a dlight nonlinearity in the stress
distribution occurs near the end of the nonlinear
analysis as the stress level approaches the yield
stress. The dlight nonlinearity is again shown in
the load-deflection curvein Fig. (9-d).
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Finally, Fig. (10), shows the deformed shape
and normal stress distribution for the model with a
web slenderness of 100 (i.e, t, = 10 mm) and a
lower flange proportioned to give a stress ratio of
¥ =-0.6. At astress level of = g, the maximum
stress is close to o, and very little local web
buckling has occurred, as shown in Fig. (10a8). In
fact, at astresslevel of 1.090, the local buckling is

till hard to detect although the section has yielded,
as shown in Fig. (10-b, ¢) shows the stress distrib-
ution along the web for this modd at different
stress levels. It can be seen that the stress distrib-
ution along the web remains linear up to the end of
the nonlinear analysis as the stress level approa-
chestheyield stress. Thislinearity is aso depicted
in the load-deflection curves shown in Fig. (10 d).
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The recommended values of stress level with
respect to the critica stress for other stress
gradients as determined by the nonlinear finite
element analysis are listed in Table 1 and are
plotted in Fig. (11).

Table 1- Recommended values of stresslevel
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From the finite element results of the composite
sections, it can be noted that increasing the
thickness of the web results in a minor increase in
composite capacity. Whereas using a greater value
of stress gradient (i.e., ¥ = -0.4) grestly increases
the composite capacity 2 — 3 times, and any lossin
the capacity of the non-composite section due to
the buckling of the dlender web can be
compensated for by wusing shoring during
construction.

6- CONCLUSION

The finite element parametric analysis shows
that mono-symmetric non-composite plate girders
with dlender webs can be stressed beyond the
critical stress, initiating the onset of local buckling
of the web in flexura compression, without
exceeding the elastic limit. However, due to the
occurrence of excessive loca buckling defor-
mations in dender webs causing distortional
buckling in the compression flange, the following
stress limits are recommended depending on the
stress ratio in the web; 1.70, for webs in the very
dender range decreasing to 1.00,, for webs in the
less slender range.
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