البدائل المقترحة لتقليل الفجوة من الذرة الثامية البيضاء رانيا فكري محمود المعمل المركزي لبحوث التصميم والتحليل الإحصائي - مركز البحوث الزر اعية

مقدمة:

يعد توفير الغذاء من أهم القضايا التي نتال اهتمام كافة دول العالم وبصفة خاصة اللول النامية ومن بينها مصر، حيث يتز ايد الاعتماد على الخارج في نوفير الاحتياجات الغذائية للسكان خاصـة محاصيل الحبوب بما يمثله ذلك من استنز اف قدر كبير من اللنقد الأجنبي، وهذا بدوره يمثل خطر اَ يهدد التتمية الاقتصادية والاجتماعية في هذه اللوول، وتهتم الدولة بزيادة إنتاج محاصبل الحبوب الغذائية عن طريق التوسع الزراعي الأفققي والرأسي، ويعنبر محصول الذارة الثالثاليامية من محاصيل الحبوب الهامة باعتباره عامل رئيسي في صناعة ولاعي اللحوم البيضاء و الحمر اء، و الألبان ومنتجاتها، كما يدخل دقيق الذرة الشامية في صناعة رغيف الخبز، وبعض من الصناعات الأخرا مثل النشا، الكحول، الخميرة، بالإضـافة إلى استخدام الحطب في عمل السيلاج. تقدر مساحة الذرة الثشامية البيضاء بنحو Vr, ا, مليون فدان حيث تمثل V9 \% \% من إجمالي مساحة محصول الذرة

 مشكلة الار اسة:
تبذل الدولة جهود في قطاع الزر اعة خاصة في مجال زيادة الإنتاجية الفدانية لمحصول الذرة الثنامية من خلال استتباط سلالات وأصناف ذات إنتاجية عالية، وذلك لخفض معدلات الفجوة الغذائية بين الإنتاج والاستهلالك منه حيث يقدر الإنتاج بنحو 1 1, •1 مليون طن ونقدر الكمية المستهلكة من الذرة الشامية بنحو

 المحلي، ومن ثمة الاعتماد علي السوق العالمي لسد الفجوة وتعتبر كلا من أمريكا والأرجنتين و أوكرانيا و البرازيل من أهم الاول التي تحتمد مصر على استيراد الذزة الشامية دنها، مما يترنب عليه من عبء علي الدولة نتيجة ارتفاع أسعار الذرة الثامية في الأسو اق العالمية. أهداف الدر اسة:
تهدف الدر اسة إلي البحث في أساليب و إمكانيات تقلبل الفجوة وزيادة معدلات الاكتفاء الذاتي من الذرة الشامية في مصر وذلك من خلا عالية الإنتاجية المناسبة لكل محافظة أو منطقة جغر افية والتي تحقق أعلى إنتاجية وامتزاج عدن اج نوليفات مختلفة بين إنتاجية وحدة المساحة و المساحة المنزر عة لتحقيق أعلى إنتاج ممكن في ظل الظروف الإنتاجية الر اهنة لزر اعة المحصول و المحددات المنوقعة للزر اعة في كل منطقة. الطريقة البحثية ومصادر البيانـات:
استعانت الدر اسة ببعض أساليب التحليل الإحصائي منل تحليل الازتباط و الانحدار وتحليل التباين في اتجاهين واختبار دانكن، فضـلا عن بعض أسـاليب التحليل الاقتصـادي مثل أسلوب تجزئة التغير(Decomposition Method) ونقدير معدل النمو . وقد اعتمدت الدر اسة في تحليلاتها علي

 الزر اعة واستصـلاح الأراضي وبيانات للاخل الفرد وسعر الذرة الثامية وكمية الواردات وسعر الاستير اد والتي تم الحصول عليها من الجهاز المركزي للتعبئة العامة والإحصـاء.

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018

يعتبر محصول الذرة الشامية الصيفية من المحاصيل الإستراتيجية الهامة في مصر نظرا
لأهميته الاقتصادية من حيث المساحة المنزرعة والإنتاج الكلي، فعلى الرغم من تزايد أهييته الاقتصادية إلا أن التتافس المستمر بين المساحة المنزرعة منه ومساحة المحاصيل الصيفية الأخرى تتزايد من سنة إلى أخرى ، وبدر اسة الأهمية النسبية لمحصول الذرة الثامية يتبين أن مساحة الذرة

 محاصيل الحبوب، ونتركز مساحة الذرة الثامية في محافظات البحيرة، الشرقية، المنوفية، اللنيا،
 إجمالي مساحة الذرة الثامية علي مستوي الجمهورية والتي تقلر بنحو Y با با ألف فدان، في حين
 r. 10

ثانياً: العرض المحلي من الذرة الثامية: تتمتل مصادر توفير الذرة الشامية في مصدرين أساسين هما الإنتاج المحلي، والذي يوفر نحو \% \% من كمية الذرة المتاحة للاستهلاك، ويتم تغطية العجز في الاحتياجات من الذرة الشامية والتي تنقر بنحو

 موجب بين كمية الواردات من محصول الذرة الثامية وعامل الزمن، كما يتبين أن عامل الزمن يفسر نحو • ب\% من إجمالي التغيرات في كمية الو اردات من المحصول خالل فترة الار اسة.

$$
\hat{Y}_{i}=\underset{(6.85)^{*}}{3857}+\underset{(2.39)^{4}}{147.86 X_{i}}
$$

$$
R=0.55 \quad R^{2}=0.30 \quad F=(5.70)^{*}
$$

I ـ تطور المؤشرات الإنتاجية لمحصول الذرة الشامية:
تشمل المؤشرات الإنتاجية لمحصول الذرة الشامية كلا من المساحة المنزر عة والإنتاجية الفدانية
 .(r. 10
(أ) المساحة المنزرعة:

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018

$$
\begin{aligned}
& \text { حيث }
\end{aligned}
$$

ry
وعامل الزمن، كما يتبين أن عامل الزمن يفسر نحو \%VV من إجمالي التغيرات في مساحة المحصول خلال فترة اللار اسة. (ب) الإنتاجية الفدانية:

 معنوية ا\%، وتعبر فيمة معامل الارزتباط والبالغة نحو ال7^, ، عن وجود ارتباط معنوي سالب بين الإنتاجية الفدانية لمحصول الذرة الثامية الصيفي وعامل الزمن، ويفسر عامل الزمن نحو إجمالي التغير ات في الإنتاجية الفدانية لمحصول الذٔرة الثامية الصيفي.
(ج) الإنتاج الكلى:

 الاتجاه الزمني العام لتطور الإنتاج الكلي لمحصول الذرة الشامية الصيفي بالمليون إردب خلال الفترة
 و VON,६ヶ وتعبر قيمة معامل الارتباط البالغة نحو VV, • عن وجود ارتباط معنوي موجب بين إنتاج محصول الذرة الشامية الصيفي وعامل الزمن، حيث يفسر عامل الزمن نحو 09 \% من إجمالي التغيرات في الإنتاج الكلى للمحصول خلال فترة الار اسة، ويلاحظ من جدول (1) النز ايد المستمر و التنريجي في مساحة محصول الذرة خلال الفترة Y Y . .
 مليون إردب حيث تبين أن الزيادة في الإنتاج ترجع إلي زيادة المساحة المزروعة لتعويض الانخفاض في حجم الإنتاجية وليست الزيادة في الإنتاج نتيجة زيادة الإنتناجية الفدانية. r. المؤشر ات الاقتصادية لمحصول الأرة الثشامية

يهتم و اضعي السياسة الزر اعية سو اء على مستوى المزر الـية الـية أو المستوى القومي بدر اسة العو امل الاقتصـادية المؤثرة على محصول اللذرة الشامية الصيفي والتي نتمل المؤشر ات كلا من السعر المزرعي التكاليف الكلية، صـافي العائد وفيما يلي تتتاول الدراسة تطور هذه المؤشرات خلال الفترة (Y Y . 10
(د) السعر المزرعي:
يوضح جدول (1) أن السعر المزرعي بالأسعار الجارية لمحصول اللزة الثامية يقدر عام
 و و. 10 وبدر اسة معادلة الاتجاه الزمني العام لتطور السعر المزرعي لمحصول الذرة اللثامية الصيفي بالجنيه

 المزرعي لمحصول الذرة الثامية الصيفي وعامل الزمن، حيث يفسر عامل الزمن نحو 90\% من إجمالي التغير ات في السعر المزرعي للمحصول خلال فترة الدر اسة. بدراسة تطور السعر المزرعي لمحصول الذرة الثامية الصيفي بالأسعار الثابتة خلال الفترة

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018

ويعتبر هذا التزايد معنوي إحصائياً عند مستوى معنوية (\%، وتعبر قيمة معامل الارتباط البالغة نحو , V., الصيفي وعامل الزمن، حيث يفسر عامل الزمن نحو ¢٪\% من إجمالي التغيرات في السعر المزرعي للمحصول خالال فترة الاراسة.
(0) التكاليف الكلية:

تعبر النكاليف عن أسعار مستلزمات الإنتاج اللازمة لزراعة فدان من محصول الذرة الثامية الصيفية وهي تقس إلي تكاليف متغيرة وهي الني تتثير بتغير حجم الإنتاج والي تكاليف ثابتة و هي التي لا تتغير بتغير حجم الإنتاج وتتمتل في الإيجار .

 10 10 10)، ويوضح جـول (Y) معادلة الاتجاه الزمني العام لتطور التكاليف الكلية لمحصول الذرة الثابامية

 معنوي إحصائيا عند مستوى معنوية 1\%، وتعبر قيمة معامل الارتباط البلالغة نحو 99, 9 عن ون وجود ارتباط معنوي موجب بين تكاليف إنتاج محصول الذرة الثامية الصيفي وعامل الزمن، حيث يفسر عامل

 بمعل نمو r, r, ب\% و هذا التز ايد معنوي إحصائيأ عند مستوى معنوية (\%، وتعبر فيمة معامل الارتباط البالغة نحو ^^, • عن وجود ارتباط معنوي موجب بين التكاليف الكلية بالأسعار الثابتة لمحصول الذرة الثامية الصيفي وعامل الزمن، حيث يفسر عامل الزمن نحو YVV من إجمالي التثيرات في النكاليف الكلية بالأسعار الثابتة للمحصول خلال فترة الاراسة. (و) صافي العائد: يوضح جدول (() أن صافي عائد الفدان بالأسعار الجارية لمحصول الذرة الشامية الصيفي يقدر

 العائد لمحصول الذرة الثنامية الصيفي وعامل الزمن، حيث يفسر عامل الزمن نحو \%00\% من إجمالي التغيرات في صافي العائد للمحصول خلال فترة الار اسة.

 معادلة الاتجاه الزمني العام لتطور صافي العائد لمحصول الذرة الثامية الصيفي بالأسعار الثابتة حيث يتبين أن صافي العائد من المحصول يتز ايد زيادة غير معنوية، أي أنه يتصف بالثبات النسبي خلال فترة الار اسة ويرجع ذلك لتأثير التضخم. (ز) سعر الاستيراد:
 دولار/ طن، وقد أخذ صافي العائد في الارتفاع تارة والانخفاض نارة أخرى، إلى أن بلغت عام

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018

Y

 معنوي موجب بين سعر الاستير اد لمحصول الذرة الثامية الصيفي وعامل الزمن، حيث يفسر عامل الزمن نحو Vo（ من إجمالي التغير ات في سعر الاستير اد للمحصول خـلال فترة الار اسة．

سعر الاستيراد （دو لار／الطن）	صافي العائد （جنيه）／فلان	（النكاليف）الكّلية	｜السعر المزرعي （حنده）／ردبر	الإنتاج （مليون إردب）	$\begin{aligned} & \text { (الإلإربت) } \\ & \hline \text { الجية } \end{aligned}$	المساحة （ألف فـان）	（السنة
1ro，r	Are	1 1\％．	$\wedge 1$	$\varepsilon \cdot, 0 \leqslant$	r r，r	177入，¢9	r．．r
ir．eo	104	18．9	9 V	¢0，0入	r¢，$¢ \wedge$	$170 \mathrm{~V}, \mathrm{v9}$	r．．r
10．，${ }^{1}$	19r0	1 1 ¢ 7	$1 \leqslant 0$	\＆ $1, \mathrm{v}$ ）	r¢，¢¢	171ะ，9r	r．．．
$1 ヶ 4.4$	｜AT｜	． 0	1 ¢	¢9，．¢	ro，rı	198．，¢7	r．．．
$1 \leqslant \leqslant, \mathrm{~V}$	｜AN1	ry．${ }^{\text {ry }}$	101	¢r，qr	ro，kr	1V．v，99	r．．．
r．\＆，¢	r．01	YTYE	Yr	¢r，A〕	rE，TY	｜VAl，AE	r．．r
rı．， 0	yor	rav	191	¢0，．¢	Y¢，Y）	1イ7．，ヶ4	r．．．
ivo	1711	rr．r	19\％	¢V，$\frac{1}{}$		19rv，or	r．．q
r．t	rır．	rri．	Mry	¢ $¢, \lambda \boldsymbol{}$	rr，$\frac{\square}{r}$	199入，ro	r．l．
r．q，r	ryos	E．AY	rv．		rr，q）	1VOA，04	r． 11
rres	ryr．	\＆re．	r．r	$01, \sum \mathrm{~V}$	rrest	riov，．A	r．ir
r¢r，q	r．rs	ro	ME	O．，Vy	rr，vi	rira，r．	r．ir
¢¢0，0	rar	sqry	riv	$01, \mathrm{Vo}$	rr，us	Ylıo，or	r．lı
rva，	rrrs	orm	Mry	$0 \cdot, \leqslant 1$	rr，M	Yroq，rr	r． 1

جدول（r）：معادلات الاتجاه الزمني العام لتطور أهم المؤشرات الإنتاجية والاقتصادية لمحصول

المحنوية	R^{2}	\boldsymbol{R}	المعادلة	المؤشر	رقم المعادلة
＊＊	\cdot, VV		$\hat{Y}_{i}=\underset{(26.36)^{\prime \prime}}{1581.09}+\underset{(6.28)^{* i}}{44.21} X_{i}$	المساحة بالألف فان	1
＊＊		$\cdot, 7 \wedge$	$\hat{Y}_{i}=\underset{(63.36)^{\prime \prime}}{25.24-\underset{(-3.28)^{*+}}{0.15} X_{i}, ~}$	الإلتاجية الفانية بالإردب	r
＊＊	． 09	\cdots	$\hat{Y}_{i}=\underset{(26.10 * *}{40269}+\underset{(4.19)^{* *}}{758.43} X_{i}$	إنتاج المحصول الرئيسي بالألف	r
＊＊	$\cdot, 90$	$\cdot, 9 \gamma$	$\hat{Y}_{i}=\underset{(6.70)^{* i}}{71.06}+\underset{(15.53)^{=0}}{19.35} X_{i}$	السعر المزرعي جنيه／الإردب	\＆
＊＊	\cdot, ¢ 9	\cdot, V ．	$\hat{Y}_{i}=\underset{(10.47)^{*+*}}{101.70}+\underset{(3.43)^{* *}}{3.90} X_{i}$	السعر المزرعي بالأسعار الثابتة جنيه／الإردب	－
＊＊	$\cdot, 9 \lambda$	$\cdot, 99$	$\hat{Y}_{i}=\underset{(11.69)^{m+}}{960}+\underset{(31.55)^{m+}}{306.1} X_{i}$	التكاليف الكلية بالجنيه	4
＊＊	$\cdot, 17$	\cdot, AV	$\hat{Y}_{i}=\underset{(16.87)^{* *}}{1748}+\underset{(6.29)^{*+1}}{64.81} X_{i}$	التكاليف الكلية بالأسعار الثابتة بالجنيه	v
＊＊	$\cdot, 00$	$\cdot, \vee \varepsilon$	$\hat{Y}_{i}=1 \underset{(3.70)^{* * *}}{126.89}+\underset{(3.86)^{* * *}}{137.68} X_{i}$	صافي العائد بالجنيه بالأسعار الثابتّ	\wedge
＊＊	\cdot, Vo	－，＾4	$\hat{Y}_{i}=\underset{(2.33)^{* *}}{78.51}+\underset{(6.02)^{n+i n}}{20.33} X_{i}$	سعر الاستيراد（دولار／طن）	9

（المصدر ：حسب من جدول（1）

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018

 لفترة الأساس（Y．．．．．． للمحصول هو محصلة لتأثير كل من المساحة المنزرعة والإنتاجية الفدانية، ولتحديد مدي مساهمة كل من المتغير ات في الإنتاج فقد استعانت الار اسة بأسلوب تجزئة التغير（Decomposition Method）، ولتجزئة التغير في العو امل المؤثرة علي الإنتاج الكلي استخدمت المعادلة التالية：

$$
\Delta A B=\Delta A B 0+\Delta B A 0+\Delta A \Delta B
$$

$$
6223.2=9163.2+(-2424.8)+(-515.2)
$$

$$
\% 100=147.24+(-38.96)+(-8.28)
$$

حيث كفترة المقارنة

$$
\triangle A B_{0}=1 \text { التغير في المساحة مع ثبات الإنتاجية في سنة الأساس }
$$

$$
\text { = }=\Delta B A_{0}
$$

＝التغير المشترك في كل من المساحة والإنتاجية معا
ثم تؤخذ النسب المئوية لهذه التغيرات المجزئة إلى إجمالي التغير في الإنتاج الكلي، وذلك لتحديد مدى مساهمة كل تغير على حدة في التغير في الإنتاج الكلي لمحصول الذرة الشامية،ومن المعادلة السابقة يتبين أن التغير في المساحة ساهم في زيادة الإنتاج بنسبة \％\％\％من التغير في الإنتاج، في حين أن التغير في
 انخفاض الإنتاج بنحو 入\％، ومن ذللك يتبين أن الإنتاجية لم تساهم إلا في انخفاض الإنتاج و أن الزيادة في الإنتاج ناتجة عن الزيادة في المساحة وتلك مشكلة وهي لابد من اللظر إلى الإلتاجية و القصور فيها والعمل على حلها عن طريق الأصناف أي إحلال أصناف عالية الإنتاجية بدلا من الأصناف منخفضة الإنتاجية．

（الإنتاج（ ${ }^{\text {（ }}$	العامل（B）（ الإنتاجية	（العامل（A）المساحة	（الفتر）
ErIMて，入	$r \leqslant, q$ ．	IVrr	0
EqYo．	Hr，o．	M．．	I
7rrr，r	1，$£-$	mı	Δ

رابعاً：محاور تقليل الفجوة لمحصول الأرة الشامية：
تتمتل المحاور الأساسية لنقليل الفجوة من محصول الذرة اللثامية الصيفية في مصر وتحفيق
الأمن الغذائي في محورين أساسيين هما：زيادة الإنتاج و ترشيد الاستهلالك وفيما يلي توضيح ذلك：
ا．محور زيادة الإنتاج：
يمكن زيادة الإنتاج المحلي من محصول اللزرة الشامية البيضاء من خلال عنصرين هما، عنصر الإنتاجية（اللتوسع الرأسني）، عنصر المساحة（اللتوسع الأفقي）． （أ）الأهمية النسبية لأصناف الأرة الثشامية（لبيضاء： يتضـح من الجدول（؟）أن أكثر الأصناف انتشار ا في زر اعة محصول الذرة الثامية البيضاء
 اللو اللي نحو $\%$ \％ نحو rıror

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018

Y 7
ألف إردب خلال نفس الفترة، بينما يحتل صنف ثالثي •r بالمرتبة الأخيرة من حيث المساحة إذ تمتل

 （ب）تصنيف أصناف محصول الأرة الثثامية البيضاء وفقاً للإلْتاجية الفدانية： أوضحت نتائج اختبار دانكن إنه يمكن تصنيف أصناف الذرة إلى خمسة رتب حيث تشمل

 \％\％\％ا 11

 －• المساحة المزرو عة بالذرة في حين يقدر الإنتاج بنحو

إردب/ فذانية	\％	الإلتاج الكلي بالألف	\％	المساحة بالإلف فان	الصنف
Y0，	1，$¢ \mathrm{~V}$	Otr，MrE	1，rı	Yr，．．	هجين فردي＋ 11 ¢
ro，rq	－，¢	Irv，Mr	－，rr	O，\＆．	هجين ثلالثي r9
ro，ro	－，rr	grygit	－，rq	$\varepsilon, \wedge \leqslant \gamma$	جيزة
ro，ro	－，re	91，．V9	－，Mr	r，ヶr．	فردي
ro	－，Vr	YAl，rri	－，TV	11，M17	فردي ¢
Y\＆，$\frac{r}{}$	－r	人9．r．\％	－，¢	7，N11	T．1．فردي
Y£，	7，19	Yryr，z． Y	V ，¢	1ro，1．．	Hrl
Y\＆，rr	r，rv	1rar，zo．	r r，	or，Avi	ثلافثي ¢
YE，YV	1r，9E	Sq7r，qru	M，iv	Y．E，VVT	فردي
YE，YO	1 1 ，09	009 ¢，Y入を	$1 r, v \in$	rri，rre	فردي r．r
YE，Yr	r， 7 r		r，rq	OV，－Er	ثلاغثي rrr
YE，TV	－r．	110,101	1，11	$1 \Lambda, V \circ 1$	ث11
Hr，qs	9，90	rNiv，901	9，\＆ 1	109， $2 \wedge$ ．	فردي ．
Yr，${ }^{\text {rrer }}$	$r, \sum r$	9rl，rro	r，re	ヶq，¢．9	فردي
Hr，rim	．，rV	1．r，191	－，Y\％	\＆，rノะ	ثلاهـي rre
Yr，r	1，$\sum \mathrm{V}$	－¢r，Y ¢	1，¢ ¢	YE，rıo	ثالاثي ع
Hr，${ }^{(1)}$	－，rq	llr，人．．	－，r9	£，人т．	فردي ¢
Hr，	\wedge 人，r	$r \cdot V \wedge, \leqslant \leqslant 0$	V，9r	וrr，rmi	¢．r．فردي
Yr，．r	\＆，¢9	｜VYI，TVV	¢，¢	VE，VOA	فردي 1．1．
rr，Ao	1V，rı	77．9，971	1V，10	rı人，Vr．	ثالاهي
Yr， 79	－，¢．	10r．．19	－，\＆．	$T, V \leqslant \gamma$	بشاير
Yr，${ }^{\text {rrer }}$	$\varepsilon, \cdot r$	10¢1，r＜9	\＆，．\leqslant	7，． 0 ．	فردي • 9／r
Y，qu	－， 0 ．	19，re．	－， 0	－，MAr	فردّي بّ
r1，79	r，VE	1．0．，V1．	r，Aч	EN，rro	وطنية ع
rı，71	1，07	091， 290	1，4V	YA，\¢	وطنية 7
r．，\leqslant V	－，ג！	ケ1＾，91：	－，91	10， 01 r	نفرتيتي
	$\cdot, \cdot \Sigma$	10，．r9	－，，	－，ソ97	ثالهـي
17，9V	1，10	V．N，0rr	r，$£ 9$	¢1，9VE	بلّدي
ro	1．	rıror，z．ร	1．．	17介r，rr．	الإجمالي

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018

تم استخدام تحليل اللتباين في اتجاهين و الذي يقيس أثنر معنوية كل من متغيري الصنف والزمن
 الجدول رقم (0). ولذا فقد تم تطبيق طريقة دنكان لمقارنة متوسطات الإنتاجية للأصناف المدروسة ووضعها في رتب إنتاجية بحيث لا يوجد فروق معنوية إحصائياً بين متوسطات الأصناف داخل الرتبة الو احدة بينما يوجد فروق معنوية إحصـائيا بين المتوسطات في الرتب المختلفة ومن ثم يتضتح من جدول (7) يمكن نقسيم أصناف الذرة المزروعة إلى خمسة رتب تضم الرتبة الأولى منها الأصناف عالية الإنتاجية

 K Y , £ Y
 إردب،
 بإنتاجية تبلغ نحو إ

جدول (0): تُحليل التباين لاختبار أثر كل من الصنف والزمن على على الإنتاجية الفدانيةّ لمحصول الأرة

F المغنوية	متوسط مجوع المربعات (M.S)	الالحمرافع مربعات)	$\begin{gathered} \text { درجات الحرية) } \\ \text { (D.F) } \end{gathered}$	مصرا الاختلاف
$\begin{aligned} & * *, r r \\ & * r v, v r \end{aligned}$	$\begin{aligned} & 1 \cdot, 9 v \varepsilon \\ & \varepsilon \varepsilon, r v 1 \\ & 1,1 v 4 \end{aligned}$	$\begin{aligned} & \text { r97,r. } \\ & \wedge \Lambda, v \leqslant \\ & 9 V, 70 \\ & \varepsilon \Lambda r, 79 \end{aligned}$	$\begin{aligned} & \hline r y \\ & r \\ & o \varepsilon \\ & \lambda r \end{aligned}$	أنُّر الصنف أنثّ الزمن الخطا المجموع الكلي

المصدر: جمع وحسب من بياتات جدول (غ)

 19,६.
 بإنتاجية تبلغ نحو IT,9V إردب.

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018
rı

متّوسط الإنتاجية بالإردب / فـان	الحد الأندلي والحد	الأصناف	الأصناف	الرتبة
YO,rı	(ro,	0	 	الأولى
HM,	(r£, $\left.\frac{r}{}-r r, 79\right)$	17	 	الثانية
r1,99	(rr,7r-rı,7N)	ε	فردي وطنية 7	الثالثة
19,9ร	($\left.\Gamma_{\cdot}, \Sigma \vee \vee-19, \Sigma \cdot\right)$	r	HY. نفرتيتي،	الكرابعةّ
17,9V	(17,9V)	1	بلدي	الخامسة

(المصلر: وزارة الزراعة واستصلاح الأر اضي، فطاع الشئون الاقتصادية، نشرة الإحصاءات الززاعية، أعدالد مختلفة.

يوضتح جدول (Y) معنوية الفروق بين الإنتاجية الفدانية لأصناف الذرة الثامية البيضاء بالإردب لمتوسط الفتزة (Y. 10 - Y. 1 (Y) باستخدام طريقة أقل فرق معنوي لمتوسط إنتاجيات محصول الذرة الثامية لكافة المحافظات المنتجة وقد بلغت قيمة أقل فرق معنوي (L.S.D) نحو أي محافظتين عن قيمة L.S.D دل ذللك علي وجود معنوية بين متوسطي المحافظتنين والعكس

 " . . 1 و إنتاجية باقي الأصناف موضع الار اسة، في حين تبين معنوية الفروق بين إنتاجية الصنف

 بشاير

 معنوية الفروق بين إنتاجية الصنف فردي بي و و و إنتاجية باقي الأصناف موضع الار اسة، كما أشثار الجدول إلى معنوية الفروق بين إنتاجية الصنف فردي •r| وا والأصناف ثلاثي • الّ، بشاير
 الفروق بين إنتاجية الصنف فردي •r| و و إنتاجية باقي الأصناف موضـع الأر اسة، و أيضـأ تبين معنوية

و إنتاجية باقي الأصنات موضع الار اسةً.

كما أوضتح جدول (V) معنوية الفروق بين إنتاجية الصنف ثلاثي الا (VY و والأصناف
 الفروق بين إنتاجية الصنف ثلاثي ابY و و إنتاجية باقي الأصناف موضع الاراسة، كما نبين معنوية

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018

rq

 الار اسة، تبين معنوية الفروق بين إنتاجية الصنف فردي • (و الأصناف وطنيةء، وطنيةخ، نفرتيتي، ثلاثي •rّ، بلدي. في حين لم تثبت معنوية الفروق بين إنتاجية الصنف فردي • ا و إنتاجية باقي الأصناف موضـع الار اسنة. أظهرت الار اسة معنوية الفروق بين إنتاجية الصنف فردياr.r و الأصناف وطنية، ،

 الأصناف موضع الار اسة، كما تبين معنوية الفروق بين إنتاجية الصنف فردي • ب/ ك/ / هذا ولم تثبت دعنوية الفروق بين إنتاجية الصنف فرديه• ب/ ك/ ^ و إنتاجية باقي الأصناف موضع
(د) استجابة المساحة المزروعة من الارة الثامية للسعر المزرعي:
 الصيفية، وحيث أن المساحة تتأثز بالسعر المزرعي للمحصول، فإنه بدراسة العلاقة بين المساحة المزروعة من محصول اللزة الثامية الصيفية في سنة معينة كمتغير تابع ومتوسط اللسعر المزرعي للوحدة من الناتج من محصول الذرة كمتغير مستقل، بفترة إبطاء سنة واحدة. هذا وقد تبين أن أفضل النماذج الممثلة لنلك العلاقة من الناحية الإحصـائية والاقتصـادية هي

> المعادلة التالية:

$$
R=0.86 \quad R^{2}=0.73 \quad F=(32.82)^{* *}
$$

(t) مساحة الذرة الثامية الصيفية بالألف فدان المزروعة في العام الحالي $=\hat{Y}_{t}$

$$
\text { = }=X_{t-1}
$$

تشير المعادلة إلى أن زيادة السعر المزرعي بنحو جنيه واحد يؤدي إلى إلى زيادة المساحة في العام التالي بنحو 1 Y, 1 ألف فدان، وأن التغير ات في اللسعر المزرعي للذرة الثنامية في السنة السابقة تساهم بنحو \% \% من إجمالي التغيرات في المساحة، مما سبق يتبين استجابة المساحة المزرو عة من الذرة الثامية للأسعار المزر عية استجابة معنوية إحصـائياً، الأمر الذي يشير إلى تأثير السياسة الزير اعية المصرية في ظل دور الأسعار كحو افز نوجيهيه يمكن أن تحفز الزر اع على الإنتاج.
「. . محور تُرشيد الاستهلاك:

يمكن ترشيد استهلالك اللرة الثامية في خفض نصيب الفرد منه عن طريق دراسة العو امل
المؤثرة علّي الاستهلِك

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018
r．

\begin{tabular}{|c|}
\hline －\({ }^{\text {3 }}\) \& \& 章 \& \[
\underset{\sim}{\text { 灵 }}
\] \& 急 \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& 3 \\
\& 2 \\
\& 2
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \frac{4}{3} \\
\& \frac{1}{2}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& 3 \\
\& \vdots
\end{aligned}
\] \& 3
3
\(\vdots\)
\(\vdots\)
\(\vdots\) \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& 3 \\
\& z
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 3 \\
\& 3, \\
\& 3 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& \hat{3} \\
\& \dot{3} \\
\& \dot{\dot{Q}}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& 3 \\
\& \frac{3}{2} \\
\& i
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& =
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& \vdots \\
\& \vdots
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& i
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 \\
\& 3 \\
\& 2 \\
\& 2
\end{aligned}
\] \& 者 \& \& － \\
\hline \％ \& \(\because\) \& \(\stackrel{\square}{\square}\) \& 5 \& － \& － \& ₹ \& \(\stackrel{\square}{2}\) \& ¢ \& 二̇ \& ir \& 立 \& i \& 年 \& S \& \(\because\) \& \(\because\) \& こ \& \(\stackrel{\sigma}{\square}\) \& \(\cdots\) \& \(\stackrel{2}{2}\) \& \(\vdots\) \& \(\because\) \& \(\stackrel{\square}{\square}\) \& \(\div\) \& \(\stackrel{\sigma}{\square}\) \& \(\because\) \& 3
\(\vdots\)
\(\vdots\) \\
\hline 5 \& \(\stackrel{\sigma}{\sigma}\) \& \(\stackrel{\square}{\square}\) \& \[
\bar{y}
\] \& 2－ \& \％ \& 5 \& \(\geq\) \& \& 5 \& － \& \[
\frac{\vdots}{2}
\] \& \(\cdots\) \& \(\vdots\) \& 5 \& \(\stackrel{\square}{3}\) \& i \& \(\because\) \& \(\because\) \& 三 \& \(\cdots\) \& \(\stackrel{\square}{\square}\) \& \(\stackrel{\square}{\square}\) \& \(\stackrel{r}{r}\) \& \(\cdots\) \& \(\because\) \& － \& 等， \\
\hline S \& \(\stackrel{\circ}{0}\) \& \(\stackrel{5}{5}\) \& \％ \& － \& 2 \& \％ \& \[
\begin{aligned}
\& 5 \\
\& 5 \\
\& 2
\end{aligned}
\] \& \％ \& 2 \& \[
\frac{\circ}{2}
\] \& \(\because\) \& \(\stackrel{\square}{\square}\) \& \(\stackrel{\square}{\square}\) \& 5 \& I \& \(\stackrel{1}{2}\) \& \[
\because
\] \& － \& \(\stackrel{\square}{\square}\) \& \[
\stackrel{1}{\sigma}
\] \& \(\stackrel{\text { ¢ }}{\text { ¢ }}\) \& 长 \& \(\stackrel{\circ}{\square}\) \& － \& － \& \& 表 \\
\hline \(\stackrel{\text { c }}{2}\) \& \(\stackrel{0}{0}\) \& 菏 \& \％ \& － \& 2 \& 2 \& － \& \(\cdots\) \& 2 \& － \& \(\because\) \& \(\stackrel{\sigma}{\sigma}\) \& \(\stackrel{\square}{\sigma}\) \& \(\stackrel{2}{5}\) \& I \& \(\stackrel{1}{2}\) \& \(\stackrel{\square}{\because}\) \& － \& \(\stackrel{\text { \％}}{\sim}\) \& \(\stackrel{\square}{\text { \％}}\) \& \(\stackrel{\text { ¢ }}{\text { ¢ }}\) \& \(\stackrel{\text { K }}{\substack{ \\\hline}}\) \& \(\stackrel{\square}{2}\) \& － \& \& \& 2
3
3
3
2 \\
\hline 2 \& \(\bigcirc\) \& \(\stackrel{2}{5}\) \& 2 \& I \& \(\cdots\) \& i \& F \& \(\cdots\) \& \(\stackrel{\text { ̇ }}{\stackrel{1}{2}}\) \& \(\stackrel{\square}{\square}\) \& \(\stackrel{\circ}{\underline{\circ}}\) \& シ \& \(\stackrel{\stackrel{r}{5}}{\stackrel{-}{=}}\) \& i \& 5 \& \(\underset{\sim}{\square}\) \& 3 \& \(\because\) \& \(\stackrel{\Sigma}{2}\) \& \(\stackrel{5}{5}\) \& \(\stackrel{\square}{\breve{r}}\) \& \(\stackrel{\delta}{6}\) \& － \& \& \& \& 3 \\
\hline \[
\stackrel{0}{\because}
\] \& 20 \& \(\stackrel{\circ}{\square}\) \& 范 \& \[
\frac{1}{2}
\] \& \(\stackrel{\sim}{\square}\) \& \(\stackrel{\square}{\square}\) \& 玄 \& \(\stackrel{\circ}{\square}\) \& \(\stackrel{\sim}{2}\) \& L \& F \& \(\stackrel{5}{\square}\) \& \(\overline{=}\) \& \(\stackrel{\sigma}{\square}\) \& \(\stackrel{5}{\square}\) \& \(\because\) \& \(\stackrel{\sigma}{\square}\) \& \(\because\) \& \(\div\) \& \(\because\) \& \(\stackrel{5}{\square}\) \& － \& \& \& \& \& 3
3
9
\(\vdots\) \\
\hline \(\stackrel{r}{2}\) \& \(\stackrel{\sim}{\square}\) \& \(\stackrel{\text { \％}}{\text { ¢ }}\) \& \[
\begin{aligned}
\& 5 \\
\& 2
\end{aligned}
\] \& \[
\stackrel{y}{2}
\] \& \[
\frac{1}{2}
\] \& \[
\stackrel{y}{\Sigma}
\] \& \(\cdots\) \& \(\bigcirc\) \& \(\underline{L}\) \& 5 \& \(\because\) \& \(=\) \& \(\stackrel{\square}{\square}\) \& \(\stackrel{\square}{\square}\) \& \(\stackrel{\square}{\square}\) \& \％ \& \(\div\) \& \(\overline{=}\) \& \(\because\) \& \(\because\) \& － \& \& \& \& \& \& \\
\hline \(\stackrel{\square}{\square}\) \& \(\stackrel{\downarrow}{\sigma}\) \& \(\stackrel{\square}{2}\) \& \％ \& 2 \& \(\stackrel{\%}{\square}\) \& \(\stackrel{\sim}{\square}\) \& \(\stackrel{1}{2}\) \& \(\cdots\) \& \(\stackrel{\sigma}{2}\) \& \(\stackrel{2}{2}\) \& \(\overline{=}\) \& 5 \& 三 \& \(\stackrel{\square}{\square}\) \& 㐱 \& \％ \& \(\stackrel{\square}{\square}\) \& \(\because\) \& \(\vdots\) \& － \& \& \& \& \& \& \& \\
\hline \(\pm\) \& え \& I \& \％ \& － \& \％ \& \(\stackrel{\square}{\square}\) \& \(\%\) \& \(\stackrel{\square}{\square}\) \& \(\underline{Y}\) \& \(\cdots\) \& \(\vdots\) \& \(\because\) \& \(\stackrel{F}{\sigma}\) \& \(\stackrel{r}{5}\) \& \(\stackrel{1}{2}\) \& \(\stackrel{2}{2}\) \& \(\because\) \& \(\because\) \& ． \& \& \& \& \& \& \& \& 2
3
3
3
- \\
\hline \[
\begin{aligned}
\& \text { s. } \\
\& =
\end{aligned}
\] \& \[
\underset{\sim}{n}
\] \& 5 \& \[
\begin{aligned}
\& \circ \\
\& \hline-1
\end{aligned}
\] \& : \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 2
\end{aligned}
\] \& \(\stackrel{2}{5}\) \& \(\stackrel{\square}{\square}\) \& \(\because\) \& \(\stackrel{2}{2}\) \& \(\div\) \& \(\because\) \& \(\stackrel{\sigma}{\sigma}\) \& \(\stackrel{\rightharpoonup}{*}_{\square}\) \& \(\stackrel{2}{5}\) \& I \& \(\stackrel{1}{2}\) \& \(\because\) \& ． \& \& \& \& \& \& \& \& \& 3
3
3
5 \\
\hline \(\stackrel{5}{\square}\) \& \& \[
\frac{5}{2}
\] \& \[
\begin{aligned}
\& \circ \\
\& \stackrel{\circ}{2}
\end{aligned}
\] \& \(\stackrel{\ddot{0}}{\stackrel{\rightharpoonup}{*}}\) \& \(\stackrel{3}{4}\) \& \(\overline{=}\) \& \(\stackrel{\square}{\square}\) \& 号 \& \(=\) \& \[
\pm
\] \& \(\stackrel{2}{\square}\) \& \(\stackrel{\text { \％}}{\square}\) \& \(\stackrel{\downarrow}{\square}\) \& \(\because\) \& \(\stackrel{\square}{2}\) \& F \& － \& \& \& \& \& \& \& \& \& \& \\
\hline \(=\) \& \[
\frac{\vdots}{i}
\] \& 3 \& \(\stackrel{\square}{\square}\) \& 安 \& \％ \& \(\stackrel{\square}{\square}\) \& \[
\underset{\sim}{5}
\] \& L \& \(\cdots\) \& \(\vdots\) \& \(\stackrel{5}{\square}\) \& \(\bar{\sigma}\) \& ¢ \& \(\stackrel{\square}{\circ}\) \& \(\stackrel{1}{2}\) \& － \& \& \& \& \& \& \& \& \& \& \& \\
\hline \[
\stackrel{\rightharpoonup}{*}
\] \& \[
\begin{aligned}
\& 0 \\
\& \ddot{i} \\
\& \hline i
\end{aligned}
\] \& \％ \& 5 \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 2
\end{aligned}
\] \& \(\div\) \& i \& \(\stackrel{\circ}{=}\) \& \(\because\) \& \(\bar{\sigma}\) \& そ \& \(\stackrel{\Sigma}{\square}\) \& \[
\frac{1}{5}
\] \& \(\stackrel{2}{5}\) \& i \& ． \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline I \& \(\bar{\square}\) \& 关 \& \(\stackrel{\square}{5}\) \& \(\stackrel{5}{5}\) \& S \& － \& \(\stackrel{\square}{\square}\) \& 产 \& \(\because\) \& \(\stackrel{1}{\square}\) \& \(\stackrel{\square}{\square}\) \& i \& \(\underline{ }\) \& ． \& \& \& \& \& \& \& \& \& \& \& \& \& \begin{tabular}{|c}
3 \\
\(\substack{3 \\
3 \\
2 \\
2}\)
\end{tabular} \\
\hline F \& \[
\frac{1}{2}
\] \& \％ \& \(\stackrel{\circ}{\square}\) \& \(\stackrel{\square}{\square}\) \& \(\because\) \& S \& \(\stackrel{\square}{5}\) \& \(\stackrel{\square}{\square}\) \& S \& \％ \& \(\because\) \& \(\because\) \& － \& \& \& \& \& \& \& \& \& \& \& \& \& \& 䎂， \\
\hline \[
\frac{a}{2}
\] \& 2 \& \(\stackrel{\square}{2}\) \& \(\bigcirc\) \& \(\stackrel{\square}{\square}\) \& 上 \& \(\stackrel{y}{5}\) \& \(\%\) \& \(\bar{\square}\) \& \[
\frac{1}{2}
\] \& \(\div\) \& \(\because\) \& ． \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 等 \\
\hline \[
\ddot{z}
\] \& \[
\bar{I}
\] \& \[
\ddot{y}
\] \& \[
\stackrel{1}{0}
\] \& \(\stackrel{\square}{\square}\) \& I \& \(\stackrel{\square}{\square}\) \& \(\stackrel{\square}{\square}\) \& 5 \& \(\vdots\) \& \(\bar{\square}\) \& ． \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& a
3
3
3
2 \\
\hline \[
\frac{1}{5}
\] \& i－ \& \(\stackrel{2}{2}\) \& \(\stackrel{\square}{\square}\) \& \(\overline{=}\) \& \(\cdots\) \& \(\stackrel{\square}{\square}\) \& \(\bar{\square}\) \& \(\stackrel{\circ}{2}\) \& \[
\vdots
\] \& － \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \[
5
\] \& \[
\stackrel{2}{2}
\] \& － \& \(\stackrel{\circ}{\square}\) \& i \& \(=\) \& \(\because\) \& ！ \& \[
\vdots
\] \& ． \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ch

3
3
\vdots

\hline $$
\underset{\substack{x}}{\substack{0}}
$$ \& \[

\frac{0}{2}
\] \& 去 \& \geqslant \& $\underline{\square}$ \& $\stackrel{\square}{\sigma}$ \& 2 \& $\underline{\square}$ \& － \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline $$
\frac{5}{i}
$$ \& $\stackrel{\sim}{2}$ \& 2 \& \vdots \& － \& $\stackrel{5}{5}$ \& \bigcirc \& ． \& 迷

\hline $$
\overline{5}
$$ \& \[

\frac{1}{2}
\] \& $\frac{5}{2}$ \& $\stackrel{\square}{\square}$ \& $\stackrel{\square}{\square}$ \& \because \& ． \& 家产

\hline 交 \& \& $\underset{\square}{\square}$ \& \because \& $\stackrel{\square}{\square}$ \& ． \& 3

3
2
2

\hline 年 \& $$
\frac{\sigma}{2}
$$ \& 2 \& \vdots \& － \& 或

\hline $\bar{\vdots}$ \& 安 \& ＝ \& ． \& \cdots

\hline ：－ \& \vdots \& ． \& 青

\hline L \& － \&

\hline
\end{tabular}

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018

يو جد العديد من العو امل التي تؤثر على الاستهـلا من من اللذرة الثامية و هذه العو امل هي إنتاج المحصول، المتاح من الاستهلالك، دخل الفرد، سعر الذرة الحقيقي للمستهلكّك.
الإتتاج الكلي من الأرة الثشامية: يبين جدول (^) أن كمية الإنتاج من الذرة الثامية تبلغ نحو
Y. 1 § Tor, Y
 كمية الواردات: يتبين من جدول (^) أن كمية الواردات تبلغ نحو

 يضطر لإنفاق مدخر اته أو الاستعانة بالآخرين وقد يضطر لبيع جز

 إلى حد كبير بالدخل المتوقع الحصول عليه خلال فترة طويلة في المستقبل أو الدخل الدائم، فالمو اطن ينفق حسب
 ما خلال الفترة القصيرة فلن يزداد الاستهلالك و إنما يخصص للادخار أي يتحدد استههلك الفرد أو العائلّة بالالدخل

 المستهلكة من الذرة الشامية بالطن يتبين أنه عند زيادة الدخل يزيد الاستهولك بنحو الا الزيادة معنوية إحصائياً عند مستو معنوية (\%، ويفسر الاخل نحو VVA\% من إجماللي التغيرات في الكمية المستملكة من الذرة الثنامية خلال فترة الار اسة.
$\hat{Y}_{i}=\underset{(9.36)^{* *}}{3188.50}+\underset{(5.39)^{* *}}{21.71} X_{i}$

$$
R=0.88 \quad R^{2}=0.78 \quad F=(29.19)^{* *}
$$

= $=$ = القيمة النققيرية للكمية المستهلكة من الذرة الثامية بالألف طن سعر الأرة الحقيقي للمستهلك بالجنيه: يعتبر محصول الذرة الشامية من محاصيل الحبوب الصيفية ولكن بالرغم من كونـه محصول إستر اتيجي هام إلا أن الإنتناج لا يكفي الاستهلاك مـا ما يؤدي إلى

 المخصصة لها متل محصول الأرز، و عدم تحديد سعر استالام المحصول قبل بداية موسم الزر اعة بو قت مما يؤدى إلى إحجام المزارعين عن زر اعة الذرة الشامية، وكذلك انخفاض أسعار استلام المحصول من المز ار عين وبالتالي فإن الكميات لاتقي بالاحتياجات ومتطلبات اللسوق المحلي مما يؤدى إلى اللجوء إلى الاستير اد من الخارج و هذا يعتبر تكلفةً على الاولة ويتحمل جزء منها المستهلك في صورة السلع المرتفعة

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018
rr

(ألف طنّ)	(ألف طن)	(ألف جنيه) الفرد)	سعر البي）（جنيه／	كمية（الواردات）	（السنة
710ヶ，．7	を「1へ	IT	lry	ryar	r．．r
T！¢r，rA	EErr	4	irrer	ord．	r．．V
Tr．A，0入	solr	tV	17\％	E．rr	r．．．s
Trev，lu	\＆入1．	T／	11.1	Osor	r．．q
Trve，		vr	$1 . \leq 2$	trys	r．l．
O入入入，． 4	－．rr	vv	1r9a	Viry	r． 11
Vr．入， $\mathrm{K}^{\text {r }}$	orol	10	1r9\％	THT	r．or
VI．E，V	oval	1．4	ת4r4\％	－Alot	r．tr
VY\＆へ，¢	orrs	1.1	irra	srur	r．1\％
V．7．，07	0007	111	14%	－ry	r． 10

بزيادة السعر المزرعي و التجزئة و الجملة للذرة الثنامية سوف نؤدي إلى انخفاض الكمية المطلوبة

$\hat{Y}_{i}=\underset{(2.52)^{*}}{2296}+\underset{(0.50)^{-}}{0.11} X_{1}+\underset{(2.79)^{*}}{0.13} X_{2}+\underset{(3.90)^{* *}}{15} X_{3}-\underset{(-0.12)^{-}}{34.85} X_{4}$
$R=0.96 \quad R^{2}=0.93 \quad F=(17.29)^{* *}$
人 \hat{Y}^{\prime} بالطن ＝X_{2}
 تثشير المعادلة السابقة إلى أن زيادة الكمية المنتجة من الذرة الشامية بنحو طن و احد سوف بيؤدي

 جنيه واحد سوف نؤدي لزيادة الكمية المستهلكة من الذرة الشامية بنحو 10 طن، في حين تبين أن انخفاض سعر البيع الحقيقي للمستهلك بنحو جنيه واحد تؤدي لزيادة الكمية المستهلكة من الذرة الشامبة بنحو

 الواردات عند مستوي 0\％ودخل الفرد عند مستوى معنوية（\％، كما ثبتت معنوية المعادلة ككل عند مستوى معنوية ا\％حيث بلغت قيمة F المحسوبة نحو Y Y Y Y وباجر اء تحليل الانحدار المتعدد المرحلي（Stepwise） بين المتغيرات الاقتصادية موضع الدر اسة و الكمية المستهلكة من الذرة الشامية كانت المعادلة على النحو التالي： $\hat{Y}_{i}=\underset{(10.9)^{* *}}{2814}+\underset{(8.41)^{* *}}{17.31} X_{1}+\underset{(3.12)^{*}}{0.12} X_{2}$
$R=0.96 \quad R^{2}=0.93$

$$
F=(43.50)^{* *}
$$

－القيمة النققبرية للكمية المستهلكة من الذرة الثثامية بالطن
＝X_{1}
تشير المعادلة السابقة إلى أن زيادة دخل الفرد بنحو جنيه واحد سوف تؤدي لزيادية الكمية المستهلكة

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018
r
المستهكة من الذرة الثامية بنحو Y Y，•طن، ويتبين من المعادلة أيضاً أن العاملان السابقان يؤثران في الكمية
 （Y ب）، كما تبين من المعادلة معنوية ثو ابت المعادلة، وكذلك تبين معنوية المعادلة كلها عند مستوى معنوية （\％حبث بلغت قيمة F
خامساً：اللسيناريوهات المقترحة لتقليل（الفجوة من الأرة الثشامية البيضاء
في ضوء النتائج التني توصلت إلها الدر اسة فإنه يمكن صياغة عدة سيناريو هات مختلفة لزيادة
الإنتاج لرفع معدلات الاكتفاء الذاتي من محصول الذرة الثامية البيضاء．

1．السيناريو الأول：

استهذف السيناريو الأول التتبؤ بالمساحة المتوقعة عند زيادة السعر المزرعي بنسب مختلفة وهي
 بنحو Y Y Y ج ج ج

 \％\％，V9
 زيادة السعر المزرعي بنسبة ．．

r．السيناريو الثاني

 مختلفة بين المساحة والإنتاجية للحصول على الإنتاج، فعند زيادة المساحة بنسبة \％\％عن المساحة المقارة

 مليون إردب بنّسبة زيادة \％9，90\％، وأخيرأ عند زيادة المساحة والإنتاجية •（\％فابن الإنتاج يبلغ نحو

جدول（9）：التوليفات المختلفة للميناريو الثاني لمحصول الأرة الثنامية البيضاء．

	(ألف إلإتاج)	(إلإتاجية)	في الإتناجية الزيادة （\％）	(ألف فـاحن)	نسبة الزيادة في المساحة（\％）
1＾，1¢	¢7¢99，\％	ro，¢	－	1／Tr，AT	－
rr，vy	\＆入v）	ro，$\frac{1}{}$	－	191と，入т	1.
rı，．६	\＆ヘ101	（T，\％）	－	bitr，at	0
r9，94	$011 \leqslant 9,7$	ry，9A	1.	latr，At	0
r9，90	$011 \leq 0,9$	（7，V）	0	1912，入才	1.
r7， 1 ¢	orovr， r	ry，9A	1.	1912，入7	1.

يرجع أهمية استخدام صنف فردي ．＂ 1 الارتنفاع الإنتاجية الفدانية التي تصل إلى نحو

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018

そ
عمل مجموعة من السيناريو هات على أساس مجمو عة من التوليفات بين السعر المزرعي و المساحة وبالتالي الحصول على إنتاج جديد يزيد عن الإنتاج الر اهن، وبالتاللي نتيجة زيادة عمل الباحثين واستخدام تكنولو جيا الأصناف، تم استخدام الصنف فردي ．． 1 ا و عمل توليفات بين المساحة الناتجة عن زيادة السعر المزرعي

 تتعيم زر اعة الصنف فردي ．．（ 1 سوف يؤدي لزيادة الإنتاج وهذه الزيادة لا يمكن الوصول إليها مرة

> r. واحدة ولكنـنـريو علثي عدة سنو اتـ.

تم تقدير هذا السيناريو على أساس التتبؤ بالإنتاج الناتج من التوليفات المختلفة للمساحة و الزيادة فيها

 ry，9入 نتيجة لزيادة السعر المزرعي بالنسب السابقة على الترتيب．
جدول（ •（ ）：التوليفات المختلفة للميناريو الثالث لمحصول الذرة الثشامية البيضاء．

المصدر：حسب من جدول（9）
المراجع
1－الجهاز المركزي للتعبئة العامة والإحصاء، المركز القومي للمعلومات．
 ץ－محمود عبد الحليم جاد، سعيد محمد حسين علي عيسي، التحليل الاقتصـادي لأهم ممارسات تكنولوجيـا الاعـا إنتاج محصول السمس، مجلة الز قازيق للبحوث الزر اعية،ا كلية الزر اعة، جامعة الزقازيق، لمجلد（آب）،
العدد (0)، سبتمبر \&

؟－محي الدين محمد خليل البيجاو ى، التوزيع الأوفق لأصناف محصول الذرة الشامية الصيفي＂البيضــــاء＂ في مصر، المجلة المصرية للاقتصـاد الزر اعي، الجمعية المصرية للاقتصـاد الزر اعي، المجلــد（Y）،

 المجلة المصرية للاقتصـاد الزر اعي، الجمعية المصرية للاقتصـاد الزر اعي، المجلـــد（Y）، الـعـدد（Y）،

〒－وزارة الزر اعة واستصلاح الأر اضي، قطاع الشئون الاقتصادية، نشرة الإحصاءات الزر اعية، أعداد
Ү－و لاء محمود محمد محمود، دراسة اقتصـادية لأثر استخدام تكنولوجيا الأصـــناف علــى تتميـــة إنتــاج
محصول الذرة الثامية الصيفية البيضاء في مصر، المجلة المصرية للاقتصـــاد الزر اعـــي، الجمعيــة

8－Draper，N．R．and H．Smith（1966）．Applied regression analysis ．John Wilay and Sons ，Jnc ．N．Y．USA．：397－402．

Fayoum J．Agric．Res．\＆Dev．，Vol．32，No．1，January， 2018

ץ
9- Gomez, K. A. and A. A. Gomez (1984). Statistical procedures for agricultural research, 2nd ed, John Wiley and Sons, New York, U S A.

الملخص
تهـف الار اسة إلي البحث في أساليب و إمكانيات تقليل الفجوة وتحقيق الأمن الغـــذائي مــن الـــــنـرة
الثامية في مصر عن طريق استخدام عدة سيناريو هات تتمتل في زر اعة الأصناف عالية الإنتالجية المناســبـة لكل محافظّة أو منطقة جغر افية، ، و عند عمل مجمو عة من النتوليفات على أساس التنتبؤ بالإنتا الج النـــاتج مــن التوليفات المختلفة للمساحة والزيادة فيها نتيجة الزيادة فـي الســعر بنســب . .

 أدت للزيادة في الإنتاج بنحو
 النحو التالي .

الأخرى نتيجة الْتوسع في مساحة الذارة الثشامية، وإحلال أصناف جديدة عالية الإنتاجية مثل الصنف فــردي

وصافي عائد المحصول، ودعم مستلزمات الإنتاج لتخفيض نكاليف إنتاج المحصول وتحفيز المــزار ع علــى النوسع في زر اعة الذرة الثامية البيضـاء.

PROPOSED ALTERNATIVES TO REDUCE THE GAP OF WHITE MAIZE

Mahmoud, R. F. and S. A. S. Ibrahim

Cent. Lab. for Design and Stat. Analysis Res., ARC.

Abstract

The study aims to study the methods and possibilities of reducing the gap and achieving food security of maize in Egypt through using several scenarios, which is the cultivation of high productivity varieties suitable for each governorate or geographical area. When making a group of combinations based on the prediction of production resulting from different combinations of area and its increase as a result of increasing the price by $30 \%, 70 \%, 100 \%, 130 \%$ and 150% for the first scenario and the productivity of the Single Cross 1100 variety and the rates of increase in productivity by 5% and 10% of the second scenario with the estimated production value of $25.4 \mathrm{ardb} / \mathrm{fed}$, this led to increase the production to $45.46,47.42,48.90$, 50.37 and 51.36 million ardb, respectively. When the productivity increased by 5%, the productivity was estimated at $26,71 \mathrm{ardb} / \mathrm{fed}$ which led to increasing the production to $47.80,49.87,51.42,52.96$ and 54.00 million ardb, respectively. When the productivity increases by 10% then reached $27.98 \mathrm{ardb} / \mathrm{fed}$ which led to increasing the production by $50.08,52.24,53.87,55.48$ and 56.57 million ardb, respectively.

The study recommends reclaiming new lands to compensate the shortage of other summer crops as a result of the expansion of maize area and introducing new high yielding varieties such as Single Cross 2010 variety to increase the productivity in addition to increasing crop prices as well as supporting the production requirements to achieve real increase in the net yield of the crop to reduce costs of the crop production and to encourage the farmers to expand cultivating maize crop.

Fayoum J. Agric. Res. \& Dev., Vol. 32, No.1, January, 2018

