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As a type of new security technique, this paper presents a technique for modeling transformer inrush 

and fault currents using fitting tools of artificial neural networks (ANN) to discriminate between 

inrush and fault currents of transformers. Inrush and fault currents are simulated at various winding 

connections, initial flux, and fault type. MATLAB neural network tool and Simulation package are 

used to simulate the proposed technique. This paper qualifies an ANN trained to distinguish inrush 

current and fault type based on multiple statistical inference methods on three phase transformer 

signals, such as the mean value, standard deviation, and product moment correlation coefficient factor. 

Use the second harmonic Maximum current of second harmonic signals calculated using Fourier 

analysis and recorded for three phase signals under various operational circumstances. This 

information will be used to train and test an artificial neural network. To fit the inputs and targets, a 

comparison of alternative training methods is done. 

 

 

 

1. Introduction 

Even when there is a separation, maintaining the supply of 

power-suppliers is critical. The difference between a normal 

signal and a faulty signal must be distinguished; if the 

protection relay trips for a normal signal, there will be a lack 

of supply. False tripping should be avoided at all costs. 

Protective equipment should only be used in the event of 

faulty signals in order to maintain supply [1], Many studies 

were interested in using the second harmonic as the typical 

harmonic content of a transformer inrush current to identify 

current signals [2]. 

To avoid unnecessary trip caused by the magnetizing inrush 

current, [3 and 4] presents a new approach for distinguishing 

internal fault current from inrush current. Inrush currents in 

transformers can be enormous, ranging from five to seven 

times the rated current. The power transformers' second 

harmonic component is utilized to halt relays. Fake 

protection under inrush situations is one of the most serious 

issues with transformer inrush currents. Many investigators 

benefited much from this matter [5]. As a result, revealing the 

value of the second harmonic component, as well as the 

maximum value of transformer inrush current and fault 

current wave patterns, is extremely dangerous [6–8]. The 

major goal of this research is to determine the inrush current 

and fault type using many statistical inference methods on 

three phase transformer signals, such as the mean value, 

standard deviation, and product moment correlation 

coefficient factor. Fourier analyzers were utilized to resolve 

the input signal and generate second harmonic signals. At 

various operating conditions, the maximum value of the three 

phases of the transformer's 2nd harmonic input signals is 

applied. 

When a transformer is connected to a power system, the 

inrush currents improve. When the voltage returns to normal 

after a line fault, similar inrush currents can occur. The 

aforementioned statistics for current signals of the three 

phase transformer were acquired using MATLAB simulation 

at various operating conditions, and some samples were 

selected. The maximum value of second harmonic inrush and 

fault current signals was recorded at various winding 

connections, beginning flux, and fault types, as well as 

chosen samples of these signals. The maximum values of the 

three phases of the transformer's 2nd harmonic input signals 

are utilized as input to (ANN) to train it with various 

algorisms and select the best appropriate algorism to use. 

An artificial neural network (ANN) was trained using these 

input signals with the goal of identifying inrush current and 

fault categories. The Neural Fitting app aids in data selection, 

network creation, and training. And use regression analysis 
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and mean square error to evaluate its performance and 

discriminate between inrush and fault currents of 

transformers. 

 

2. Power System Modeling 

 

The power system is depicted in Simulink model [10] in 

Fig.2, which is represented by a single line diagram in Fig.1. 

A three phase, 450MVA, 50HZ, (500/230) KV power 

transformer is included in this model. Transformer primary 

winding is fed by a three-phase 3000 MVA, 500 KV 

equivalent source. Different types of winding connection 

such as (Yg-Yg), (D-D), (Y-Y), (Y-D), (D-Y) are be used to 

develop-different shapes of inrush current. Hence initial flux 

affects also the inrush current in each phase of transformer; 

some of varying initial flux is used to developed different 

shapes of inrush current. Fourier analyzers were utilized to 

evaluate the power transformer's input signal and give us 

with a second harmonic signal. 
 

                          
Fig. 1. Picture Model single line diagram 

  
Fig. 2. MATLAB Simulink model for evaluating transformer inrush and 

fault currents 

3. Current Recognition Scheme  

Step1. Inrush current and fault current Simulink model. As well as 

applying some signal statistics under various operating situations. 
 

Step2. Using 2nd harmonic Fourier analysis and recording the 

maximum 2nd harmonic current for three phase signals at different 

operating conditions. 
 
Step3. Select data. 
 
Step4. Train network with the data developed with different 

algorisms.  
 
Step5. Evaluate network performance. 
 
Step6. The network is being tested. 
 
The above scheme is implemented and explained in the following 

Subsections [12]. 

 

3.1. Modeling with inrush and fault current 

 

As stated in [2], the power system modeling with inrush current 

and defective current is performed in the MATLAB Simulink 

environment. The model is tested with a variety of beginning flux 

values, winding connections, and fault kinds. And using statistical 

inference methods such as the mean value, standard deviation, and 

product moment correlation coefficient factor on three phase 

transformer signals. Tables 1, 2, and 3 show how this information 

was gathered.  

Table1: Mean value signals 

operating conditions mean value 

initial flux 
Winding 

connection 

current 

condition 

Phase 
current 

(A) 

Phase 
current 

(B) 

Phase 
current 

(C) 

0.4, -0.2, 0.2 Yg-Yg Inrush -0.0019 -0.0018 0.7361 

0.2, 0, 0 Y-Y Inrush -0.1808 -0.1747 0.3555 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 

(A-B) 
0.0078 -1.0242 1.259 

0.4, -0.2, 0.2 D-D 
Faulty 

(A-B-C) 
-0.6382 -0.6711 1.3093 

0.4, -0.2 ,0.2 Y-Y 
Faulty 

(A-C) 
-0.9543 -0.0084 0.9627 

0.3, 0, 0 Y-D Inrush -0.1141 -0.1298 0.2439 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 

(B-G) 
0.0106 -0.6033 0.6753 

0.4, -0.2, 0.2 D-D 
Faulty 
(C-G) 

-0.0781 -0.1315 0.2096 

0.6, -0.3, 0.3 D-Y Inrush 0.0041 -0.0068 0.0026 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(B-C-G) 
0.1145 -0.5229 0.4085 

Table2: Standard deviation value signals 

operating conditions standard deviation value 

initial flux 
Winding 

connection 

current 

condition 

Phase 

current 
(A) 

Phase 

current 
(B) 

Phase 

current 
(C) 

0.4, -0.2, 0.2 Yg-Yg Inrush 0.0107 0.0127 1.051 

0.2, 0, 0 Y-Y Inrush 0.2129 0.1857 0.1665 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 

(A-B) 
0.0178 2.8199 2.9356 

0.4, -0.2, 0.2 D-D 
Faulty 

(A-B-C) 
3.4412 3.542 3.8331 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(A-C) 
2.8621 0.0168 2.8598 

0.3, 0, 0 Y-D Inrush 0.1844 0.2059 0.3901 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 

(B-G) 
0.0177 3.3242 1.0555 

0.4, -0.2, 0.2 D-D 
Faulty 

(C-G) 
0.088 0.2815 0.2917 

0.6, -0.3, 0.3 D-Y Inrush 0.0135 0.0231 0.0289 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(B-C-G) 
2.578 2.5493 0.4552 
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Table3: Correlation factor signals 

 

3.2. Second harmonic Fourier analysis. 

 

A variety of samples have been chosen. Table4 shows the 

maximum 2nd harmonic current recorded using 2nd harmonic 

Fourier analysis for three phase signals under various operating 

conditions. 

Table4: the Peak value of 2nd harmonic current 

 

3.3. Select data. 

 

The fitting issue is defined using the developed inputs and targets. 

 

The matrix rows that made up the samples were as follows: 

 

-A 1040*3 matrix encoding static data ( Ia, Ib, Ic ): 1040 samples 

of three elements is used as input. 

-Target is a 1040*5 matrix that represents static data: 1040 

samples of 5 elements [Fault (inrush), Fault (a), Fault (b), Fault(c), 

Fault (g)]. 

Set 728 for training, 156 for validation, and 156 for testing from 

these samples. 

 

Set the number of neurons in the hidden layer of the fitting 

network. 

3.4. Training network and training algorism 
 

       3.4.1. Training network 

  

Using this information, the network is trained to fit the inputs and 

targets, starting with the mean values, then the standard deviation 

values, the correlation factor values, and finally the maximum 2nd 

harmonic values (Fig. 3). As a result, ANN researches the traits 

and characteristics of various signals. 

Fig. 3. Training architecture 

 

Given consistent data and enough neurons in its hidden layer, a 

two-layer feed-forward network with sigmoid hidden neurons and 

linear output neurons (fitnet) may fit multi-dimensional mapping 

problems arbitrarily effectively. 

3.4.2 Training algorism 

Choose one of several algorisms to train the network to fit the 

inputs and targets, such as: 

 

1- Levenberg Marquardt 

2- Bayesian Regularization 

3- Scaled Conjugate Gradient  

3.4.2.1 Training with Levenberg- Marquardt algorism 

This algorism usually necessitates a greater amount of memory but 

less time. 

When generalisation stops improving, as shown by an increase in 

the mean square error of the validation samples, training 

automatically terminates. Lower numbers are better, and zero 

signifies no error, where mean squared error (MSE) is the average 

squared difference between outputs and targets. Regression the R 

value indicates the degree of correlation between outputs and 

objectives; a value of 1 indicates a close association, while a value 

of 0 indicates a random relationship. 

Train with the Levenberg-Marquardt method. (trainlm) 

Table5: Results of training with Levenberg-Marquardt algorism 

Kind of 

sample 
Samples MSE R 

Training 781 3.09997e-2 9.24824e-1 

Validation 168 3.54662e-2 9.12329e-1 

Testing 168 3.07471e-2 9.23417e-1 
 

3.4.2.2 Training with Bayesian Regularization algorism 
 

This algorithm takes longer, but it can provide strong 

generalization for complex, tiny, or noisy datasets. Adaptive 

weight minimization causes training to come to an end 

(regularization).Train using Bayesian Regularization.  (trainbr) 

operating conditions Correlation factor 

initial flux 
Winding 

connection 
current 

condition 

Phase 

current 

(A) 

Phase 

current 

(B) 

Phase 

current 

(C) 

0.4, -0.2, 0.2 Yg-Yg Inrush 1 -0.2621 -0.6671 
0.2, 0 ,0 Y-Y Inrush 1 -0.6587 -0.5439 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 

(A-B) 
1 0.1657 -0.2311 

0.4, -0.2, 0.2 D-D 
Faulty 

(A-B-C) 
1 -0.3978 -0.5301 

0.3, 0, 0 Y-D Inrush 1 0.9971 -0.9992 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(A-C) 
1 -0.1378 -1 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 
(B-G) 

1 -0.2892 -0.5862 

0.4, -0.2, 0.2 D-D 
Faulty 

(C-G) 
1 -0.0379 -0.2649 

0.6, -0.3, 0.3 D-Y Inrush 1 0.1883 -0.6187 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(B-C-G) 
1 -0.9843 -0.1512 

operating conditions Peak value of 2nd harmonic 

initial flux 
Winding 

connection 

current 

condition 

Phase 
current 

(A) 

Phase 
current 

(B) 

Phase 
current 

(C) 

0.4, -0.2, 0.2 Yg-Yg Inrush 0.73 0.0055 0.0004 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(A-B-C) 
2.35 2.08 2.1 

0.3, 0, 0 Yg-Yg Inrush 0.66 0.012 0.074 

0.4, -0.2, 0.2 Y-D Inrush 0.395 0.192 0.205 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(B-G) 
0.131 0.125 0.118 

0.4, -0.2, 0.2 Y-Y Inrush 0.131 0.124 0.118 

0.4, -0.2, 0.2 Y-Y 
Faulty 

(A-B) 
2 2 0.01 

0.4, -0.2, 0.2 D-D Inrush 0.36 0.345 0.054 

0.4, -0.2, 0.2 Yg-Yg 
Faulty 

(A-B-C) 
2.19 0 1.91 

0.4, -0.2, 0.2 D-D 
Faulty 
(C-G) 

0.358 0.349 0.055 
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Table6: Results of training with Bayesian Regularization algorism 

Kind of 

sample 
Samples MSE R 

Training 781 2.76863e-2 9.32836e-1 

Validation 168 0.0000e-0 0.0000e-0 

Testing 168 3.08007e-2 9.24538e-1 

3.4.2.3 Training with Scaled Conjugate Gradient algorism 

This algorithm necessitates a less amount of memory. When 

generalization stops improving, as shown by an increase in the 

mean square error of the validation samples, training automatically 

terminates. 

Scaled Conjugate Gradient can be used to train (trainscg). 

Table7: Results of training with Scaled Conjugate Gradient algorism 

Kind of 

sample 
Samples MSE R 

Training 781 5.18495e-2 8.68936e-1 

Validation 168 5.30483e-2 8.65042e-1 

Testing 168 5.64485e-2 8.62804e-1 

 

According to the MSE and R values in table5, table6, and table7, 

Levenberg–Marquardt is the best algorism for training. 

 

3.5. Evaluates network performance 

 

3.5.1. Performance of mean values training 

 

The following are the results of training networks: 

Figure 4 shows the performance of network training with mean 

values. 

At epoch 160, use mean square error to evaluate its performance 

and yield 0.0637. 

The network error Histogram with mean values is shown in Figure 

5. 

ERORRS = TARGETS – OUTPUTS 

 

 
       Fig. 4. Performance with              Fig. 5. Histogram with 

          Mean values                                Mean values 

3.5.2 Performance of correlation factors training 

 

The following are the results of training networks: 

The performance of network training with correlation factors is 

depicted in Fig. 6. 

At epoch 127, performance is 0.0273. 

The network error histogram with correlation factors is shown in 

Figure 7. 
 

 
    Fig. 6. Performance with             Fig. 7. Histogram with 

             Correlation factors                          Correlation factors 

3.5.3 Performance of standard deviation values training 

 

The following are the results of training networks: 

Fig. 8The standard deviation numbers show network training 

performance. 

At epoch 122, performance is 0.01837. 

Fig. 9This is a histogram of network error values with standard 

deviations. 

 

                                                  
       Fig. 8. performance with                 Fig. 9. Histogram of 

       Standard deviation values               Standard deviation values 

 

3.5.4. Performance of second harmonic values training 

The following are the results of training networks: 

Figure 10 shows the performance of the network training using 

second harmonic values. 

At epoch 160, performance is 0.03847. 

The network error histogram with second harmonic values is 

shown in Fig. 11. 

 

 
           Fig. 10. performance with             Fig. 11. Histogram with 

             Second harmonic values             Second harmonic values 
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3.6. Testing network  

 

 
Table8: Testing some different selected examples  

 

In table 8; Targets and output s are not the same values in most of 

samples.    

 

4. Conclusion 

The current fitting strategy for transformer protection is presented 

to discriminate between inrush and fault currents of transformers 

using Artificial Neural Network Tools. Artificial Neural Networks 

are used to accomplish fault fitting. The neural fitting app aids in 

the selection of data, as well as the creation and training of the 

network. And use regression analysis and mean square error to 

measure its performance. The back propagation algorithm of 

Levenberg and Marquardt is employed. The defect signal is 

handled before being sent into the neural network. The network 

performance reveals that, as proven in this paper, training ANN 

using standard deviation values yields superior results than training 

with alternative signal statistics. 

The Levenberg-Marquardt algorithm necessitates additional 

memory, which is a drawback of the neural fitting programme. In 

most samples, the targets and outputs are not the same values, 

according to network testing. 

The findings of the proposed Transformer current fitting technique 

are not accurate decision making by ANN, and another technique 

for transformer current categorization should be adopted. 
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INPUT 
OPERATION 

OUTPUT TARGET 
CURRENT 

CONDITION IA IB IC IIN IA IB IC IG IIN IA IB IC IG 

0.0178 2.8199 2.94 Standard deviation 0.038 0.36 0.288 0.1 0.11 0 1 1 0 0 FAULT (A-B) 

1 -0.02 -0.727 Correlation factor 0.3 0.18 0.05 0.18 0.25 1 0 0 0 0 INRUSH 

-0.714 0.0041 0.912 Mean 0.95 0.018 0.003 0.007 0.01 0 1 0 1 0 FAULT (A-C) 

3.44 3.54 3.83 Standard deviation 0.006 0.01 0.05 0.1 0.074 0 1 1 1 0 FAULT (A-B-C) 

2.01 1.99 0.018 Second harmonic 0.0025 0.032 0.081 0.26 0.61 0 1 1 0 0 FAULT (A-B) 

2.35 2.08 2.1 Second harmonic 0.033 0.035 0.057 0.239 0.632 0 1 1 1 0 FAULT (A-B-C) 

1 -0.98 -0.01 Correlation factor 0.95 0.025 0.002 0.01 0.01 0 0 1 1 1 FAULT (B-C-G) 
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