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This paper presents the two uncoupled elastoplastic-damage models; uncoupled 

Lemaitre’s and Vaz’s damage models. The two models are implemented into the 

finite element ABAQUS software using user routine UMAT to analyze and 

predict damage and damage evolution. In the context of von-Mises yield criteria, 

the damage variable and fracture indicator are predicted, in addition to the von-

Mises stress and the effective plastic strain. Both the elastoplastic tangent 

operator and the return mapping procedure are formulated using the consistent 

formulation. Two cases are analyzed; the first one is an axisymmetric notched 

bar, while the second case is a plane strain doubled notched plate. In addition to 

the aforementioned predictions, a parametric study is carried out to explore the 

effect of the damage denominator and damage exponent on the damage 

behavior. It is concluded that the two models succeeded in the prediction of the 

point of fracture, while the uncoupled Lemaitre's damage model gives a more 

efficient description of the damage band. 
 

 

 

1. Introduction 

Elastoplastic analyses have a complicated nature 

because the stress is normally a function of the 

history of strain. Due to the complication of 

equations, closed-form solutions are not valid to the 

plurality of these problems, and therefore, numerical 

methods are usually used for solving the problem [1]. 
 

The Prandtl–Reuss model which is called J2-flow 

theory, is widely used in computational elasto-

plasticity. In the classical form of the J2-flow theory, 

the materials are characterized by an isotropic strain 

hardening model or an elastic-perfectly plastic model. 

In the last five decades, a huge number of 

contributions were produced to modify the model to 

include the complexity of the behavior of materials; 

anisotropy, linearity, and nonlinearity of kinematic 

hardening, strain rate dependence, softening, and 

damage [2-5].  

At the level of the updating procedure of stress, 

the integration of the elastoplastic constitutive 

equations can be performed numerically or by exact 

integration [6]. The implicit integration scheme is 

one of the important techniques in which the stress 

and the plastic variables are updated at the end of the 

load step. Generally, nonlinear equations in implicit 

methods should be solved using an iterative process 

like Newton-Raphson [1]. 

The work with the implicit integration is initiated 

by Wilkins [7] who suggested an algorithm for the 

return mapping of the von-Mises perfect plasticity. 

Then, Kreig and Key [8] modified the integration by 
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adding the effects of the kinematic and isotropic 

hardening into the model of plasticity. The algorithm 

for the plane stress case was presented by Simo and 

Taylor [9]. Also, Ortiz and Popov [10] and Dodds 

[11] compared several different integration schemes 

and found that the return mapping technique is better 

than the other techniques. Later, Hopperstad and 

Remseth [12] along with Kobayashi and Ohno [13] 

applied the return mapping algorithm to cyclic 

plasticity. For more details about numerical 

integration techniques, see [14-16]. 

In the damage mechanics area, Kachanov [17] 

developed the first framework for the damage 

mechanism which includes the damage due to creep. 

In the field of damage in elastoplastic analyses, 

Lemaitre [18] presented his damage model in its 

uncoupled elastoplastic-damage version and coupled 

version. Then, Lemaitre [19, 20] and Lemaitre et al. 

[21, 22] presented their full coupled elastoplastic- 

damage model which made the base for a lot of 

works by many researchers. De Souza [15, 23] put an 

algorithm for fast integration of the constitutive 

damage equations of the Lemaitre full coupled 

damage model and called it the simplified Lemaitre 

model which is considered as an effective model for 

damage evolution. Vaz and Bressan [24] and Vaz et 

al. [25, 26] presented their uncoupled criteria for 

damage evolution and called it the “fracture 

indicator” which is a useful and effective tool to 

indicate the damage location. 

Generally, the uncoupled damage models are 

simple. These models assume that the damage state 

of the structure does not affect the state of strain or 

stress, i.e., there is decoupling between the 

constitutive equations of strain and damage. This 

critical assumption is not bad as far as the 

calculations of the structure are not too accurate [18]. 

The uncoupled models are effective fast tools that are 

suitable for design purposes [27]. 

 In this paper, the damage behavior of ductile 

materials is predicted and evaluated in the framework 

of von-Mises yield criteria and uncoupled Lemaitre’s 

and Vaz’s damage models. Employing the elasto-

plastic consistent formulation, a user subroutine for 

plasticity and damage evolution is implemented into 

ABAQUS software. The present model capable of 

evaluating the damage variables; damage variable 

and fracture indicator, von-Mises stress, and the 

effective plastic strain. After mesh sensitivity 

analysis, a parametric study is conducted to 

investigate the impact of the damage denominator 

and damage exponent factors on the deformation and 

damage behavior of two example problems. 

2. Comparison of Models 

In any damage model, there is a variable that is 

used to evaluate the damage state in the domain. In 

the coming sections, the differences in the damage 

evolution variables will be represented. 

2.1. Uncoupled elastoplastic-damage Lemaitre 

model. 

Assume a cylinder under unidirectional tensile 

load and the area carrying the load is A. During the 

tensile loading, there are micro-voids appear in the 

cylinder. Thus, the area that carries the load is 

reduced to the so-called effective area A*. The 

damage variable that evaluates the damage state in 

the domain is simply equal, 

 

    
  

 
                                                              

 
It is noticed that     corresponds to the 

undamaged state, while     , where   , is a 

material parameter identifying a certain critical value 

at which crack initiates [18, 28]. 

To extract an equation for the damage variable in 

ductile materials, Lemaitre [18] made a mathematical 

proof based on the assumption that damage in ductile 

material starts after the material interning to the 

plastic zone. To achieve that, the equation of the 

damage variable can be expressed as 
 

    (
  

 
)
 

  
 
                                                   

 
where   ̅  is the incremental effective plastic strain, 

and r and s are respectively, experimentally obtained 

material parameters, defined as the damage 

denominator and the damage exponent. The damage 

energy release rate Y is given by [15]. 
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where p and q are the mean and von-Mises equivalent 

stresses, respectively, E is Young’s modulus, and ν is 

Poisson’s ratio. 

2.2. The Uncoupled elastoplastic-damage Vaz’s 

model. 

Vaz [24] proposed a fracture indicator based on 

the total damage work. Based on the proposed Vaz 

criterion, the fracture detector    is obtained using the 
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integration through the whole loading path until the 

damage variable reaches its critical value    [24-26], 

 

                     (
  

 
)
 

  
 
            

3. Constitutive Model 

The basic elastoplastic equations used in the 

present work are based on the work presented in [14, 

15] for plane strain and axisymmetric cases. 

The law of linear elasticity, 

 

                                                                     

 

where    is the isotropic elasticity matrix,   and    

are, respectively, the stress and elastic strain vectors. 

The von-Mises yield function can be expressed as 

 

 (    )  √   (    )                           

 

where   is the yield function,    is the second 

invariant of the stress deviator  , where    
   ‖ ‖ , and    is the current yield strength, which is 

a function of effective plastic strain  ̅ , such that 

 

       ̅
                                                       

The associative flow rule may be written as  

 

      
  

  
                                                 

 

where     is the incremental plastic strain vector and 

   is the incremental plasticity multiplier. The 

(Prandtl–Reuss) flow vector   is given by 

 

  
  

  
 √ 

 ⁄
 

‖ ‖
                                             

 

With   ̅  be the incremental effective plastic 

strain, the associative hardening rule, with the 

evolution equation for the hardening internal variable 

is given by  

 

  ̅  √ 
 ⁄ ‖   ‖                                  

 

For small deformation assumption, the total 

incremental strain vector    can be written as 

 

                                                              

 

and the hardening rule and the hardening slope H can 

be defined as 
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     ̅
 

  
    (      ̅ 

)
                              

 

The upper equation in Eq. (12) is the linear hardening 

rule and the lower is the exponential hardening rule. 

 

  
   

   ̅
                                                                 

 

where     is the incremental elastic strain vector,    

is the strength coefficient,    is the hardening 

infinity variable, and   is the exponential rule’s 

exponent. 

The elastoplastic consistent tangent operator     

is expressed as [15]   
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where   denotes the identity matrix, i.e.,     
    ,   is the shear modulus,   is the bulk modulus, 

and q is the trial effective stress. The deviatoric 

identity matrix    is given by 
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The elasticity matrix   , 

 

                                                       

The triaxiality function   , 
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             (

 

 
)
 

                  

Substitution of Eq. (17) into Eq. (3) yields 
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The incremental damage variable    may be 

expressed as follows [15, 18, 21, 23, 29, 30]: 

 

   (
  

 
)
 

  ̅                                  

 

From Eqs. (4) and (18), the incremental fracture 

indicator     can be written as [24-26]  
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4. Numerical implementation  

In the framework of the FEM, the return mapping 

and updating elastoplastic and damage variables are 

implemented as follows.  

For the (n+1)
th

 load increment; 

(I) Elastic predictor: 

Given    and the state variables, evaluate the 

elastic trial state using the trial elastic volumetric and 

deviatoric strains,   
      

 and   
      

, respectively, i.e. 
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(II) Check plastic admissibility: 

    
          ̅

 
   
         

THEN set               
       and EXIT 

      ELSE 

 

(III) Return mapping step: 

Solve the return mapping equation to obtain the 

plasticity multiplier, 

 

 ̃         
             (  ̅

 
   )    

 

(VI) Update the state variables: 
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(V) Update the damage variables: 
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EXIT.  

5. Results 

In this section, two applications are presented to 

make the comparison between the uncoupled 

Lemaitre’s and Vaz’s damage models. The first one 

is a notched axisymmetric bar [15], while the second 

application is a double notched plate [31, 32]. For 

each application, the von-Mises stress, the effective 

plastic strain, damage variable, and fracture indicator 

are predicted. In addition to these outcomes, a 

parametric study is carried out to find the effect of 

the damage denominator r and the damage exponent 

s on the damage behavior. 

5.1. The axisymmetric notched bar 

Consider a cylindrical notched bar subjected to 

axial loading in terms of prescribed displacement U 

of 0.576 mm, as shown in Fig. 1. Due to symmetry, 

only one-quarter of the domain is needed to be 

modeled with eight-node axisymmetric quadrilateral 

elements, as presented in Fig. 1. The bar material is 

AISI 1010 (DIN CK10) rolled low carbon steel, with 

material properties presented in Table 1. 
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Fig. 1. The geometry of the axisymmetric notched 

bar. 

 

Table 1. Material mechanical properties [15, 23, 33, 34]. 
 

Parameter Symbol Value 

Modulus of elasticity   210 GPa 

Poisson’s ratio   0.3 

Yield strength     620 MPa 

Hardening law    (        [         ̅  ]) MPa 

Damage denominator 
  

3.5 MPa 

Damage exponent   1.0 

 

Three FE grids are used to study the effect of 

mesh size on the analysis. Coarse, medium, and fine 

meshes with 265, 471, and 531 elements, 

respectively, are used. For the three FE grids, results 

of the von-Mises stress, effective plastic strain, 

damage variable, and the fracture indicator at the 

central point of the bar are presented in Figs. 2-5. It is 

noticed from Figs. 2 and 3, the values of the von-

Mises stress and the effective plastic strain are almost 

identical in the three cases. The values of the damage 

variable and the fracture indicator are nearly identical 

in the case of the medium and fine meshes but lower 

than their values in the case of coarse mesh, as 

depicted in Figs. 4 and 5. 

Figures 6 and 7 display the distribution of the 

damage variable and fracture indicator, respectively. 

In the three FE grids, the maximum damage is found 

at the central point of the bar, point A shown in Fig. 

1. These results are consistent with the prediction of 

the Lemaitre’s coupled elastoplastic-damage model 

in [15, 23, 33]. Unlike the damage evolution 

variables, the von-Mises stress and effective plastic 

strain are found to be maximum at the point B, see 

Fig. 1. 

 

 
Fig. 2. Variation of von-Mises stress at the central 

point of the bar with three FE meshes. 

 

 
Fig. 3. Variation of effective plastic strain at the 

central point of the bar with three FE meshes. 

 

 
Fig. 4. Variation of the damage variable at the central 

point of the bar with three FE meshes. 

 

 
Fig. 5. Variation of the fracture indicator at the 

central point of the bar with three FE meshes. 
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(a) Coarse mesh                   (b) Medium mesh 

 

 
(c) Fine mesh 

 

Fig. 6. The contours of the damage variable for the 

notched bar for three meshes. 

 

 
(a) Coarse mesh                   (b) Medium mesh 

 

 
 (c) Fine mesh 

 

Fig. 7. The contours of the fracture indicator for the 

notched bar for three meshes. 

 

A parametric study has been carried out using the 

medium mesh on the material damage parameters r 

and s to know their effect on the damage evolution 

variables. All results are taken at point A, which is 

the maximum damaged point. 

From Figs. 8 and 9, it is noticed that the values of 

both damage variables and fracture indicator decrease 

with the increase of parameter r. The reason for these 

results is that the parameter r is in the denominator of 

ratio Y/r in Eqs. (2) and (4), respectively, damage 

variables and fracture indicator. 

From Fig. 10, it is noticed that the values of the 

damage variable increase with the increase of 

parameter s. On the other hand, the variation of the 

parameter s has a relatively negligible effect on the 

fracture indicator, as shown in Fig. 11. Also, the 

value of the fracture indicator slightly decreases with 

the increase of the parameter s. This is attributed to 

that the parameter         is in the nominator in 

Eq. (4), which defines the fracture indicator. As the 

value of      , increasing the parameter s 

decreases the value of         , and consequently, 

the fracture indicator decreases. 

 

 
Fig. 8. Variation of the damage variable at the central 

point of the bar with r parameter. 

 

 
Fig. 9. Variation of the fracture indicator at the 

central point of the bar with r parameter. 
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Fig. 10. Variation of the damage variable at the 

central point of the bar with s parameter. 

 

 
Fig. 11. Variation of the fracture indicator at the 

central point of the bar with s parameter. 

 

5.2. The double notched plate 

Consider a double notched plate subjected to axial 

loading in terms of prescribed displacement U of 0.17 

mm, as shown in Fig. 12. Due to symmetry, only 

one-quarter of the domain is needed to be modeled 

with eight-node plane strain quadrilateral elements, 

as presented in Fig. 12. The material properties are 

presented in Table 2. 

 

 
Fig. 12. The geometry of the plain strain double 

notched plate. 

 

 

 

 

Table 2. Material mechanical properties. 

Parameter Symbol Value 

Modulus of elasticity E 220 GPa 

Poisson’s ratio   0.3 

Yield strength     700 MPa 

Hardening law    (        ̅ ) MPa 

Damage denominator r 3.0 MPa 

Damage exponent s 1.0 

 

Three FE grids are used to study the effect of 

mesh size on the analysis. Coarse mesh (42 

elements), medium mesh (114 elements), and fine 

mesh (224 elements). From Figs. 13 and 14, it is 

noticed that the von-Mises stress and the equivalent 

plastic strain decrease with the mesh refinement. As 

the values of the effective plastic strain and von-

Mises stress are the main effective variables in the 

equations of both damage evolution variables, both 

damage evolution variables decrease with the mesh 

refinement, as is noticed in Figs. 15 and 16. Also, it is 

noticed that the damage band in the case of the 

damage variable is clearer than the fracture 

indicator’s contours. The reason for this non-clarity is 

the presence of         in the nominator of the 

incremental fracture indicator’s equation (Eq. (4)), 

which decreases any change in the variables of the 

equation.  

Figures 17 and 18 display the distribution of 

damage variable and fracture indicator, respectively. 

In the three FE grids, the maximum damage is found 

at the central point of the plate (point C), see Fig. 12. 

These results are consistent with the prediction of the 

Lemaitre’s coupled elastoplastic-damage model in 

[31, 32]. Like the damage evolution variables, the 

von-Mises stress and effective plastic strain are found 

to be maximum at the same point C. 

 

 
Fig. 13. Variation of von-Mises stress at the central 

point of the plate with three FE meshes. 
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Fig. 14. Variation of effective plastic strain at the 

central point of the plate with three FE meshes. 

 

 
 

Fig. 15. Variation of the damage variable at the 

central point of the plate with three FE meshes. 

 

  
Fig. 16. Variation of the fracture indicator at the 

central point of the plate with three FE meshes. 

 

The parametric study on the parameters r and s is 

carried out on the fine FE mesh. From Figs. 19 and 

20, it is noticed that the values of both damage 

variables and fracture indicator decrease with the 

increasing of parameter r. This is due to that the 

parameter r is in the denominator in Eqs. (2) and (4), 

respectively, damage variables and fracture indicator. 

 

 

 

 

 

 

 
a) Coarse mesh                    b) Medium mesh 

 

 
c) Fine mesh 

 

Fig. 17. The contours of the damage variable for the 

double notched plate for three meshes. 

 

 
a) Coarse mesh                    b) Medium mesh 

 

 
c) Fine mesh 

 

Fig. 18. The contours of the fracture indicator for the 

double notched plate for three meshes. 
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Fig. 19. Variation of the damage variable at the 

central point of the plate with r parameter. 

 

  
Fig 20. Variation of the fracture indicator at the 

central point of the plate with r parameter. 

 

From Fig. 21 it is noticed that the values of the 

damage variable increase with the increasing of 

parameter s. On the other hand, from Fig. 22, the 

values of the fracture indicator decrease with the 

increase of the parameter s. These results are owing 

to that the term        is in the nominator in Eq. 

(4) which defined the fracture indicator. As the value 

of       which means that the value of     
     decreases with the increase of the parameter s 

which decreases the value of the fracture indicator. 

Comparison of Figs. 8-11 with Figs. 19-22, 

respectively, shows that the effect of the parameters r 

and s on the damage variable and the damage 

indicator in the double notched plate is greater than 

that in the notched bar case. This is due to that the 

predicted effective plastic strain in the double 

notched plate is much greater than that in the double 

notched bar, as depicted in Figs. 3 and 14.  Also, the 

geometry of the problem and the material properties 

significantly contribute to the influence of the 

parameters r and s on the damage evolution. 

 

 

 
Fig. 21. Variation of the damage variable at the 

central point of the plate with s parameter. 

 

 
Fig. 22. Variation of the fracture indicator at the 

central point of the plate with s parameter. 

6. Conclusion 

In the context of von-Mises yield criteria, both 

uncoupled Lemaitre’s and Vaz’s damage models are 

implemented into ABAQUS software using 

elastoplastic consistent formulation. Damage 

variable, and fracture indicator, as damage variables, 

are predicted, in addition to the von-Mises stress and 

the effective plastic strain. The presented models 

have succeeded in predicting the point at which 

fracture initiates. The damage variable is clearer than 

the fracture indicator in the field of representing the 

damage band. The uncoupled damage models can be 

useful in predicting the damage band and the location 

of the point at which crack initiates. Then after, mesh 

adaptation is made around that point before running 

the fully coupled models to minimize the effect of 

mesh sensitivity. The parametric study that carried 

out on the effect of damage denominator and damage 

exponent on the damage behavior showed that the 

damage variable decreases with increasing damage 

denominator and increases with the increase of 

damage exponent. On contrary, the fracture indicator 

decreases with the increase of both damage 

denominator and damage exponent.   
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