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Abstract 

An overview of the recent techniques used in surface metrology is presented. The 
techniques used in surface metrology can be classified into two: the first is contact measuring 
systems and the other is non-contact measuring systems. We start with explanation of the 
contact and non-contact measuring systems with their merits and demerits in surface 
metrology. Since the non-contact measuring systems have many advantages in surface 
metrology, so we proceed by focusing on the non-contact measuring systems and their recent 
technology. Then we proceed with explanation of the most common methods attached with 
the non-contact measuring systems used to extract the surface of the object being measured in 
three dimensional (3D). Recent techniques such as a rotating diffuser and convolution of 
Chebyshev type 2 and elliptic filters, proposed by the author, are explained in detail to 
enhance the measurement in surface metrology. Finally, we present some of potential 
applications in surface metrology such as measurement of steep smooth surfaces, rough 
surfaces, and opaque surfaces. The selected applications illustrate the major merits of using 
the non-contact measuring systems: it is possible to measure a relatively large field of view 
with high precision and in real-time. We end with an overview about estimation of the 
uncertainty budget in non-contact measuring systems.    

Keywords: Surface metrology; Interferometry; Phase unwrapping; Terahertz technology; Phase 

shifting. 

 

1. Introduction 

Surface metrology has many applications in engineering, medicine, and science [1-3]. 

There are two common measuring systems available for extraction of the object being 

measured: contact (tactile) and non-contact (non-tactile) measuring systems. Contact 

or tactile measuring systems are still very common and in many cases meet the 

requirements of industry in term of accuracy [4]. However, due to the pointwise 

contact recording, a complete surface measurement is in most cases not possible. 

Moreover, these measuring systems require direct contact with the surface being 

measured, which are sometimes not convenient, for example in biological and soft 

samples [5]. Moreover, the contact measuring systems is considered costly, slow, 

unsafe, and non-compact. Non-contact or non-tactile measuring systems can 
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overcome these restrictions. They are non-contact i.e. don’t require contact probes 

with the surface being measured, so it is considered safer. Moreover, they are quite 

faster and cheaper in comparison with the contact measuring systems. The area of 

measurement by the non-contact measuring systems is considered wide and various, 

ranging from research laboratories to industrial production lines. Moreover, it is used 

intensively nowadays in the field of medicine due to its merits in terms of contrast and 

non-destructiveness [6]. Non-contact measuring systems can be utilized to extract the 

phase map of smooth objects easily. However, rough surfaces usually destroy the 

phase through scattering and multiple reflections, which is observable as speckle 

effect under coherent lighting [7-8]. A rotating diffuser and convolution of Chebyshev 

type 2 and elliptic filters are introduced by the author to reduce the speckle noise. The 

non-contact measuring systems are commonly called optical systems or 

interferometry. An interferometer is a device that generate the interference pattern or 

interferogram. It is classified into two types: common-path and non-common path. 

The interferogram is obtained from interference of two signals: one signal comes from 

the reference mirror and the other comes from the object being measured. The 

interferogram captured by a CCD or CMOS camera is called modulated 

interferogram. The modulated interferogram is demodulated to extract the phase map 

of the object being measured. Once the phase map is obtained, the height map of the 

object being measured is extracted via phase-height conversion equation or via fitting 

algorithms. There are three common methods used for interferogram demodulation. 

The first is the Fourier transform method [9], the second is the wavelet transform 

method [10-13], and the third is the phase shifting method [14]. The Fourier transform 

method can be used to obtain the frequency information of an image. However, it 

does not tell us the right locations of these frequency components existing in the 

modulated interferogram. Therefore, the Fourier transform method is useful for 

analysis of stationary signals (i.e. signals whose frequency do not change with 

position). Modulated interferograms are commonly non-stationary signals, which 

have different characteristics at different positions in the modulated interferogram. To 

analyze the modulated interferogram, both spatial and frequency information should 

be known. The Fourier transform is the most popular algorithm used for interferogram 

demodulation, but it has poor ability to localize the frequency components of a signal 

with respect to position and hence provides results with large error [15]. Therefore, 

another type of transform is modified, namely, Windowed-Fourier Transform (WFT) 

[16-18]. This version is used for demodulation to provide time-frequency 

representation with better signal localization. The WFT is based on division of the 

non-stationary signal into small portions, which are assumed to be stationary. This is 

done using a window function of a selected width, which is shifted and multiplied 

with the signal to obtain the small stationary signals. The Fourier transform is then 

applied to each of these portions to obtain the required transform of the signal. This 

WFT method uses a fixed window length and therefore gives a fixed resolution at all 

times. The wavelet transform method improves the fixed resolution in the WFT 

method to some extent. Moreover, it is a suitable method for demodulation of non-

stationary signals and works well with noisy interferograms with no necessity for 

choice of window in the transform plane [19]. The aforementioned merits of the 

wavelet transform make it possible to explore the steep-abrupt samples, which have a 
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sudden variation. The phase shifting technique requires at least three temporal images 

of a given interferogram, with a step phase offset between the images. The obtained 

phase is a wrapped phase distribution. This method can deal with object discontinuity. 

There are many algorithms exist for the phase shifting such as the three-frame, four-

frame, five-frame methods. However, the most common phase shifting technique is 

the four-frame method [14]. The step phase offset between the images can be 

implemented either by using piezo electric transducer (PZT) or by polarization. Due 

to the non-linearity of PZT, the polarization method is commonly used the last 

decades, to generate the step phase offset. Recently, a spatial light modulator (SLM) 

is used to generate the step phase offset in all directions without moving parts. The 

merit of using the SLM is that no moving parts used in to generate the step phase 

offset. This means that the error due to vibration is reduced significantly. Moreover, 

the shift can be performed automatically in all directions, which in turn increases the 

spatial frequency and hence increases the resolution of measurement. 

2. Measuring systems in surface metrology  

    As we mentioned in section 1, there are two common methods used in surface 

metrology. The first is the contact measuring systems and the other is the non-contact 

measuring systems. 

 

2.1. Contact measuring systems  

Contact measuring systems can be classified into two types: contact measuring 

systems without probes and contact measuring systems with probes. The contact 

measuring systems without probes are used to measure the thicknesses, openings, 

depths, etc. of solid samples with moderate accuracy. Examples of contact measuring 

systems without probes are micrometers and calibers. Contact measuring systems 

with probes are used commonly to investigate points on large surfaces, parallelism, 

openings, etc.  with reasonable accuracy. Examples of contact measuring systems are, 

coordinate measuring machine (CMM) [4] and atomic force microscope (AFM) [20]. 

Measurements by contact measuring systems without probes are performed by 

inserting the solid sample in between the two jaws of the measuring system. The 

value of measurement is then appearing in digits at a display unit in case of digital 

measuring systems. Measurements by contact measuring systems with probes are 

performed point by point on the surface of the object being measured. The sample is 

positioned tightly on a flat surface and the probe scans over it point by point. The data 

of the points are recorded and stored in the machine. The software attached in the 

machine is used to extract information of the surface being measured. The accuracy of 

the contact measuring systems is affected by many factors such as the diameter of the 

probe and temperature. This means that the probe should be calibrated from time to 

time to ensure better measurement. Contact measuring systems with probes such as 

CMMs and AFMs are considered costly and slow. This means they are not suitable 

for real-time monitoring. Moreover, the probe can make scratches of the solid surface 

and hence it cannot be used to measure soft samples such as polymers and thin films. 

Also, the contact measuring systems with probes are not compact, which means that it 

is difficult in some cases to convert them to portable devices to be used outside the 

Lab. Recently, some types of AFMs for example are manufactured to be portable 
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devices with medium sizes. The aforementioned drawbacks of the contact measuring 

systems make us focus on alternative measuring systems, which are the non-contact 

measuring systems. The merits of the non-contact measuring systems are:  cheaper, 

safer, accurate and compact. The compactness of such devices allows them to be 

portable devices to be used easily in testing and calibrating the objects onsite.    

2.2 Non-contact measuring systems  

Non-contact measuring systems use electromagnetic light waves to illuminate the 

sample, so it is called physically non-contact. The measuring device used in this case 

is called interferometer. Interferometer is a device that is commonly used to produce 

fringes from the interference of two signals. Interferometers are classified into two: 

common-path interferometers and non-common-path interferometers. The main 

difference between common-path and non-common path interferometers is that the 

reference beam and object beam travel and reflect nearly in the same time in 

common-path interferometers, while they are not in the non-common path 

interferometers. This merit makes the common-path interferometers stable and not 

subject to vibration. Note that vibration leads to produce noise in the captured 

modulated interferogram and hence an error arises in measurement. Common-path 

interferometers are usually designed from one arm architecture, while the non-

common path interferometers are usually designed from two arms: one arm directs the 

beam to the reference mirror, while the other arm directs the beam to the object being 

measured. Young’s interferometer, Michelson’s interferometer, Mach-Zehnder’s 

interferometer are examples of non-common-path interferometers [1]. Lateral 

shearing interferometer (LSI) [6], Zernike’s phase contrast interferometer [21], and 

quantitative differential interference contrast (qDIC) interferometer [22] are examples 

of common-path interferometers. The lateral shearing interferometer provides a field-

of-view of approximately 165µm x 135µm, and the theoretical resolution of 0.6µm by 

the Rayleigh criterion and temporal stability as 0.76nm. Note that, the Fizeau 

interferometer is classified as near-common-path interferometer due to the fact that 

the reflected beams from the reference and the object are not exactly travel in the 

same time.  

2.3. Non-common-path non-contact measuring systems 

As we mentioned in section 2, Young’s interferometer, Michelson’s 

interferometer, and Mach-Zehnder’s interferometer are the common examples of non-

common-path interferometers. Michelson interferometers consist of a light source 

which is divided into two copies by a non-polarizing beam splitter. One copy travels 

to a reference mirror and the other copy travels to the object being measured. The 

reflected beams from the reference mirror and the object being measured are 

combined at the non-polarizing beam splitter to produce interference fringes. These 

fringes are captured by a CCD camera via an imaging lens placed in front of the CCD 

camera. Mach-Zehnder’s interferometers consist of a light source, beam expander, 

two mirrors (M), two non-polarized beam-splitters (NPBS), some lenses, and a CCD 

or CMOS camera. It could be said that, almost of the non-common-path non-contact 

interferometers consist of two arms; one employs as a reference and the other 

employs as an object, so these kinds of interferometers are called non-common-path 
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interferometers, because only two beams are combined. Recently, Abdelsalam 

proposed a new version of high stable non-common-path interferometer [23]. The 

proposed snapshot imaging interferometer based on a one-piece polarizing Michelson 

interferometric scheme, as depicted in Figure 1(a). The proposed interferometer does 

not require moving parts as in the Thorlabs polarimeter. It consists of three parts; 

collimating optics with a laser source and a linear polarizer fixed at 45
o
, a one-piece 

polarizing interferometer, and a sensing module including a linear polarizer with a 

rotation angle of 45
o
. A laser diode beam is used as a light source and collimated with 

a lens of a focal length of 75mm. The collimated beam with a diameter of around 

15mm transmits through a linear polarizer fixed at a rotation angle of 45
o
. After 

passing through the measured transmissive object, it passes through the one-piece 

polarizing Michelson interferometer, which includes a polarizing beam splitter with 

two optical flat mirrors. The polarizing Michelson interferometer is designed to be a 

one-piece to avoid vibration. Here, the optical path difference between the two arms 

of the one-piece polarizing Michelson interferometer is fixed to be in the range of 

30m to 50m to create a path difference and generate interference fringes. Note that 

the optical path difference in the one-piece polarizing Michelson interferometer is 

fixed tightly with stainless steel bars. The stability of the proposed interferometer is in 

the range of 0.02 degrees, which is around 1nm or less. The collimated beam passes 

through a non-polarizing beam splitter, then through a polarizing beam splitter to 

divide the beam into two states: one is P and the other is S. The reflected states pass 

through the polarized beam splitter and then reflected from the non-polarizing beam-

splitter to the linear polarizer to convert one component to the other i.e. from P to S or 

from S to P. The transmitted states from the linear polarizer is PP i.e. same 

components. The components are interfered and then recorded by a CCD or CMOS 

camera. The camera used here is a monochrome camera with a resolution of 2160 x 

2560 with pixel size of 6.5µm×6.5µm. 

 
Fig. 1. (a) Schematic diagram of the novel non-common path optical interferometric system. (b) 

Schematic diagram of the modified common path optical interferometric system. 
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Figure 2(a) shows a modulated interferogram captured using Figure 1(a) in the 

absence of the object. Figure 2(b) shows the extracted phase map of Figure 2(a).  

 

             Fig. 2. (a) Produced fringes from Fig. 1(a). (b) Unwrapped phase map of (a) by Itoh algorithm.          

The device can be used in many applications such as industry, health, criminal 

detection, etc. In industry, for example, the novel interferometer can be used to 

measure the polarimeteric parameters of quarter wave plates, polarizers, liquid 

crystals, etc., with high precision and within tens of microseconds. Because the novel 

interferometer is compact (a size of hand grip), it can be used as a portable device and 

can be used in a crime place. The Merits of using this devise are: simple, compact, 

and can extract the 3D phase of the sample within tens of milliseconds. The proposed 

device doesn’t have any mechanical rotations. This makes our proposed system a very 

fast and can extract the polarimetric parameters within tens of milliseconds. Also, the 

proposed device can extract information data at two dimensional not like the available 

commercial devices. The intensity of the interferogram in the absence and in the 

presence of the object being measured are given as:
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Where ϕ(-45
o
)=2k[zp-zs], and ϕ(θ

o
)=2k[zp-zs]+(δp – δs) with k is the wavevector given 

as k = 2π/λ, zp-zs is the distance difference between the components P and S from the 

mirrors to the PBS. The phase of the object is expressd as: 

                                      .),(),()45()()( yxyx sp                       (2.2) 

 The phase map extracted by Eq. (2.2) is then converted to height map as: 

                                                     ).(
4





h                                                 (2.3)  

The 1D profile can be plotted at any two points in the height map to calculate the 

height of the object being measured at any region in the map.  

2.4. Common-path non-contact measuring systems 

As we mentioned in section 2, Lateral shearing interferometer (LSI) [6], Zernike’s 

phase contrast interferometer [21], and quantitative differential interference contrast 

(qDIC) interferometer [22] are examples of common-path interferometers. The idea of 

the common-path interferometers is based on the fact that the beams travel and reflect 
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in the same path at the same time. The interferometer in [6] provides a simple 

experiment and a highly stable configuration. The interferometer consists of a laser 

source, three axes translation stage to adjust the sample, a microscope objective, a 

shear plate, and a CMOS or CCD camera. The beam emitted from the laser source 

passes through the sample and is magnified by the objective lens. The magnified 

beam falls upon the shear plate at an incidence angle of 45
o
. The light incident on the 

shear plate is reflected from both the front and back surfaces of the shear plate to 

produce two laterally sheared copies of the beam. The generated lateral beams are 

self-interfere and the produced interference fringes are recorded by the sensor. In 

Fizeau interferometer, the reference and the object being measured are in the same 

path, however, the reflected beams from the surfaces of both the reference and the 

object being measured are not identical. The reference and the object in this case 

should be very close in order to obtain identical reflected beams, so such 

interferometers are called near-common-path interferometry. Figure 1(b) shows a 

schematic diagram of the modified version of the Zernike’s phase contrast 

interferometer. This version is modified and published by the author in Ref. [24]. The 

system consists of a laser source (S), a beam expander, three polarizers (P1 (45
o
), P2 @ 

45
o
, 135

o
, P3 (45

o
)), two QWPs, and a CCD camera. The light from the laser source is 

expanded by the beam expander and then linearly polarized by a polarizer P1 fixed at 

an azimuth angle θ = 45°. The linear polarized light passes through a QWP1 set at an 

azimuth angle θ = -45° to the object (O). The two components of the transmitted wave 

field propagate to interfere at the image plane. The first component proceeds with no 

deviations, while the second component is modulated. The two components are in fact 

coherent because all the light comes from a single point source. Note that the Stokes 

parameter S2 is simply provided, however, the Stokes parameter S3 is calculated by 

adding additional QWP2. To extract the 3D phase of the object (ΔObj), we first extract 

the reference phase (ΔRef) in the absence of the object and then subtract it from the 

total phase (ΔT) in the presence of the object. Here, the total phase (ΔT) includes the 

phases of both the reference and the object. Note that the condenser lens (CL) and the 

objective lens (OL) are used to magnify the tiny objects. First, the reference phase 

(ΔRef) in the absence of the object is calculated. Then the object being tested is 

inserted in the optical system and the total phase (ΔT) is calculated. From the 

difference between the total phase (ΔT) and the reference phase (ΔRef), the object 

phase (ΔObj) is calculated. Here, the phase of the reference is calculated as 

 2R3R

-1

Ref S/S tan  , the total phase is calculated as  2T3T

-1

T S/S tan  , then the phase 

of the object being tested is calculated as .  RefTObj   

3. Interferogram analysis in surface metrology 

To extract the 3D surface shape of the object being measured, fringes are projected 

onto the object’s surface. The obtained interferogram is a modulated interferogram. 

To extract the phase map encoded in this modulated interferogram, the modulated 

interferogram is demodulated. The Fourier transform technique, the phase shifting 

technique, and the wavelet transform technique can demodulate the modulated 

interferogram. Each technique for demodulation has advantages and disadvantages in 

surface metrology. For example, the wavelet transform technique is more suitable for 
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the analysis of non-stationary signals rather than stationary signals. A stationary 

signal is a signal whose frequency contents do not change in time, whereas a non-

stationary signal is a signal whose frequency contents do change in time or position. 

Figures 3(a) and (b) show an example of stationary and non-stationary signals, 

respectively. The three techniques extract the 3D phase map in the range between –π 

to + π. Such phase is called wrapped-phase, so unwrapping algorithms are used to 

extract the 3D continuous phase. Examples of unwrapping algorithms are Itoh 

algorithm [25], Ghiglia algorithm [26], and Graph cuts algorithm [27]. The relation 

between unwrapped phase and wrapped phase is defined as: unwrapped phase = 

wrapped phase ± 2nπ, where n is an integer account for the number of 2π multiples. 

The next sub sections explain in detail the Fourier transform technique, the phase 

shifting technique, and the wavelet transform technique and present how the 3D 

surface topography of the object being measured is extracted from the modulated 

interferogram. 

   Fig. 3. (a) An example of a stationary signal. (b) An example of a non- stationary signal 

3.1. Fourier transform method 

The Fourier transform (FT) method is a well-known and popular method for 

interferogram demodulation. Takeda proposed the Fourier transform method in 

analyzing the modulated interferogram in 1982 [28]. The intensity of the modulated 

interferogram parallel to the y-axis can be expressed as:   

                     ),(2cos),(),(),( 0 yxxfyxyxyxg                                    (3.1) 

where α(x,y), β(x,y) are the background illumination and the amplitude modulation 

of the fringes, respectively, fo is the spatial carrier frequency, ϕ(x,y) is the phase 

modulation of the interferogram and x, y are axes in x and y, respectively. The 

expression of Eq. (3.1) can be re-writing as: 

                     ,),(),(),(),( 00 2*2 xfixfi
eyxceyxcyxyxg

 
                            (3.2) 

where,           2/),(),(,2/),(),( ),(*),( yxiyxi eyxyxceyxyxc    .                      

The spectrum of the interferogram can be expressed as; 

                      ).,(),(),(),( 0

*

0 yffCyffCyfAyfG                                        (3.3)
     where C(f - f

o
, y) and C*(f + f

o
, y) are the carrier signals and A(f, y) is DC term. Figure 

4(a) shows the 1D profile along the three spectra in frequency domain, and Figure 

4(b) shows selected spectrum after centering. A filter window is used to select the 

carrier signals and shifting that component towards the origin. 
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Fig. 4. (a) The spectra in frequency domain of a fringe pattern. (b) The selected frequency component.  

The inverse Fourier transform is then applied to the spectrum component C(f,y) to 

obtain c(x,y). The real and imaginary components of c(x,y) are expressed as: 

                    )),,(2cos(),()),(Re( 0 yxxfyxyxc                                          (3.4)
                     )).,(2sin(),()),(Im( 0 yxxfyxyxc                                             (3.5)
    

The phase is retrieved by dividing (3.5) by (3.4) as: 
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             (3.6)
        

The obtained phase is limited between -π/2 and π/2 due to the arctangent function. 

The wrapped phase should be unwrapped in order to remove the 2π ambiguity.  
   The Fourier transform is considered the most popular technique in surface 

metrology, but it has poor ability to localize the frequency components of a signal 

with respect to position and hence provides results with large error [15]. Moreover, 

when the signal is associated with noise, errors would be introduced into the analysis. 

Therefore, another type of transform is modified to analyze nonstationary signals, 

namely, Windowed-Fourier Transform (WFT) technique [16-19]. This version is used 

for interferogram demodulation to provide time-frequency representation with better 

signal localization.
 
The WFT is based on division of the non-stationary signal into 

small portions, which are assumed to be stationary. This is done by using a window 

function of a selected width, which is shifted and multiplied with the signal to obtain 

the small stationary signals. By introducing the Gaussian window in the spatial 

domain, WFT can achieve local analysis. The Fourier transform is then applied to 

each of these portions to obtain the required transform of the signal. This technique 

uses a fixed window length and therefore has some limitations as it gives a fixed 

resolution at all times. The WFT of a modulated signal s(x,y) is expressed as [16-19]:
 

                                       








 ,),(),(),( dxdyyxryxsffWFT yx
                                    (3.7) 

where r(x,y) = exp[-x
2
/2 y

2
 is the Gabor transform, which is a 

Gaussian function and the symbol * denotes the complex conjugate operation. Here 

the  and  are the standard deviations of the Gaussian function in x and y 

directions, and selected to be 10, respectively. The Gaussian window is selected 
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because it has higher emphasis on the data near the window center and lower 

emphasis on the data further away from the window center. By shifting the central 

position of the Gaussian window point by point and computing the WFT of the signal, 

the fundamental spectral component of each local signal can be extracted. Then, by 

integrating all these spectral components, a universal spectral component can be 

retrieved as: 

                                .),(),( 0000 








 ffFdxdyffWFT                                     (3.8) 

Finally, applying the inverse Fourier transform to the universal spectral 

component, the amplitude and phase can be calculated. This technique uses a fixed 

window length and therefore has some limitations as it gives a fixed resolution at all 

times. Wavelet transform (WT) method is used to extract the 3D phase with limiting 

the large errors in the FT method and extents the resolution in the WFT method. 

 

3.2. Wavelet transform method 

  The main concept of the wavelet transform is to divide a modulated signal into its 

various scaled and shifted versions of a mother wavelet. The wavelet transform is a 

suitable tool for the analysis of non-stationary signals. In this section, the Morlet 

wavelet transform method is explained to demodulate the interferogram row by row. 

A row of the modulated interferogram is projected onto the daughter wavelets, which 

are obtained by both translating and dilating a single basis function, called the mother 

wavelet. The resulting transformation, which is a two-dimensional complex array, 

contains the required phase information of that deformed interferogram’s row, which 

can be retrieved by determining the ridge of the transform. A modulus array and 

phase array can be calculated from the resulting two-dimensional complex array. The 

direct maximum method can be used to extract the ridge from the modulus array. 

Several families of mother wavelets are available such as the Haar, Paul, Shannon, 

Gaussian and Morlet wavelets. The choice of the mother wavelet that will be used 

must be adapted to the actual information that should be extracted from the signal. 

The Morlet wavelet provides better localization in both the frequency and spatial 

domains. The Morlet wavelet is a plane wave modulated by a Gaussian function, and 

it is expressed as: 

                                            ,)( 2/4/1 2xxi eex                                                         (3.9) 

where i = √−𝟏 , α is a fixed spatial frequency in the range of 5 to 6 to satisfy the 

admissibility condition. Daughter wavelets ψb,a are built by translation on the x-axis 

by b (shifting) as a location parameter and by a as a dilation parameter (scaling) of the 

mother wavelet ψ(x) as given by 

                                                   .
1

)(, 






 


a

bx

a
xab                            (3.10)  

A stretched wavelet means large scale wavelet, which has a slow rate of change and 

hence low frequency. On the other hand, a compressed wavelet means small scale 

wavelet, which has a rapid change and hence high frequency. The modulated signal 

ƒ(x) multiplied by scaled, shifted versions of the mother wavelet. The result are 
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wavelet coefficients that are a function of the scale a and the shifting b and can be 

expressed as; 

                                                ,)(
1

),( 












 
 dxxf

a

bx

a
baD                                           (3.11)  

where ƒ(x) in our case represents a row of a fringe pattern, * denotes complex 

conjugation. These coefficients refer to the closeness of the signal ƒ(x) to the wavelet 

at a particular scale a and translation b. This definition shows that wavelet analysis is 

a measure of the similarity between the daughter wavelets and the signal itself. The 

time and frequency localization of the wavelets in the time and frequency domains 

can be controlled by shifting the wavelet on the time axis and by changing the wavelet 

scale respectively. The result is two dimensional complex array and it is a function of 

the scaling parameter a and the shifting parameter b. The modulus and the phase 

arrays are expressed as: 

                              ,)),(Im()),(Re(),(
22

baDbaDbaDModulus                   (3.12)   

                                   .
)),(Re(

)),(Im(
tan 1









 

baD

baD
Phase                                                 (3.13) 

The obtained wrapped phase values are then unwrapped to remove the 2π ambiguity.  

3.3. Phase shifting method 

In comparison to Fourier transform method, phase shifting method is relatively 

simple. However, it requires at least three interferograms, with a phase offset between 

them, in order to extract the phase map of the object being measured. Note that in 

Fourier transform, only a single interferogram is required to extract the phase map of 

the object. The phase shifting method is classified into algorithms: the three-frame, 

four-frame, five-frame algorithms [29]. The most common phase shifting algorithm is 

the four-frame, which is described in this section as follows. The general equation of 

intensity of the obtained modulated interferogram can be expressed as; 

                                     ,),(2cos),(),(),( 0 yxxfyxyxyxg                      (3.14) 

To determine the phase ϕ(x,y) of the object being measured, the four frame algorithm 

was used to extract the phase map of the object. Four images are needed with mutual 

phase shifts of π/2 radians between them. The intensity in the four interferograms can 

be expressed as; 

                        ),(2cos),(),(),( 01 yxxfyxyxyxg                                  (3.15)
    

 

                        2/),(2cos),(),(),( 02   yxxfyxyxyxg                               (3.16) 

                          ),(2cos),(),(),( 03 yxxfyxyxyxg                              (3.17) 

                        2/3),(2cos),(),(),( 04   yxxfyxyxyxg                            (3.18)
 Subtracting (3.17) from (3.15) yields; 

                        ),(cos),(2),(),( 31 yxyxyxgyxg                                          (3.19)
      Furthermore, subtracting (3.16) from (3.18) gives; 

                             ),(sin),(2),(),( 24 yxyxyxgyxg                                        (3.20)
    Finally, the required phase is determined by dividing (3.20) by (3.19): 
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Note that the obtained wrapped phase map is subtracted from 2πf0 to obtain the 

phase map of the object being measured. In phase shifting method, the offset phase 

can be implemented using piezo electric transducer (PZT), however, due to non-

linearity of PZT, which produces error in measurement, polarization was proposed as 

an alternative strategy for offset phase generation. Although this strategy reduces an 

error in measurement, it hampers its use due to system complexity. Due to the fact 

that phase shifting requires at least three interferograms, in case of using PZT or 

polarization, to extract the phase map of the object, so interferograms always attached 

with noise. This noise causes error in measurement. To reduce this noise, we propose 

to use spatial light modulator (SLM) for offset phase generation. SLM is a dynamic 

device that can modulate the amplitude or the phase of the incident light through a 2D 

matrix structure of discrete pixels. When a slight voltage is applied to the layers of the 

liquid crystal molecules, a slight rotation in the liquid crystal molecules is produced. 

The direction of rotation can be clockwise or anti-clockwise. Since there is a relation 

between rotation angle and phase (2π/λ (path length)), one can calculate the offset 

phases θj without moving parts. 

  

4. Applications in surface metrology 

Quality demands on surface metrology are increasing, especially in the fields of 

automotive industry, medical technology and semiconductor industry [1]. Here, we 

focused on three types of surfaces, namely, steep smooth surfaces, rough surfaces, and 

opaque surfaces. For the steep smooth surfaces, we used the windowed Fourier 

transform method to enhance the modulated interferogram and the FT method was 

used to demodulate the modulated interferogram. For the rough surfaces, which is the 

most challenging, we used the WFT method to enhance the modulated interferogram 

and the FT method was used to demodulate the modulated interferogram. The 

convolution of the transfer functions of both Chebyshev type 2 and elliptic filters was 

used to enhance the roll-off and remove the ripples in pass and stop bands of the 

object being measured. For the opaque objects, we used the terahertz (THz) radiation 

combined with a Mach-Zehnder interferometer for 3D extraction of the opaque 

objects measurement. 

4.1. Steep smooth surface measurement 

Steep surfaces of step heights need to be measured precisely to be used in many 

applications such as lithography, semiconductor industry, engineering, and science [1-

5]. Coherence scanning interferometer has the capability to measure such surfaces, 

however, it requires recording a great number of images to extract the 3D surface of 

the object being measured. Reflectometry works well on reflective surfaces such as 

mirrors, however, the transmissive surfaces can’t be measured by such device. Here, 

we used a Mach-Zehnder interferometer in combination with FT and WFT methods 

modified with flat fielding to extract the 3D surfaces of steep heights. The 

interferometric system has been built up by the author in his Lab at NIS. The 

programs of FT algorithm, WFT algorithm, and phase shifting algorithm, used for 3D 
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phase extraction, were written by the author using MATLAB software. The sample 

being tested is a step height of 1.34µm. We used here single wavelength of 635nm. 

Figure 5(a) shows the modulated parabolic interferogram. Fig. 5(b) shows correction of (a) 

with WFT method. The phase map of (a) and (b), reconstructed by the FT method are shown 

in (c) and (d), respectively. The σ of (a) = 47.11, while the σ of (b) = 10.21. As seen 

from Fig. 5(d), the coherent noise is reduced significantly by application of the WFT 

method.  

    The 1D phase profiles along the red and blue lines of Figures 5(c and d) are 

shown in Figure 5(e). As seen in Figure 5(e), the slopes of the red and blue profiles 

are different. The value of δx1 in the blue profile is around one third of the value of 

δx2 in the red profile. This means the roll-off of the blue profile became steeper by 

around three times in comparison with the red profile. We applied the convolution of 

the transfer function of Chebyshev type 2 and elliptic filters with the blue profile of 

Figure 5(e) to obtain steeper roll-off and remove the ripples. Since the convolution is 

intensity based, so the phase profile is converted to intensity based. We converted the 

blue phase profile of Figure 5(e) using the formula (10 (1-phase profile/min (phase 

profile)). The obtained gain is shown in the blue profile of Figure 5(f). The obtained 

gain of the blue profile of Figure 5(f) is convolved with the transfer function of 

Chebyshev type 2 and elliptic filters and the result is shown in the black profile of 

Figure 5(f). As seen in the black profile of Figure 5(f), the roll-off became steeper 

with no ripples in the bands. 

 

Fig. 5.  (a) Modulated interferogram of the second sample. (b) Correction of (a) with the WFT 

method. (c)  phase map of (a). (d) phase map of (b). (e) 1D phase profiles along the red and blue lines 

of (c) and (d), respectively. (f) Convolution of the blue profile of (e) with the transfer function of 

Chebyshev type 2 and elliptic filters. 
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4.2. Rough surface measurement 

Almost of surfaces in nature are considered to be rough when investigated by non-

contact measuring systems. When polishing is used, rough surfaces turns to smooth 

surfaces. Since polishing is a complicated process and costs much money, so rough 

surfaces are common and already available extensively in the application of industry 

sector. When rough surfaces tested by non-contact measuring systems, the phase 

values of the rough object are destroyed through scattering and multiple reflections, 

which is observable as speckle effect under coherent lighting. White light 

interferometry has been used as low coherence to test the rough objects, but at the 

expense of bad visibility of the fringes. Here, we proposed to use a rotating diffuser to 

reduce the speckle noise to some extent. The rest of the noise in the interferogram is 

reduced further by the WFT method. We then convolved the transfer function of WFT 

with the transfer function of Chebyshev type 2 and elliptic filters to adjust the roll-off 

and remove the ripples in the pass and stop bands. The transfer function of Chebyshev 

type 2 filter for order n may be written as [30]: 

                                   

,
))/(/1(1

1
)(

22

2




cn

Ch
T

jg




                            

                 (4.1) 

where ԑ is the ripple factor, ωc is the cut-off frequency, ω is the angular frequency, 

and Tn is a Chebyshev polynomial of the n
th

 order. The condition of |gCh(jω)| is that it 

can be zero at some frequencies but cannot be zero over a finite band of frequencies. 

Also, the real and imaginary parts of gCh(jω) are independent. Chebyshev polynomials 

of the n
th

 order may be generated recursively by using the relationship [30]: 

                             
),()(2)( 11    nnn TTT

                                                   
(4.2) 

along the stop-band, 𝑇𝑛
2 oscillates between 0 and 1, and this causes |gCh(jω)| to 

oscillate between 0 and 1/(1+1/ԑ
2
)

0.5
. Here, the Rs (values of ripple in the stop band) is 

selected to be 20dB, while Rp (values of ripple in the pass band) is selected to be 

0.5dB. The smaller Rs, the wider is the transition from pass-band to stop-band. We 

specified a cut-off frequency of 10rad/s and n = 5. Here, the order of the filter has 

been chosen to be 5 taking into account that the larger n leads to the steeper the roll-

off, but large values of n can cause numerical difficulties. The transfer function of the 

elliptic filter for order n may be written as [30]: 
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(4.3) 

where Γn is the n
th

 order elliptic rational function and α is the selectivity factor. The 

amount of ripple in each band is independently adjustable. The ripple factor specifies 

the pass-band ripple, and a combination of the ripple factor and the selectivity factor 

specify the stop-band ripple. The cut-off frequency ωc of this filter is also specified as 

10rad/s and n = 5. The elliptic filter has equalized ripples in both the pass-band and 

the stop-band, providing the fastest roll-off. The convolution of the transfer functions 

of Chebyshev type 2 and elliptic filters in frequency domain can be written as:

                         
.)()(),(

22
 jgjgffG ellChyx 

                                                 
(4.4) 

Using the elliptic filters, a sharp roll-off is obtained at the expense of some small 

ripples in both pass-and stop-bands. When the convolution is used, the ripples 
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disappear. We applied the proposed technique on a modulated interferogram of a die 

recorded experimentally using a Mach-Zehnder interferometer with and without a 

rotating ground glass diffuser. Here, since the object is rough, so we used a rotating 

diffuser and a WFT algorithm to suppress the speckle noise in the intensity-contrast 

image. A 50-mW diode laser with wavelength 635nm coupled into a short-length 

optical fiber is used as the illumination source. To minimize speckle noise, the spatial 

coherence of the laser light needs to be mitigated. This is done here by a rotating 

ground glass diffuser that is placed about 50mm in front of the fiber to scatter and 

diffuse the light to the back focal plane of a collimating lens placed at a distance of 

150mm to collimate the light. The rotating ground glass diffuser is a custom apparatus 

in which the ground glass is drilled and attached with a screw to a shaft that is 

connected to a gear assembly and a DC motor with a variable voltage supply. The 

angular speed of the rotating diffuser is manually adjusted to reduce the contrast of 

the disturbing speckle pattern to an acceptable level. The collimated light incident on 

an iris diaphragm adjusted for an opening of about 1.5 cm. The light is then incident 

on a beam splitter NPBS1 to divide it into two copies with equal intensities. One copy 

is used as a reference beam and the other as an object beam. The rough object being 

tested is a cube die. The object beam then illuminates one surface of the die and the 

light scattered from it is then combined with reference beam at NPBS2 to interfere. 

The reference and object beams take an approximately equidistant path to the CCD. 

Some neutral density filters that allow control of the power of the object and reference 

beams were used prior to the NPBS2. The process of the image acquisition in the 

CCD camera was carried out with the support of LabVIEW-based software. To 

reduce the random noise in the recorded interferograms, an average over 50 

consecutive captures were recorded. The deformed interferograms were reconstructed 

using the FT method based Fresnel and the reconstructed intensity-contrast images are 

shown in Figure 6 (a and b), respectively. The recording and reconstruction distances 

were found to be 700 mm. In reconstruction, since the object-sensor is large a bit to 

use the Fresnel transfer function method, so zero padding has been used to avoid 

aliasing error in the transfer function. The intensity image of a die is enhanced from 

speckle by using the WFT method as follows. Assume the modulated interferogram 

intensity is I(x, y). The windowed Fourier transform (WFT) of the modulated 

interferogram I(x, y) is expressed in frequency domain as: 

                             








 .),(),(),( dxdyyxryxIffWFT yx
                                                  (4.5) 

where r(x,y) = exp[-x
2
/2 y

2
 is the Gabor transform, which is a Gaussian function 

and the symbol * denotes the complex conjugate operation. Here the  and  are the 

standard deviations of the Gaussian function in x and y directions, and selected to be 10, 

respectively. Gaussian window is selected because it has higher emphasis on the data near the 

window center and lower emphasis on the data further away from the window center. By 

shifting the central position of the Gaussian window point by point and computing the WFT of 

the modulated interferogram, the fundamental spectral component of each local signal is 

obtained. Then, by integrating all the spectral components, a universal spectral component is 

obtained. The universal spectral component is convolved with G (fx, fy) spectrum. Finally, by 
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applying the inverse Fourier transform to the universal spectral component, the obtained 

amplitude-contrast image of the object is expressed such that: 

                    
  .),(,),( 1

yxyx ffGffWFTWFTyxO  

                                         
(4.6) 

Where the symbol ⊗ stands for convolution. Since the intensity is the amplitude modulus 

squared, we used the expression of intensity-contrast image after squaring the modulus of 

amplitude-contrast image. The obtained intensity-contrast image is enhanced from speckle 

noise as shown in Figures 3 (c and d), before and after using the rotating diffuser, 

respectively. Figures 6 (a and b) show the amplitude-contrast images without and with the 

rotating diffuser. Figures 6 (c and d) show the enhanced images of (a) and (b) by the WFT 

method. The standard deviations of square intensities of (a), (b), (c), and (d) were calculated 

to be 64.4, 8.6, 33.1, 4.2 decibles (dB), respectively. This means that the proposed technique 

plays a significant role in speckle noise suppression. Note that the left column images of 

Figure 6 are without a rotating diffuser, while the right column images are with a rotating 

diffuser. 

 

Fig. 6. (a) Intensity-contrast without rotating diffuser. (b) Intensity-contrast with rotating diffuser. (c) WFT of  (a). 

(d) WFT of (b).  

4.3. Opaque surfaces measurement 

Investigation of opaque objects by visible light (0.4μm to 0.7μm) is not possible. 

Alternative solution is to use high penetration rays such as terahertz (THz) rays. THz 

rays range covers the frequencies from 0.1THz to 10THz corresponding to 

wavelengths of 3mm to 0.03μm between microwave and infrared frequencies in the 

electromagnetic spectrum [31-33]. Opaque non-metal materials such as ceramics, 

rubbers, food, plastics can be investigated by THz rays, because THz rays have higher 

penetration as compared with visible light. There are two available techniques used to 

visualize the opaque objects. The first technique is point by point time of flight and 

the second technique is full field THz interferometry. Schematic diagrams to achieve 

the first and second techniques are shown in Figures 7(a and b), respectively.  
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         Fig. 7. (a) schematic diagram of Terahertz pulsed imaging (TPI) scanning system with single   

pixel detector. (b) Schematic diagram of scan-less full field THz interferometer. The 

wavelength of the quantum cascade laser (QCL) is in the range of 100µm. 

The basic idea of the first technique is as follows. When a wave travels from point 

to point with a distance d between them, it takes a time expressed as: t1 = 2µd1/c, 

where c is the speed of light. When an object with a thickness h is inserted, then the 

time t2 = 2µd2/c. From the difference in time, one can easily calculate the thickness h. 

The basic idea of the second technique is as follows. The opaque sample is inserted in 

the interferometer and a THz interferogram is captured by THz camera and then 

analyzed by the FT method, or by the phase shifting method or by the wavelet 

method. The difference between the first and the second techniques is that the first 

technique uses a point detector, while the second technique uses a 2D camera. This 

makes the first technique a time consuming technique because it requires a scanning 

point by point over the surface of the opaque sample. In the second technique, a single 

shot THz interferogram is captured in less than a second, so low noise is attached to 

the THz interferogram. Also, the first technique uses pulsed THz rays, while the 

second THz technique uses the continuous THz rays. Opaque sample (polymer) of 

110µm thickness deposited on steel gauge [5] is tested by the two techniques. Scan 

over an area of 10mm x 10mm of the sample tested by Fig. 7(a) is shown in Figure 

8(a). The profile of one point to extract ∆t on the surface is extracted as shown in 

Figure 8(c). The distance of the sample is then extracted to be 103± 5µm when the 

index of refraction µ = 1.48. Note that the index of refraction was measured by 

Terahertz pulsed spectra (TPS) device from Teraview company. The same sample has 

been tested by Figure 7(b). This was done by capturing the modulated THz 

interferogram and the analysis was done by FT method.  The obtained 3D surface 

map is shown in Figure 8(b). The height profile along the red line of Figure 8(b) is 

extracted as shown in Figure 8(d). As seen in Figure 8(b), the thickness of the sample 

is in the range of 109± 2µm. Note that, the optical chopper (OC) is used in the 

experiment to do the same job of the rotating diffuser to reduce the speckle noise in 

the modulated interferogram.  
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Fig. 8. (a) Photograph of the opaque object. (b) 3D height map of (a) reconstructed by the phase 

shifting method.   

4.4. Estimation of an uncertainty budget in interferometry 

In interferometry, the uncertainty budget can be estimated from ten sources [34]. 

The sources are repeatability, instability of laser light, coherent noise, incomplete 

parallelism of collimated light, magnification of the microscope objective, Gaussian 

inhomogeneity of the laser beam intensity, inhomogeneity of surface substrate of the 

object, chromatic aberration, side lobes effect, and thermal effects. The uncertainty 

due to coherent noise and chromatic aberrations were calculated to be around 10nm 

each. The uncertainty due to repeatability and side lobes effect were calculated to be 

in the range of 5nm each. The uncertainty, due to instability of laser light and due to 

magnification, were calculated to be in the range of 1nm each. The uncertainty due to 

incomplete parallelism of the used beam and thermal effect were calculated to be in 

the range of less than 1nm each. The uncertainty due to inhomogeneity of surface 

substrate of the object being measured and the Gaussian inhomogeneity of the laser 

beam were calculated to be in the range of 25nm each. The calculated uncertainty 

budget from the ten independent sources has been estimated to be in the range of 5% 

from the object being measured at a level of confidence of approximately 95% for a 

normal distribution. This value is acceptable in metrology and consistent with that 

estimated from commercial optical interferometers.  

5. Conclusion  

We have presented the recent techniques in surface metrology. We conclude that 

the non-contact measuring systems outperform the contact measuring systems in 

terms of accuracy, speed, price, safe state, and compactness. Also, the common-path 

non-contact measuring systems outperforms the non-common-path non-contact 

measuring systems in term of accuracy and compactness. The Fourier transform 

method, the wavelet transform method, and the phase shifting method have been 

explained in detail. The phase shifting method outperforms the Fourier transform 

method and the wavelet transform in term of speed, while the Fourier transform 

method outperforms the phase shifting method and the wavelet method in term of 

speed. The windowed Fourier transform method and the wavelet method are the best 
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methods in term of noise reduction, while the wavelet transform outperforms the 

windowed Fourier transform in term of localization and resolution. We also presented 

the importance of using a rotating diffuser in the experiment to improve the spatial 

coherence and reduce speckle noise. A novel convolution technique includes the 

transfer function of Chebyshev type 2 and elliptic filters to enhance the roll-off and 

remove the ripples in pass and stop bands of the surface has been explained in detail 

with applications in surface metrology. We demonstrated three potential applications: 

steep smooth surface, rough surface, and opaque surface. The uncertainty in 

measurement has been calculated to be in the range of 5% from the length of the 

object being measured. The modified non-contact measuring systems will be powerful 

tools for non-destructive inspection of transparent, opaque, and biological samples. 
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