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Abstract  

In this paper we determined a condition on  M   for which 
( )( )

1

n

mI F f z
Mz

z


  implies  

( ) ( , ),n

mf z S     where  
n

mI  and ( )( )F f z   are respectively, the familiar multiplier 

transformations and the familiar Bernardi-Libera-Livingston operator. 
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Introduction 

Let  ( )A m   denote the class of functions of the 

form:  

1

( ) ( N {1,2,....}),k

k

k m

f z z a z m


 

   

 (1.1) 

which are analytic in the open unit disc 

{ C : 1}.U z z     We note that  A1  A 

, let  S,S  and  C 0    1  be the 

subclasses of functions in  A  which are, 

respectively, univalent, starlike of order     and 

convex of order     in  U  . We denote by  

S0  S
  and  C0  C.  If  f   and  g  are 

analytic in  U  , we say that  f   is subordinate to 

g  , written  ( ) ( )f z g z   if there exists a 

Schwarz function  ( )w z  , which (by definition) is 

analytic in  U   with  (0) 0w    and  |wz|  1  

for all  ,z U   such that  

( ) ( ( )), .f z g w z z U    Furthermore, if the 

function g is univalent in  U  , then we have the 

following equivalence (cf., e.g., [2], see also [7]):  

( ) ( ) (0) (0) and ( ) ( ).f z g z f g f U g U  

For functions ( ) ( )f z A m given by (1.1)  and

( ) ( )g z A m  given by  

1

( ) ( N),k

n

k m

g z z b z m


 

    

the Hadamard product (or convolution) of 

( )f z and ( )g z is given by  
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1

( )( ) ( )( ).k

k k

k m

f g z z a b z g f z


 

      

Also, for an analytic function ( )f z  given by  

(1.1) , for all integer values of n  and for all  

N,m   we define the multiplier transformation  

( )n

mI f z   by  

1

( ) ( ).n n k

m k

k m

I f z z k a z z U




 

    (1.2) 

Clearly, the function  ( )n

mI f z   is analytic in  U  . 

We note that  

( ( )) ( ) ( N; )n l n l

m m mI I f z I f z m z U    

for all integers  n   and  .l   We also note that : 

(i)  1 ( ) ( )n nI f z I f z  (see Flett [ 3]); 

(ii)  
1

2

( )n n k

k
k

I f z z k a z






    

0( ) ( N N {0})nD f z n     

  (see Salagean [9]). 

It follows from  1.2   that  
1( ( )) ( ),n n

m mz I f z I f z   (1.3) 

0 1( ) ( ), ( ) ( )m mI f z f z I f z zf z    and  

2 ( ) ( ( ) ( )).mI f z z f z zf z      

      For a function  ( )f z A  (see [1], [4] and 

[6]) the generalized Bernardi-Libera-Livingston 

operator  :F A A    is defined by  

1

0

1
( )( ) ( )

z

F f z t f t dt
z



 

 
   

2

1 k

k

k

z a z
k










 


  

2

1
( )k

k

z z f z
k









 
   

 
  

 2 1(1, 1; 2; ) ( )z F z f z      

( 1; ),z U      (1.4)  

where 2 1F   is the Gaussian hypergeometric 

function defined by  

2 1

0

0

( ) ( )
( , ; ; )

( ) !

( , , C; Z {0, 1, 2,...}),

k

k k

k k

a b z
F a b c z

c k

a b c c







    


 

and ( )kd  denotes the Pochhammer symbol given 

in terms of the Gamma function  , by 

1 ( 0)( )
( )

( 1)...( 1) ( N).( )
k

kd k
d

d d d k kd

 
 

    

We note that 2 1F  represents an analytic function 

in  U ( see for details [10 ,Ch.14]). 

It is easily seen from (1.4) that  

( ( )( )) ( 1) ( ) ( )( ).n n n

m m mz I F f z I f z I F f z     

 (1.5) 

Using the operator  ( )nI f z   Patel and Sahoo [8] 

introduced and investigated various properties and 

characteristics in U  by using the techniques of 

Briot-Bouquet differential subordination. 

Definition. A function ( ) ( )f z A m   is said to be 

in the class  Sm
n ,  if and only if   

( ( )( ))
Re

( )( )

n

m

n

m

z I F f z

I F f z






  

 
  

 

(0 1; Z; N; 1; ).n m z U        (1.6) 

 We note that: 

(i)  0 ( , ) ( , ),m mS S     where ( , )mS     is the 

class of functions  ( ) ( )f z A m  which satisfy:  

( )( )
Re

( )( )

zF f z

F f z






  

 
  

 

 (0 1; 1; );z U      (1.7) 

(ii)  1( , ) ( , ),m mS C       where  ( , )mC     is 

the class of functions ( ) ( )f z A m  which 

satisfy: 

( )( )
Re 1

( )( )

zF f z

F f z






  
  

  
 

 (0 1; 1; );z U      (1.8) 

(iii)  (1, ) ( ),n n

m mS S    where ( )n

mS   is the 

class of functions  ( ) ( )f z A m   which satisfy: 

1

1

( )( )
Re (0 1; ),

( )( )

n

m

n

m

zI F f z
z U

I F f z
 

  
    

  
 

 (1.9) 

where  

1

0

2
( )( ) ( ) ;

z

F f z f t dt
z

   (1.10) 

(iv)  ˆ(0, ) ( ),n n

m mS S   where ˆ ( )n

mS   is the 

class of functions ( ) ( )f z A m   which satisfy: 



Sufficient Conditions for Starlikeness of Univalent … Scientific Journal for Damietta Faculty of Science 5 (2) 2015, 68-72 

70 

0

0

( )( )
Re (0 1; ),

( )( )

n

m

n

m

zI F f z
z U

I F f z
 

  
    

  
 (1.11) 

where 

1

0

0

( )
( )( ) ( ).

z

m

f t
F f z dt I f z

t
    (1.12) 

Main Result  

    Unless otherwise mentioned, we assume 

throughout this paper that (-1 ≤ B < A ≤ 1; 0 ≤  < 

1; n  ; m   and  > -1).  

We now state the following lemma which can be 

proved analogously to similar result proved by 

Patel and Sahoo [ 8, Theorem 3]. 

Lemma 1. If  ( )f z ( )A m   satisfies   

( ) 1
,

1

n

mI f z Az

z Bz




  (2.1) 

then   

( )( ) 1
( ) ,

1

n

mI F f z Az
q z

z Bz

 


 (2.2) 

where   

 

 

 

1

2 1

1 1

( ) 1,1; 1; 0
1

1
1 0

1

A A
Bz

B B

Bz
q z F m B

Bz

Az B
m







  
   
 

  
      

 
 
 

 

  

 (2.3) 

is the best dominant of  (2.2). Furthermore,   

( )( )
Re ( , , , )

n

mI F f z
A B m

z


 

  
 

  

 

 
1

2 1

1 1

1,1; 1; ( 0)
1

1
1 ( 0).

1

A A
B

B B

B
F m B

B

A B
m







  
   
 

  
      

 
 
 

 

 

 (2.4) 

The result is the best possible. 

Theorem 1. Let the operator ( )( )F f z  defined 

by (1.4) satisfy the following subordination 

condition:   

( )( )
1 ( ( )),

n

mI F f z
Mz f A m

z


   (2.5) 

where  

M 
1  1  m

1


|  |    12    1  m2
.     2.6

 
 (2.6) 

Then  ( ) ( , ).n

mf z S    

Proof. From (1.2) and (1.4), it follows that  

1

0

1
( )( ) ( ) .

z

n n

m mI F f z t I f t dt
z



 

 
   (2.7) 

Defining the function ( )z in U by  

( )( )
( ) ( )

n

mI F f z
z z U

z


    (2.8) 

we see that 1

1( ) 1 ...m m

m mz p z p z 

     is 

analytic in U and (0) 1  . From Lemma 1 with  

A M  and 0B   , we have  

1
( ) 1 ,

1
z Mz

m









 
 

which is equivalent to  

1
( ) 1 1 ( ).

1
z M N z U

m







    

 
 (2.9) 

Set  

( ( )( ))1
( ) .

1 ( )( )

n

m

n

m

z I F f z
P z

I F f z








 
     

 (2.10) 

Using the identity (1.5) followed by (2.8), we 

obtain  

( ) 1 1
1 ( ) ( ).

1 1

n

mI f z
P z z

z

 


 

     
      

     
 

 (2.11) 

In view of (2.11), the hypothesis (2.5) can be 

written as follows:  

1 1
1 ( ) ( ) ( ) 1

1 1
z P z z M

 
 

 

  
    

  
 

 
1

.
1

m
N





 



  (2.12) 

We need to show that (2.12) yields  

 Re ( ) 0 ( ).P z z U   (2.13) 

 If we suppose that  Re ( ) 0 ( ),P z z U    then 

there exists a point 0z U  such that  
0( )P z ix   

for some  R.x    To prove (2.13), it is sufficient 
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to obtain a contradiction from the following 

inequality:  

0 0 0

1 1
1 ( ) ( ) ( ) 1

1 1

.

W z P z z

M

 
 

 

  
    

  



 

Let  
0( ) .z u iv    Then, by using (2.9)  and the 

triangle inequality, we obtain that  

 
2

2 2 2

2

0

1 2(1 )
( )

1 1

1
1 ( ) 1

1

u v x vx

z

 

 






  
   

  

 
   

 

 

2

2 2 2

2

1 (1 )
( ) 2

1 1

1 1
1 .

1 1

u v x vx

N

 

 

 

 

  
   

  

  
   

  

 

Setting  
2 2

2

2 2 2

2

2

2

( )

1 (1 )
( ) 2

1 1

1 1
1

1 1

1
,

1

x W M

u v x vx

N

m
N

 

 

 

 





  

  
   

  

  
   

  

  
 

 

 

we note that (2.12) holds true if  ( ) 0x    for any  

R.x    Since  

2 2 21
( )( ) 0,S

1
u v






 


 

the inequality ( ) 0x  holds true if the 

discriminant 0  ; that is  
2 2

2 2 2

2 2

2

1 1
4 ( )

1 1

1 1 1
1

1 1 1

0,

v u v

m
N N

 

 

  

  

    
      

    

      
     

       



 

which is equivalent to  

2 2

2 21 1 1
1 1

1 1 1

m
v N N

  

  

       
       

      
2 2

2 21 1 1
- 1 .

1 1 1

m
u N N

  

  

       
      

      

 

Putting 0( ) 1 iz e    for some real R,   

we get  
2 2 2

2 2

sin
.

(1 cos )

v

u

 

 



 

Since the above expression attains its maximum 

value at cos ,    by using (2.9), we obtain  

v2

u2
 2

1  2
 N2

1  N2

 

   

   

2 2
2

2 2
2

11 1
1 1 1

11 1
1 1 1

1

,

1 1

m

m

N N

N N

 
  

 
  

  
  

  
  

   
  


    
  

 

which yields 0.   Therefore, ,W M  which 

contradicts (2.12), hence   Re ( ) 0P z   ( )z U . 

This proves that ( ) ( , ),n

mf z S     which 

completes the proof of Theorem 1. 

Putting 0n    in Theorem 1, we obtain the 

following result. 

Corollary 1. Let the operator ( )( )F f z  defined 

by (1.4) satisfy the following subordination 

condition:   

( )( )
1 ( ( ) ( )),

F f z
Mz f z A m

z


   

where M is given by (2.6). Then  ( ) ( , )mf z S  

.  

Putting 1n    in Theorem 1, we obtain the 

following result. 

Corollary 2. Let the operator ( )( )F f z  defined 

by (1.4) satisfy the following subordination 

condition: 

( )( ) 1 ( ( ) ( )),F f z Mz f z A m
    

where M is given by (2.6). Then  

( ) ( ; ).mf z C     

Putting 1  in Theorem 1, we obtain the 

following result. 

2

2

0 0 0

1 1
1 ( ) ( ) ( ) 1

1 1
W z P z z
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Corollary 3. Let the operator 1( )( )F f z   defined 

by (1.10) satisfies the following subordination 

condition:  

1( )( )
1 ( ( )),

n

mI F f z
Mz f A m

z
   

where  

(1 )(1 )
2 .

2(1 ) 4 (2 )

m
M

m





 


   

 

Then    ( ) ( ).n

mf z S   

Putting 0   in Theorem 1, we obtain the 

following result. 

Corollary 4. Let the operator 0( )( )F f z defined 

by (1.12) satisfies the following subordination 

condition:  

0 ( )
1 ( ( )),

n

mI F f z
Mz f A m

z
   

where   

2

(1 )(1 )
.

1 (1 )

m
M

m





 


  
 

Then  ˆ( ) ( ).n

mf z S    

Remark 1. Putting 0n   in Corollary 4 we 

obtain the result obtained by Liu  [5, Theorem 2.2 

with 1a   ] . 
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 الملخص العربي

 شرط ضروري جديد لنجمية الدالة التحليلية وحيدة القيمة المحتوية على مؤثر فلت التكاملي عنوان البحث:
 رابحة محمد الأشوح

 ، كلية العلوم، جامعة دمياط، مصرالرياضياتقسم 

 بحيث Mفي هذا البحث قمنا بحساب قيمة 

  
1

n

mI F f z
Mz

z


  

والتي تستلزم  ,n

mf S      حيث
n

mI  ،  F f z   هما على الترتيب تحويل المضروب

 ليفنجستون المعروف. -ليبرا  -المعروف ومؤثر برنارد 


