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Abstract 

Aeromonads are halophilic, non-spore forming, Gram-negative rods which are ubiquitous 
in aquaculture and foodstuffs. Members of genus Aeromonas are abundant water inhabitant 
bacteria that were recovered from lakes, rivers, swamps, chlorinated water as well as food 
stuff as fish, meat, seafood, vegetables, and processed foods. Aeromonas species are 
opportunistic pathogens that affect many aquatic animals and human. These pathogens cause 
septicaemia, ulcerative and haemorrhagic diseases, and mortality in different fish species. 
They possess large number of virulence factors in addition to inherent resistance to various 
antimicrobials and ability to form biofilms with the help of quorum sensing. This review 
focuses on the pathogenic potentials of Aeromonas species which regarded as multifactorial 
and dependent on the presence of different virulence factors that enable bacteria to colonize, 
invade, and defeat the host’s immune defences. This review also provides an update on the 
taxonomy, ecology, and control of Aeromonas infection in fishes. 
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Introduction 

Aeromonas species belongs to the class 

Gamma-proteobacteria, order Aeromonadales 

and the family Aeromonadaceae [1]. These 

bacteria are, facultative anaerobic, motile , 

non-sporulating Gram negative bacilli [2]. 

Aeromonads are primarily aquatic organisms 

occurring naturally in different freshwater 

bodies that include rivers, water streams 

and lakes[3]. However, these organisms do 

not occur in water with a very high salinity, 

geothermal springs or extremely polluted 

rivers [4]  

Members of genus Aeromonas are 

opportunistic pathogens that affect many 

aquatic animals [5,6]. Diseases and 

mortality in  different  fish species were 

attributed to Aeromonas species [7].  A. 

caviae, A. hydrophila,  A. salmonicida, A. 

sorbia, and A. veronii  were regarded as the 

most important causes of disease and 

mortality in fish [8–10]. Aeromonads have 

many virulence factors that allow bacteria 

to invade the host immune system and 

contribute to the pathogenicity of this 

organism. Some of these factors are serine 

protease (ser), aerolysin (aer), lipase (lip), 

cytotonic heat–stable enterotoxin (ast), 

hemolysin (hly A), cytotoxic enterotoxin 

(act) and temperature-sensitive protease 

(eprCAI). To determine the pathogenic 

effect of Aeromonas species these virulence 

genes have been used [11–14]. The major 

virulence factors correlated with Aeromonas 

species are S-layers, surface polysaccharides, 
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iron binding machinery, extracellular enzymes 

and exotoxins, secretion systems and 

adhesins [15]. Since the occurrence of these 

virulence factors is strain specific, virulence 

potential of different A. hydrophila strains 

was characterized by the incidence of their 

virulence genes [16–19]. A lot of bacterial 

diseases appear in fish farms due to 

increased stocking density of fish, which 

led to  extensive antibiotic usage for their 

treatment [20, 21]. Unwise use of  

antibiotics led to the emergence of 

antibiotic resistance among pathogenic 

bacteria in fish farming [22,23]. Aeromonas 

species are used as a good indicator for 

analysing the occurrence and antimicrobial 

resistance of bacteria in fish farms [1, 22]. 

Taxonomy and Classification of 

Aeromonas species 

The genus Aeromonas, belonging to the 

class Gamma- proteobacteria and the family 

Aeromonadaceae, contains Gram-negative, 

non-sporulating, facultative anaerobic 

bacilli [24,25]. Until 1970, according to 

physiological characteristics and host 

range; Aeromonas species were classified 

into two main groups. Motile Aeromonads 

is the first group with optimum growth 

temperature at 35–37ºC, this group is 

known as A. hydrophila and it predicted to 

produce human infections. The second 

group is non motile aeromonad which 

grows at 22–28ºC, it is called A. 

salmonicida and produces infections in 

fishes [26]. Thereafter, new species was 

added to the genus Aeromonas followed by 

reclassification of pre-existing taxa [27]. 

Earlier, Vibrio species, Aeromonas species 

and Plesiomonas shigelloides were 

included in the family called Vibrionaceae 

but the recent genetic findings have 

provided enough information to change this 

idea and placed Aeromonas species in  

family Aeromonadaceae [28]. Based on 

16S ribosomal RNA similarity and DNA-

DNA hybridization;  members of genus 

Aeromonas were classified [29]. DNA–

DNA hybridization assay were used to 

classify Aeromonas species into multiple 

hybridization groups within each of the 

mesophilic species [24]. Until March 2016, 

31 Aeromonas species had been discovered  

[10]. The genus currently includes 36 

species [30]. 

Identification of Aeromonas species 

Phenotypic identification  

Aeromonas species are facultative 

anaerobes that produce characteristic 

colonies with hemolysis on blood agar or 

not. They do not require sodium ion for 

growth and tolerated up to 4% NaCl in the 

culture medium [31]. 

Genus Aeromonas  is phenotypically 

identified by  Gram-negative staining ,  

oxidase positive reaction, fermentation of 

glucose with production of acid and gas, 

reduction of nitrate and growth inhibition 

by vibriostatic factor O/129 [32]. Because 

of the changing behaviour of some strains, 

identification to the species level using this 

method is complicated. Some strains 

recovered from diseased fish were re-

identified which were identified 

phenotypically. The 16S rRNA PCR- 

restriction fragment length polymorphism 

(RFLP) and RNA polymerase, sigma 70 

(sigma D) factor (rpoD) sequences were 

applied to reidentify the isolates and the 

results showed that only 35.5% were 

correctly identified [33]. Moreover, 

commercial identification kits (API 20E, 

Vitek, BBL Crystal Enteric/Non fermenter, 

and MicroScan Walk/Away systems) have 

frequently been utilized in laboratories, in 

spite of  other authors decided  that these 

kits had drawbacks [34]. Lamy et al., [35] 

evaluated the accuracy of six commercial 

kits for Aeromonas species identification 

using RNA polymerase subunit B (rpoB) 

sequencing as a reference. Molecular 

methods were more specific than 

commercial identification kits. Moreover, 

Soler et al., [36] confirmed the conclusions 

of the previous study that MicroScan W/A 

and BBL Crystal E/N systems correctly 
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identified 14.8% and 20.3% of 

Aeromonas strains that were formerly 

identified by PCR for 16S rRNA gene -

RFLP analysis, respectively. 

Molecular identification 

16S rRNA gene-based techniques 

Identification and comparison of bacterial 

species is now possible by the use of  16S 

rRNA gene which is highly conserved 

marker [37, 38]. Sequencing of 16S rRNA 

gene is the commonly applied molecular 

tool in clinical laboratory for genus and 

species identification [39]. When trying to 

identify Aeromonads using this technique 

wariness should be taken because of the 

sequence variation  between 16S rRNA 

genes in the same strain, which may reach 

1.5% [40]. 

One of the effective tools introduced in 

many clinical laboratories for the 

identification of bacteria is Matrix-assisted 

laser desorption/ionization time of flight 

mass spectrometry (MALDI-TOF MS). 

MALDI-TOF MS basically identify proteins 

associated with the 16S rRNA gene [41].  

MALDI-TOF MS was used to identify 

isolates previously characterized by 

sequencing  of rpoB  and results showed 

that 100% of isolates were properly 

identified at genus level, and 97% at 

species level [42]. 

Housekeeping Genes 

Proteins having crucial functions for the 

survival of bacteria are encoded by 

housekeeping genes (HKG). The ideal 

HKG should be present in all bacteria and 

should not be influenced by horizontal gene 

transfer [40]. 

The first HKG that has been used to 

study Aeromonas species  was  gyrB gene 

which encodes the B subunit of DNA 

gyrase [43]. The rpoD gene is a similar 

HKG that displays a related phylogeny to 

gyrB which encodes factor sigma S70 (that 

enables promoter-specific transcription 

initiation of  RNA polymerase)[34]. Other 

HKGs have  been described: gyrA rpoB, 

dnaJ ,recA, dnaX, dnaK,cpn60, mdh, atpD, 

groL, gltA radA, metG, ppsA, tsF, and zipA 

[44–50] for identification of Aeromonas 

species. 

Amplified fragment length polymorphism 

(AFLP) analysis has repeatedly been shown 

to be a very useful method  for classification 

and typing of Aeromonads [51]. 

Enterobacterial Repetitive Intergenic 

Consensus (ERIC-PCR) is one of the highly 

effective methods for genotyping of Aeromonas 

species as it is highly reproducible and easy 

to perform and does not need too expensive 

instruments. Therefore, it has been utilized 

in many epidemiological surveys [52-54] to 

investigate the clonality of Aeromonas 

isolates. 

Restriction fragment length polymorphism 

(RFLP) assay was used for genotyping of 

A. hydrophila using EcoRII and Eco3 

restriction enzymes[55]. 

Multilocus sequence typing (MLST) is a 

typing method based on the sequences 

analysis of 5-7 housekeeping genes to identify 

strains by their unique allelic profiles and 

so facilitates the discrimination of microbial 

isolates [56]. This technique is highly 

differentiating and reproducible when 

compared with other molecular tools. The 

generated databases can guid researchers to 

compare the results they obtain. The 

bacterial isolate genome sequence database 

(BIGSdb) is platform that currently 

manages the MLST database.  

Phylogenetic grouping of Aeromonas 

species rely on the analysis of two 

housekeeping genes (rpoD and gyrB) were 

consistent with the described taxonomy of 

Aeromonas species  [34]. 

Pathogenesis and virulence factors 

During host pathogen interaction, 

microbes multiply, survive, and combat the 

host’s immunity. The clinical signs that are 

observed from Aeromonas infections indicate 

a complicated network of mechanisms 

forming of a multifactorial process. This 

hypothesis was strengthen by several 
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studies as the strain, infection route, and 

animal model affect the virulence of 

Aeromonas species [7, 14, 57]. Virulence 

factors of Aeromonas species include: 

Surface structural components 

Capsule 

 The outer membrane of the bacterial cell 

is enclosed by capsule which is formed of 

polysaccharides and water. Polysaccharides 

are formed by repetitions of monosaccharides 

which are bind to each other by glycosidic 

bonds forming homo- or hetero-polymers. 

The variation of capsule forming 

monosaccharides, probable change, and 

various linkage are responsible for the 

diversity and structural complexity [58]. 

The function of capsule as pathogenic 

factor is reducing opsonization and hence 

hindering phagocytosis [59]. 

S-layers 

Wide range of bacteria forms S-layer 

which is surface protein or glycoprotein 

forming the outermost cell envelope. S-

layers have several functions that are 

related to virulence. It has  a major role in 

adhesion, and protect the bacteria from 

phagocytosis [60]. 

Adhesins 

The ability of bacteria to stick and colonize 

the host mucosa is considered a crucial step in 

the infection. The first most important step in 

the process of infection is adhesion of bacteria 

to host cell. Bacteria attach to host cells and 

change their defence mechanisms by the 

initiation of colonization process.  Aeromonas 

species has two class of adhesions which 

enable it to bind to receptors on the host cell 

surface [61]. 

Filamentous Adhesins: Fimbriae/Pili 

 Bacterial cell surface has filamentous 

structures called fimbriae or pili which 

consists of protein subunits called pilin. Pili 

have many functions rather than adhesion 

like cell aggregation, phage binding, 

biofilm formation, and transfer of DNA. 

[62]. 

 

Non-filamentous Adhesins 

These are macromolecules on the surface 

of bacterial cell surface and act as adhesins, 

as lipopolysaccharide (LPS), S -layer and 

outer membrane proteins.  The porins are 

example of outer membrane proteins which 

act as a lectin-type adhesins that help 

bacteria to attach to carbohydrate-rich 

surfaces as red blood cells and possibly 

human intestinal cells [63]. 

Extracellular proteins and enzymes 

The process of interaction between host 

cells and pathogenic Aeromonas species is 

revealed by the production of enzymes and 

toxins and their secretion out the cells, like, 

lipases, proteases, enterotoxins, hemolysins 

and Shiga toxins [8, 15, 64]. Wide range of 

exotoxins is produced by Aeromonas 

species. Not all toxins are produced by all 

strains. Moreover, toxin genes are 

expressed under specific growth conditions 

in some strains [15].  

Cytotonic (change the target cell 

morphologically without killing) and 

cytotoxic enterotoxins have been found in 

Aeromonas species 7, 15].  In A. hydrophila 

the cytotoxic enterotoxin (act) has an 

important role in Aeromonas infections 

because it inhibits phagocytosis, triggers 

hemolysis, and rises the level of interleukin 

(IL-1β) and tumour necrosis factor α (TNF-

α) [65].  Proteolytic nicking near the C-

terminus activates the inactive secreted 

protein. The active toxin attaches to a 

glycoprotein on the target cell surface and 

accumulates pores in the host cytoplasmic 

membrane causing cell death [66].Two 

classes of hemolysins at least are produced 

by Aeromonas species; α-hemolysins and ß-

hemolysins. The α-hemolysins are formed 

in the stationary phase of growth and are 

responsible for incomplete lysis of 

erythrocytes and reversible cytotoxic 

effects. ß-hemolysins are formed in the 

exponential phase of growth cycle. They 

are pore forming toxins leading to  
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complete destruction and lysis of red blood 

cells [15]. 

Hemolysins make holes in the target cell 

membrane leading to their osmotic lysis 

[67]. The prototype hemolysin of the genus 

is aerolysin which is encoded by a gene 

called aerA [8]. Type two secretion system 

(T2SS) is responsible for formation of 

aerolysin which is known to be sec-

dependent where aerolysin is transcribed as 

a pro-aerolysin that go through several 

processes of maturation before the 

exportation of the active aerolysin to the 

external environment [68]. 

Extracellular proteases enable Aeromonas 

species to survive in various habitats and 

facilitate ecological interactions with the 

host. Protease enhances the pathogenicity 

because they facilitate invasion either by 

toxin activation or direct host tissue damage 

[8,15]. Three types of proteases are secreted 

by Aeromonas species: metalloprotease 

(ahp, aphB), acetylcholinesterase, and 

serine protease (aspA) [69, 70]. Furthermore, 

they can assist the formation of infection by 

disabling the initial host defences, like, 

inactivating the complement, or by 

supplying nutrients for cell reproduction 

[15]. 

Lipases are formed by various bacterial 

species. Aeromonas species produce lipases 

in the surrounding environment to 

hydrolyse membrane lipids leading to 

impairment of many immune system tasks 

through free fatty acids produced by 

lipolytic activity. Lipase can digest the 

membranes of erythrocytes and induce their 

lysis [9, 16]. 

Secretion Systems  

Gram-negative bacteria have inner 

cytoplasmic membrane and an outer 

membrane containing LPS with a thin 

peptidoglycan layer in between. The space 

between the two cytoplasmic membranes is 

called the periplasmic space. Gram-

negative bacteria had different types of 

secretion systems: type I, II, III, IV, V, and 

VI to transfer proteins to the extracellular 

environment or to the cell surface [71]. 

Many Gram-negative bacteria have type 

III and VI secretion systems which deliver 

their toxic proteins (effectors) directly into 

the target host cells [16, 31, 72, 73]. 

Studies showed that infections by A. 

hydrophila and A. salmonicida  strains 

having mutation in T3SS had a reduced 

virulence than the wild strains [74, 75]. 

Type four secretion system (T4SS) is the 

only  known secretion system that can 

transport DNA in addition to proteins [76]. 

T4SS performs important role in the 

dissemination of virulence and resistance 

genes [8, 15]. 

T3SS, T4SS, and T6SS are able to insert 

effector proteins directly into the cytoplasm 

of the host cell, even though T6SS has been 

discovered in nonpathogenic and symbiotic 

organisms or [77]. After complete genome 

sequencing of  A. hydrophila, T6SS was 

identified even though its role in virulence 

was undiscovered [69]. The role of T6SS in 

the virulence of  A. hydrophila was then 

discovered [78]. T6SS was then shown to 

have antibacterial function in multiple 

bacterial infections for elimination of 

competing bacteria [79]. Shigella sonnei 

T6SS conferred privilege when competing 

with S. flexneri and Escherichia coli and 

this privilege was diminished in mutants 

defective in T6SS [80]. 

Metal ions  

Normal biological processes of 

microorganisms require the presence of 

metal ions. They play an essential part in 

the interplay between host and pathogen. In 

the progression of an infection, the host 

inhibits the availability of essential metals, 

by disabling the metal dependent biological 

processes of the M.O which compensate 

this inadequacy by producing alternative 

proteins [81, 82]. Iron gain mechanisms are 

recognized to play a vital role in the 

progression of the infection. Low level of 

iron makes pathogenicity of bacteria more 

difficult [8]. 
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Siderophore-dependent mechanism is 

one of the mechanisms by which 

Aeromonas species sequestrate iron from 

the host tissues. A functional group having 

high affinity to iron ions is provided by 

Siderophores that require certain 

membrane-bound receptors and a special 

cell- machinery to make this essential 

element available and incorporate the iron 

ions into the microbial metabolism. Other 

mechanisms independent on Siderophore 

include bacterial  membrane bound protein 

that binds host iron [8, 15, 83].  

Mesophilic Aeromonas produce either 

enterobactin siderophores or amonabactin 

siderophores, but never produce both. The 

enterobactinis are discovered in various 

Gram-negative bacteria, but  the amonabactin 

is  identified only  in Aeromonas species 

[84]. 

Quorum sensing 

Quorum sensing (QS) is a bacterial  

communication system for organizing 

genetic expression in response to cell 

population, this system enables bacteria to 

evade the host immune system [85,8]. 

Expression of virulence genes, antibiotic 

production, plasmid conjugation and 

biofilm formation in Aeromonas species, 

can be induced by QS system [86- 89]. 

Bacteria produce substances which act as a 

chemical signal. In Gram-negative bacteria, 

these chemicals are basically acylated 

homoserine (AHLs), AHL in Aeromonas 

can change the host immune response [90, 

89, 8, 91]. 

Chan et al., [92] reported 159 sequences 

of QS-related genes in A. veronii, which 

increase its virulence. Nowadays, Liu et al., 

[93] demonstrated that the formation of 

biofilm in A. salmonicida is affected by the 

infection with the asaI-mutant (failed to 

produce the short chain AHLs signal). 

Recently, Blöcher et al., [94] developed 

anti-QS compounds to inhibit biofilm 

formation of the resistant A. caviae strain 

Sch3. This study helps control the bacterial 

antibiotic resistance problem.  

 

Fish diseases caused by Aeromonas 

species 

Aeromonas species have an important 

role in fish diseases, and this has been 

known for decades, mainly there are two 

types of Aeromonas species responsible for 

fish disease. A. salmonicida is considered 

the causative agent of furunculosis, which 

has been considered the most important fish 

diseases in aquaculture [95, 96]. It was 

thought in the past, the infection affected 

salmonids only, but by the time it is known 

to affect fresh and marine water fishes [97,- 

96]. Fish suffer from furunculosis show 

some symptoms like skin hyperpigmentation, 

lack of appetite, lethargy, presence of the 

typical furuncles, septicaemia, exophthalmia, 

petechiae, anaemia, ascites and haemorrhagic 

lesions in the gills, nares, fins, vent, muscles, 

and internal organs [97,96]. Mesophilic 

motile Aeromonas species cause another 

fish disease known as ‘motile Aeromonas 

septicaemia or epizootic ulcerative 

syndrome which shows similar clinical 

signs as furunculosis, but some time injury 

may be seen only in the internal organs or 

skin [97-,98]. 

Control of Aeromonas infection in fish 

To control the extensive use of 

antibiotics in fish farms and their possible 

negative impacts on the environment and 

public health, a continuous search for other 

alternative strategies is required. Even 

when the antibiotic concentrations in fish 

diet are below the minimum inhibitory 

concentration, the prolonged existence of 

antibiotics in water, combined with high 

numbers of bacteria in the polybacterial 

environments as the sediment, pond, or 

biofilm put selective pressure on bacteria 

and allow the exchange of resistance genes 

between them [99,100]. Aeromonas species 

may continue being adhered to biofilms on 

abiotic or biotic surfaces, and its existence 

with E. coli in mixed biofilms encourages 

the exchange and distribution of 
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antimicrobial resistance genes [101]. The 

alternative strategies include: 

Probiotics 

Probiotics are combination of living 

microorganisms (bacteria and yeasts) that, 

when administered in sufficient amounts, 

confer a health benefit on the host [102]. 

The beneficial activities of probiotics were 

attributed to modification of intestinal 

microbiota, production of antitoxin 

substances or antibacterial (bacteriocins and 

organic acids), immune system modulation 

and competition with pathogens for 

nutrients, and adhesion to intestinal mucosa 

[103]. There was an increase of the survival 

rate and protective effect of probiotic 

against Aeromonas species. The amplitude 

of the survival rate between the probiotic 

and control groups varied considerably and 

depended on the probiotic species, the 

feeding dosages, and durations [104]. 

Relatively high level of protection against 

A. hydrophila was recorded in Nile tilapia 

for each probiotic agent Bacillus pumilus or 

mixture of Lactobacillus acidophilus, 

Bacillus subtilis, Saccharomyces cerevisiae, 

and Aspergillus oryzae at the end of the 

second month more than that obtained at 

the end of the first month of the feeding 

trial [105]. 

Furthermore, it has been shown that the 

combination of multispecies probiotics of S. 

cerevisiae, B. subtilis, and Lactococcus 

lactis [106] or B. subtilis, L. plantarum, and 

Pseudomonas. aeruginosa [107] improves 

health status more effectively than the 

incorporation of a monospecies probiotic in 

the diet. 

Prebiotics 

Prebiotics are indigestible fibers that are 

selectively used by host microflora to 

confer health benefits and enhance growth 

performance due to the by-products 

generated from their fermentation by gut 

beneficial bacteria, such as altering the 

composition of the microbiota, inhibiting 

pathogens, stimulating immune responses, 

and improving resistance to stress factors 

[108-109]. ß-glucan (ß-1,3-glucan or ß-1,6-

glucan) which is extracted from the cell 

wall of S. cerevisiae was one of the most 

important prebiotics used to prevent disease 

in freshwater fish by Aeromonas species. 

when added to the basal diet [110-111]. 

Feeding fish with ß glucan at 1 to 2 g/ kg 

diet for at least 2 weeks appeared to be 

ideal to induce high protection and 

stimulate immune response in different 

Aeromonas infected freshwater fishes 

including rainbow trout, common carp, and 

Nile tilapia [112-113]. The immunomodulatory 

mechanisms of prebiotics in augmentation 

of fish immunity need to be further 

investigated. Some studies shown that a ß-

glucan supplemented diet could display 

variable gene expression levels of some 

immune and inflammation-related cytokines in 

fish infected with Aeromonas species. The 

response depended on the organ, with 

downregulation in the gut and an 

upregulation in the spleen and kidney 

[112,114,115]. Despite a preventive effect 

against Aeromonas infection in some 

investigations, no significant effect of 

dietary ß-glucan on immune parameters 

(leucocyte subpopulations, lysozyme 

activity, alternative complement activity 

(ACH50)) assessed in serum of rainbow 

trout and Nile tilapia has been proved [112, 

114,116] . 

Synbiotics 

Synbiotics are feed supplements consist 

of a mixture of probiotics and prebiotics 

that beneficially affect the health of the 

host. In aquaculture, synbiotics were used 

to improve growth performance and feed 

utilization as well as increasing resistance 

to diseases, digestibility, and modulation of 

the immune system [117-119]. 

Different formulas of synbiotics were 

investigated with the purpose of studying 

their beneficial role to protect  

freshwater fish against Aeromonas 

infections like, L. plantarum JCM1149 and 

Fructooligosaccharides (FOS) [120], B. 

subtilis and Mannan Oligosaccharides 
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(MOS) ) [121], inactivated E. faecalis and 

MOS [122], Bacillus spp. (B. coagulans or 

B. subtilis) and Chitooligosaccharide (COS) 

[123]. 
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 الملخص العربي 

 امهوالتحكم في العدوي: نظره ع لأنواع الأيروموناس المتورطة في أمراض الأسماك محددات الضراوة

 ياسمين حسنين طرطور1عمر،  أشرف محمود1السيد يوسف محمد النعناعي، 1يادة ممدوح ياسين، م2و 1

 مصر –الزقازيق  - 44511جامعة الزقازيق  –كلية الطب البيطري  –قسم الميكروبيولوجيا  -1

 مصر -الزقازيق  - 44511جامعة الزقازيق  -كلية الطب البيطري  -طبيب بيطري  -2

الغذائيةأنواع   الأيروموناد المائية والمواد  البيئة  في  الجرام وتنتشر على نطاق واسع  هي عصيات، غير بوغية، سالبة 

المعقم   ومياه  والمستنقعات  والبحيرات  الأنهار  من  عزلها  يتم  الماء.  طريق  عن  تنتقل  مكان  كل  في  منتشرة  الأيروموناس 

والأسماك   اللحوم  مثل  الطعام،  من  مختلفة  وأنواع  تعتبر  بالكلور  المصنعة.  والأطعمة  والخضروات  البحرية  والمأكولات 

العوامل  هذه  والبشر.  المائية  الحيوانات  من  العديد  تصيب  التي  الانتهازية  الأمراض  مسببات  من  الأيروموناس  أنواع 

المختلفة.   الأسماك  في  والوفيات  الدم  وتسمم  التقرحيه  الأمراض  المسؤولة عن  كبير من عوامل  الممرضة هي  عدد  لديهم 

بمساعدة  الحيوية  الأغشية  تكوين  على  والقدرة  المختلفة  الحيوية  للمضادات  المتأصلة  المقاومة  إلى  بالإضافة  الضراوة 

استشعار النصاب. تركز هذه المراجعة على الإمكانات المسببة للأمراض اللإيروموناس والتي تعتبر متعددة العوامل وتعتمد  

العدي المناعة. تهدف هذه المراجعة   الضراوةد من عوامل  على وجود  للبكتيريا باستعمار وغزو وهزيمة جهاز  التي تسمح 

 .أيضًا إلى تحديث للمعرفة المكتسبة مؤخرًا حول التصنيف والبيئة  والتحكم في عدوي الايروموناس في الاسماك

. 

 


