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Abstract: Proper mission control plays a key role in the lifetime of space mission operation, as 

it ensures that all resources are efficiently utilized when achieving mission goals. Ground 

control station operation mainly depends on received telemetry together with models 

simulating spacecraft`s subsystems. Created models help in raising the level of autonomy of 

MCC (Mission Control Center). Data driven models describe the actual state of the subsystem 

in real operation situations rather than theoretical costly physical models. This paper proposes 

data driven models for satellite battery subsystem based on Bayesian ridge regression 

algorithm. The ridge coefficients minimize a penalized residual sum of squares Thirty models 

of all thirty battery variables (capacitance, voltage, pressure and temperature) are built from 

normal operation data. Sensor reading value can be predicted from an observation of all other 

29 values. Faults present in sensors or in system can be detected if predicted values are not 

equal to actual downloaded data from satellite. Bayesian ridge regression models are validated 

in terms of slope, intercept, R2-value, Q2 -value P-value and standard error. 

1. Introduction 

A key requirement in designing any space mission is its lifetime. Mission lifetime depends on many 

key features. One of the most key features in defining space mission lifetime is mission operations, 

which is how operations are held to carry out the mission objectives. Consequently, Mission Control 

Center (MCC) has the full responsibility of achieving efficient mission operations. MCC is the only 

link between satellite and its control to achieve mission objectives. Resources allocation along the 

lifetime of the spacecraft together with satellite onboard subsystems fault detection and 

troubleshooting are the main tasks of MCC.[1] 

Specialists’ level of training and ground software capabilities are the main key roles in efficient 

mission control. Both aspects integrate each other’s. High level of autonomy of ground software can 

make MCC specialists tasks more easily and efficient. Ground software may contain models 

simulating space environment, onboard software and onboard subsystems. These models help in 

increasing MCC level of autonomy as they help MCC specialists to perform their tasks. Created 

models are mostly physical models, where at the stage of designing and testing the space system, all 

subsystem designers develop these models. Physical models are very accurate and may describe all 

subsystems in details, however, they are very costly in terms of money and time. Physical models 

cannot also relate all variables to each other’s when there is no physical or mathematical relation. 

mailto:M_galilio@hotmail.com
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Another solution to create models simulating onboard satellite systems is to use data driven model. 

Such models are especially effective if it is difficult to build knowledge-driven simulation models [2]. 

Another advantage is the availability of big data coming from ground testing stage as well as daily 

received telemetry. Besides, Machine learning and artificial intelligence fields have been dramatically 

developed through past years due to availability of advanced computers that can perform complex and 

time-consuming computations very quickly and efficiently. 

In this paper Bayesian ridge regression models have been developed to predict all onboard satellite 

battery sensors` readings with high values of R2-value, Q2 -value metrics. Created capacity model has 

been used as an example to test its capability of fault detection using a test set containing actual 

battery failure observations together with normal operation observations. Satellite battery normal 

operation sensor readings have been collected to build the models. Received telemetry of capacitance, 

voltage, pressure and temperature values of battery have been used to build regression models that 

predict each value with the knowledge of all others. 

2. Mission control center tasks 

MCC plans and operates the entire space mission, including the configuration and scheduling of 

resources for both space and ground system. It computes and issues information needed by other 

ground system elements and data users. Data concerning the spacecraft's orbit, session times, and 

antenna pointing angles are submitted to the facilities responsible of antenna operation and payload 

tasking. MCC tasks include carrying out the detailed mission plan based on the general annual plan. 

MCC also ensures spacecraft`s health and safety. MCC in general sends commands to the spacecraft 

during sessions to perform mission tasks, while monitoring its performance. Besides, recovery from 

off-normal situations is another MCC task. To ensure the designed satellite lifetime operation, proper 

planning and satellite subsystem analysis tasks must be performed efficiently. Based on proper 

subsystems analysis, satellite`s resources and health are both well defined, then a proper plan is 

created and implemented. 

For proper resources allocation, all commands coming out from the mission control center must be 

first verified before sending to spacecraft. Commands verification is a main responsibility of mission 

control center specialists. Depending on specialists’ level of training and ground software capabilities, 

the task of commands verification complexity varies.  Commands verification task must be properly 

achieved for two main reasons. First reason is to be sure that spacecraft is capable of performing the 

tasks related to such commands without any faults in onboard subsystems.  The second reason is to be 

sure that satellite resources are efficiently utilized to perform such commands. Level of autonomy of 

ground software may help MCC specialists to perform such task more easily, as the software itself 

may reject commands that may cause faults.[1][3] 

The task of onboard subsystem fault detection and troubleshooting is also one of the main tasks of 

MCC. This task varies according to several aspects. For geostationary satellites, where communication 

with satellite is available all the time, all MCC tasks are real time tasks and telemetry data is always 

available making it easier to control. However, remote sensing satellites control may be harder task to 

perform by MCC specialists. Due to limited number of sessions per day, and limited session durations, 

onboard subsystem analysis for the sake of satellite state of health monitoring is a harder task for 

MCC specialists to perform in remote sensing satellites, especially when MCC controls a constellation 

of satellites. 

To increase MCC level of autonomy, ground software may contain satellite simulation models. 

These models may be used to verify commands before sending to satellite. They are also used to 

automate onboard subsystems health monitoring task. Besides, simulation models may also be used 

for MCC personnel training.[4] 

A traditional, efficient and accurate approach is to develop subsystem models by satellite designers. 

However, this approach costs a lot in terms of money and time. A comparable approach is to create 

data driven models with high accuracy to simulate onboard satellite subsystems. 
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3. Bayesian Ridge regression 

[5][6] Having a dataset containing variable (y) denoted as the response that is needed to describe in 

terms of (x1,x2,……,xp) variables denoted as the predictors ,then we can predict this variable (y) using 

linear regression model which can be mathematically presented as follows: 

 

                                                         (1) 

where: 

 ŷ is the predicted value 

(w1,w2,…..,wp) are the weight coefficients relating X and y. 

w0 is the intercept 

Ordinary least square (OLS) regression fits a linear model with coefficients w=(w1,w2,…..,wp) to 

minimize the residual sum of squares between predicted values and responses present in dataset. This 

can be mathematically presented as: 

 

                               (2) 

 

To overcome the problem of overfitting, a regularization factor is presented to the loss function to 

be minimized, such that to be a penalty on the size of coefficients. The ridge coefficients minimize a 

penalized residual sum of squares as follows: 

 

                                                            (3) 

 

where α is a complexity parameter that defines the model complexity and in turn model overfitting. 

λ is defined as the regularization parameter and it is equal to (α/β) where (β) is inverse the variance of 

the distribution. As λ increases, the amount of shrinkage increases and the coefficients become more 

robust to collinearity, leading to less overfitting. small values of λ allow the model to become finely 

tuned to the noise on each individual data set leading to large variance. Conversely, a large value of λ 

pulls the weight parameters towards zero leading to large bias. Introduction of the new λ parameter to 

the loss function changed OLS regression to be called ridge regression. 

Instead of using a fixed value for λ, it can be learned from data using Bayesian approach. λ can be 

treated as a random variable that is estimated from data. 

To obtain a fully probabilistic model, y is assumed to be gaussian distributed around Xw, given 

that: 

 

                                                                      (4) 

4. Sensor reading prediction using Bayesian ridge regression models 

 Data used to create the models are onboard battery sensor readings of voltage, pressure, temperature 

and capacitance. Each observation includes 30 readings as follows: 21,4,4,1 voltage, pressure, 

temperature and capacitance respectively.  Available dataset has been split into training and test sets. 

Test set has been taken to be one third of the whole dataset, where random observations are held. For 

created models validation, it is needed to validate both goodness of fitting and capability of prediction. 

First, to describe the properties of the fitting line and validate how much does it really fits data; slope, 

intercept, R2-value, P-value and standard error parameters are calculated for each created model. 

Slope and intercept can describe the fitting line properties, while only R2 value can be used to measure 

the goodness of fitting. 

min || Xw-y ||22 

Min ||xw-y||22 + α||w||22 

ŷ(w,x)=w0+w1x1+w2x2+…..+wp

xp 

P(y|X,w, α)=N(y|Xw, α) 
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Figure 1. slope of each model 

 

By observing figure (1) showing the calculated slope for each linear regression model of all 

sensors, the model predicting P1 (first sensor pressure) has the largest slope of (1.03), while the model 

predicting (T1) (first temperature sensor) has the lowest slope of (0.98). However, all slopes have an 

average approximately equals one (0.99954). This value has no great significance about fitting or 

prediction, but it only tells about the rate of change of the predicted variable value with respect to 

other values, which is found to be moderate slope (regression is neither very sensitive nor having poor 

response). 

2 - R2-value (coefficient of determination), representing how close the data are to the fitted 

regression line, in other words, how much does the line fits data. Values are found to be as in the 

following figure (2): 

 
 

Figure 2. R2-value of each model 

  

All models (except one) have very high R2 values (over 0.96), which means very good fitting of 

data. The model built to predict P1 (first battery pressure sensor value) has the lowest R-2 value as 

shown in the above figure. An R-2 value of (0.76) is not high enough, but it still can be used. 

Standard error is also a metric that may be used to judge created models` efficiency. As shown in 

figure (3), model achieved very low values of error. 

  

 
 

Figure 3. standard error of each model 
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Second, concerning regression prediction power (goodness of prediction), model prediction 

capability is something different from the model fitness capability, which is the ability of the model to 

estimate the response for objects that do not participate to the calculated model. Q2 value is a 

parameter used to validate model prediction power. Q2 is the cross-validated R2, where R2 is 

calculated by using the same data used to build the model, while Q2 is calculated by using other 

observations which didn’t participate in model building.  

R2 and Q2 calculations are almost identical, with the only difference being that residual sum of 

squares(RSS) is calculated from the data on which the algorithm is trained and Predictive Residual 

Error sum of squares(PRESS) is calculated from held out data. Q2 for all thirty models are as follows 

in fig (4) 

 

 
 

Figure 4. Q2-value of each model 

 

 Q2 values appear to be high as R2 values, except also for model used to predict (P1) first battery 

pressure sensor. 

 

 
Figure 5. predicted value of pressure sensor vs actual measured value 

 

Figure (5) shows the predicted values of one of the four pressure sensors using the model vs the 

actual onboard measured value using the test set, and it illustrates that the slope of the line passing 

through values is almost of 45 degrees, which indicates a good quality of prediction of the model.   
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5. Models usage in fault detection 

Created models can be used for fault detection when predicted values are far from measured values. At 

this case, either the model fails to predict the accurate actual value, or the value itself is far from 

normal. When one of the thirty created models has been used to predict another test set comprising of 

normal observations and new fault observations after system failure which have never been used in 

models creation, both predicted and measured values were far from each other’s only in fault region. 

As shown in the bellow figure no. (6), during normal battery operation, the predicted capacity values 

almost coincided with actual measured values. In fault region, both predicted and measured values are 

far away. Not only has the model succeeded in anomaly detection in subsystem fault region, but also it 

succeeded in identifying two other regions of strange behavior. These two regions are when the 

satellite has been subjected to flight tests, consequently, abnormal battery behavior, as all satellite 

power coming from solar arrays and battery has been utilized to perform such tests. 

 
 

 

6. Conclusion 

In this paper, the two states of the art algorithms for object detection (Faster RCNN and SSD) applied 

to detect vehicles in satellite images through Transfer Learning and making an experimental analysis 

comparison between them. We construct vehicle dataset collected by Google Earth and other satellite 

samples such as JF-2 and WORLD-VIEW satellites. The Inception-V2 used as a base network to 

enhance the accuracy of detection. Enlarge and increase the variety of training data by using 

Augmentation techniques. Mean average precision (MAP) used for performance evaluation. Based on 

the results obtained, Faster R-CNN Inception-V2 gives better accuracy than SSD Inception-V2. but 

the SSD Inception-V2 performs in a shorter time for image detection. The study will extend for 

general vehicle detection (bicycle, motorcycle, bus, truck).  

References 

[1] Wiley J. Larson (ed.), space mission analysis and design  3rd. ed . 

[2] D. Solomatine, L.M. See and R.J. Abrahart, “Data-Driven Modelling: Concepts, 

Approaches and    Experiences” ,Water Science and Technology Library 68, 

Springer-Verlag Berlin Heidelberg 2008.  

[3] Daryl G. Boden and Wiley J. Larson , cost effective space mission operations. 

[4] Thomas Uhlig, Florian Sellmaier, Michael Schmidhuber, Spacecraft Operations, DOI      

10.1007/978-3-7091-1803-0_2). 

[5] Christopher M. Bishop, pattern recognition and machine learning, ISBN-10: 0-387-

31073-8). 

[6] Radford M. Neal, Bayesian learning for neural networks, Springer,  ISBN 978-0-387-

94724-2) 

Figure 6. Capacity actual measured values vs predicted using the model, and regions of 

normal and fault operations 

 


