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Abstract: Creating a human-like computer player in real-time strategy games requires huge number of 
opponent models, these models must be preprocessed to either focus on accuracy or performance 
according to our needs. In order to preprocess these models accurately, we need to detect their type. 
Opponent models' type can be complex or simple. Complex opponent models are low variance models 
whose differences in features' values are low, so in order to accurately separate between these models, 
we need to preprocess them by increasing their dimensions. Simple opponent models are high variance 
models whose differences in features' values are high, so in order to separate between these models in a 
reasonable time, we need to preprocess them to decrease their dimensions, if possible, without accuracy 
or data loss. 
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1. Introduction 

Opponent modeling in real-time strategy (RTS) games has a significant interest to the AI community. 
Robust opponent models could improve automated agents, for example by augmenting the strategy 
representations used in some architectures or guiding the Monte-Carlo simulations of an opponent. 
They could be incorporated into intelligent systems and they could be assistants to help human players 
reason about the state of the game and predict an opponent's future actions. They could also be used in 
the analysis of game play, to automatically identify common strategic elements or discover novel 
strategies as they emerge. Achieving victory in RTS games depends on selecting a suitable plan (set of 
actions), selecting a suitable plan depends on building an imagination (building a model) of the 
opponent to know how to deal with. This imagination is the opponent model, the stronger the opponent 
modeling process is, the more accurate the selected suitable plan is and consequently the higher 
probability achieving the victory is. Our methodology includes two steps, the first step is to detect the 
opponent models' type and the second step is to generate another data set based on the type detected. 
The generated data set is a preprocessed version of the opponent models which is used, later on, in the 
classification process for training and testing. The output of the classification process is the opponent's 
strategy. By "strategy" we mean a player's choice of units and structures to build, which dictates the 
tone of the game. Our models are learned from collections of replay files [1]. 
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This paper is organized as follows. Section 2 covers the background of RTS games and opponent 
modeling, section 3 proposes our approach, section 4 presents a Star Craft 2 case study and section 5 
concludes our approach. 

1.1 Background 

1.1.1 Real-time strategy games 

Real-time strategy (RTS) games are strategic war games where two or more players operate on a virtual 
battlefield, controlling resources, buildings, units and technologies to achieve victory by destroying 
others. In an RTS game, players control many units and structures by issuing orders from an overhead 
perspective in real-time in order to gather resources, build an infrastructure and an army, and destroy 
the opposing player's forces. The real-time aspect comes from the fact that players do not take turns, but 
instead may perform as many actions as they are physically able to make, while the game simulation 
runs at a constant frame rate (24 frames per second in Star Craft) to approximate a continuous flow of 
time. Some notable RTS games include Dune II, Total Annihilation, Warcraft, Command & Conquer, 
Age of Empires, and Star Craft series. 

Generally, each match in an RTS game involves two players starting with a few units and/or structures 
in different locations on a two-dimensional terrain (map). Nearby resources can be gathered in order to 
produce additional units and structures and purchase upgrades, thus gaining access to more advanced in-
game technology (units, structures, and upgrades). Additional resources and strategically important 
points are spread around the map, forcing players to spread out their units and buildings in order to 
attack or defend these positions. Visibility is usually limited to a small area around player-owned units, 
limiting information and forcing players to conduct reconnaissance in order to respond effectively to 
their opponents. In most RTS games, a match ends when one player (or team) destroys all buildings 
belonging to the opponent player (or team), although often a player will forfeit earlier when they see 
they cannot win [2]. 

1.1.2 Opponent modeling 

An important factor that influences the choice of strategy is the strategy of the opponent. If one knows 
what types of units the opponent has, then typically one would choose to build units that are strong 
versus those from the opponent. A method of representing information of the enemy is known as 
opponent modeling. 

Opponent modeling problems can often be seen as a classification problem, where data that is collected 
during the game is classified as one of the available opponent models. Therefore it is possible to apply 
standard machine-learning techniques. However, a limiting condition is the fact that these calculations 
have to be performed in real-time, while many other computations, like the rendering of the game 
graphics, have to be performed simultaneously. This limits the amount of available computing 
resources. As long as the opponent model is robust, classification process and the selected plan, in 
consequence, will be accurate [3]. 

2. Approach 

Feature selection process is the construction of the opponent model schema. In this paper features are 
selected from the RTS game itself. Gathered data set might be in a binary format that is not useful to 
work with, it might need to be decoded and filtered. Decoded data set might be distributed into spaces 
where each space represents a player type or race. 
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Distributed data set is then labelled by an expert or clustering algorithms, then they are divided into 
training data set and testing data set.Training data type of each race is determined using the following 
equations. Equation "(1)" is used to get means of every class, equation "(2)" is used to get the euclidean 
distance between all means of all classes, then finally type is determined by selecting the minimum 
euclidean distance and compare it with a specific threshold. If the minimum euclidean distance is less 
than the threshold, then the training data type of this race is complex, otherwise it is simple. The 
determined type is data-dependent and game-dependent as well. Each race in each game has it's own 
data set, and each data set will have a certain type. 

(1) 

where i is the feature number, j is the sample number and n is the number of samples ❑  

d(u1.112 = liEr= u 	— i 	(2) 
where i is the feature number and n is the number of features 
min(dl,d2) < threshold 	complex opponent models 
min(dI ,d2) > threshold 	simple opponent models 

Complex opponent models are low variance models whose differences in their features' values are low, 
so in order to accurately separate between these models, we need to preprocess them to increase their 
dimensions by using AdaBoost. Simple opponent models are high variance models whose differences 
their features' values are high, so in order to separate between these models in a reasonable time, we 
need to preprocess them to decrease their dimensions, if possible, without accuracy or data loss by using 
Rough Sets. Preprocessing is done by AdaBoost to increase training data set dimensionality or by 
Rough Sets to decrease their dimensionality if possible. Finally, testing data set is classified with the 
preprocessed data either coming from AdaBoost or Rough Sets as shown in figure 1. 
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Figure 1. Opponent models preprocessing 
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3. Case study - Star craft 2 

Star Craft is a canonical RTS game, like chess is to board games, with a huge player base and numerous 
professional competitions. The game has three different but very well balanced teams, or "races", 
allowing for varied strategies and tactics without any dominant strategy, and requires both strategic and 
tactical decision-making roughly equally. These features give Star Craft an advantage over other RTS 
games which are used for AI research, such as Wargus2 and ORTS. There are a large number of Star 
Craft replays (game logs) available on the internet which can be used for data mining, and there are 
many players of all skill levels to test against [2]. 

Select features 
Features selected are Star Craft 2 units, buildings and upgrades. Figure 2, and 3 show our selected 
features. 

Protoss 
Probe 
Zealot 
Sentry 
Stalker 
High Templar 
Dark Templar 
Archon 
Phoenix 
Oracle 
Void Ray 
Tempest 
Carrier 
Observer 
Warp Prism 
Immortal 
Colossus 
Mothership Core 
Mothership 

Terran 	 Zerg 
SCV 	 Larva 
Marine 	 Drone 
Reaper 	 Overlord 
Marauder 	 Zergling 
Ghost 	 Banding 
Hellion 	 Roach 
Widow Mine 	 Queen 
Siege Tank 	 Hydralisk 
Hellbat 	 Mutalisk 
Thor 	 Corruptor 
Medivac 	 Infestor 
Viking 	 Swarmhost 
Raven 	 Ultralisk 
Banshee 	 Viper 
Battle Cruiser 	 Brood Lord 

Overseer 
Nydus Worm 

Figure 2. Unit features 

Protoss 	 Terran 	 Zerg 
Nexus 	 Command Center 	 Hatchery 
Pylon 	 Orbital Command 	 Extractor 
Assimilator 	 Planetary Fortress 	 Spawning Pool 
Gateway 	 Supply Depot 	 Evolution Chamber 
Wrap Gate 	 Refinery 	 Spore Crawler 
Cybernetics Core 	 Barracks 	 Spine Crawler 
Forge 	 Engineer Bay 	 Roach Warren 
Photon Cannon 	 Missile Turret 	 Banding Nest 
Twilight Council 	 Bunker 	 Liar 
Stargate 	 Sensor Tower 	 Spire 
Robotics Facility 	 Factory 	 Hydralisk Den 
Templar Archives 	 Armory 	 Infestation Pit 
Dark Shrine 	 Starport 	 Nydus Network 
Robotics Bay 	 Fusion Core 	 Hive 
Fleet Beacon 	 Ghost Academy 	 Ultralisk Cavern 

Reactor 	 Greater Spire 
Figure 3. Building features 
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Gather data set 

Data set is extracted from Star Craft 2 replays files. Example of these packages are matches of season 2 
of global Star Craft 2 league (GSL), world championship series (WCS) America and Europe Matches. 
GSL includes 328 replay files, WCS America includes 136 replay files and WCS Europe includes 242 
replay files. Total number of replay files is 706, each replay file has 2 players so the total number of 
feature vectors of this season is 1412. 

Decode the gathered data set 

Start Craft 2 replay files aren't human readable. In order to fetch features from replay files, they must be 
decoded. There are many ways to decode the replay files, one of them is s2protocol, an open source 
replay files parser written in python by blizzard entertainment (owner of Star Craft) which translates 
replay files into useful data. The output of s2protocol might not be suitable for direct use, output might 
need to be processed in order to be used. Features are grouped by races, each Star Craft 2 race has it's 
own features (it's own units and buildings). 

A Star Craft 2 replay contains many events, we're interested in UnitlnitEvent, UnitDoneEvent and 
UnitBornEvent. UnitInitEvent and UnitDoneEvent specify the start and finish of a building 
construction, UnitDoneEvent is used because if the building isn't finished for any reasons we can't 
include it in our features. UnitBornEvent specify the born of a unit. Each event is a dictionary, with the 
field _event containing the prefix NNet.Replay.Tracker.S followed by the relevant event name. Not all 
game events are directly represented, and have to be determined by the parsing program, while some 
events are in two parts and their id, called m_unitTagIndex, needs to be kept track of to calculate the 
full game event. Timing information can be extracted for Hidden Markov Model to be integrated with 
our system [4]. 

S2protocol decodes replay files into python objects, we have converted these python objects to java-
script object notation (JSON) objects in order to map it to models in our system, a sample of our JSON 
objects is shown in figure 4. We also have removed any unnecessary data from the python objects to 
enhance the performance. 

{"_bits": 304, 
"_event": "NNet.Replay.Tracker.SUnitBornEvent", 
"_eventid": 1, 
"_gameloop": 11983, 
"m_controlPlayerld": 2, 
"m_unitTaglndex": 436, 
"m_unitTagRecycle": 2, 
"m_unitTypeName": "VoidRay", 
"m_upkeepPlayerld": 2, 
"m_x": 23, 
"m_y": 145} 

{"_bits": 288, 
"_event": "NNet.ReplaysTrackerSUnitInitEvent", 
" eventid": 6, 
"gameloop": 12016, 
"m_controlPlayerld": 2, 
"m_unitTagIndex": 433, 
"m_unitTagRecycle": 2, 
"m_unitTypeName": "Pylon", 
"m_upkeepPlayerld": 2, 
"m_x": 31, 
"m_y": 125} 

{"_bits": 120, 
"event": "NNet.Replay.Tracker.SUnitDoneEvent", 
"_eventid": 7, 
"_gameloop": 12416, 
"m_unitTagIndex": 433, 
"m_unitTagRecycle": 2} 

Figure 4. Sample of our JSON events of interest 
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Convert the decoded data set into opponent models 

Each reply file event is converted into 2 opponent models, opponent model for player 1 and opponent 
model for player 2. Table 1 shows an opponent model example. 

Distribute opponent models 

Opponent models are distributed into 3 separated spaces. Space for protoss race, space for terran race 
and space for zerg race. Our data set includes 545 protoss opponent models, 309 terran opponent 
models and 546 zerg opponent models as shown in table 2. 

Label opponent models 

Opponent models of each race are labeled with K-Means algorithm with k = 5 clusters per each race. 
Labels are shown in table 3. Fast and accurate k-means, and fast expectation-maximization algorithms 
can be also applied [5][6 

Divide opponent models 

Opponent models data set is divided into training data set and testing data set. 
Detect opponent model type 

Training data set type, whether they are simple (easily separable) or complex (interleaved), is 
determined using equation "(1)" and "(2)" as stated in section 3. Table 4 shows a sample of protoss 
mean feature vector and table 5 shows euclidean distances between all means of protoss and zerg races. 
Linear perceptron and projection of positive points on subspaces can be applied [7][8]. 

Table I. Protoss feature vector 

Feature \ Race Protoss Feature \ Racc Protoss 

Probe 55 MothershipCore 

Zealot 21 Mothership 0 

Sentry 0 Nexus 5 

Stalker 62 Pylon 22 

HighTcmplar 9 Assimilator 6 

DarkTemplar 0 Gateway 4 

Archon 0 WarpGate 0  

Phoenix 5 Cybernetic sCorc I 

Oracle I Forge I  

VoidRay 0 PhotonCannon 4 

Tempest 0 Twi I ightCouncil I 

Carrier 0 Stargate I  

Observer 6 RoboticsFacility 2 

WarpPrism 0 TemplarArchives 0 

Immortal 11 DarkS hrinc 0 

Colossus 6 RoboticsBay I 
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Table 2. Distributed opponent models 

Protoss 
R = 0 

Terran 
R = 1 

Zerg 
R = 2 

545 309 546 

Table 3. Distributed labeled opponent models 

Label \ Race Protoss 
R = 0 

Terran 
R = I 

Zerg 
R = 2 

Model 0 R 44 113 155 

Model 1 R 201 57 87 

Model 2 R 39 20 29 

Model 3 R 141 36 64 

Model 4 R 120 83 211 

Preprocessing using AdaBoost 

AdaBoost is used for complex opponent models to increase their dimensionality in order to increase 
their variance for better accuracy. Protoss and terran are preprossed with AdaBoost to increase their 
dimensionality. AdaBoost implemented in OpenCV can only learn data set with 2 labels, so in order to 
learn data set with more than 2 labels, MultiBoost must be used [9]. 

Preprocessing using Rough Sets 

Rough Sets are used for simple opponent models to decrease their dimensionality, if possible, in order 
to separate between them in a reasonable time for better performance. Zerg is processed with Rough 
Sets to decrease their dimensionality without data loss. Rough Sets implementation in c++ can be found 
in rosetta c++ library. Preprocessed data, either from AdaBoost or Rough Sets are the input of the 
classification process [10]. 

4. 	Conclusion 

In this paper, we have proposed a methodology to preprocess opponent models so that their 
classification process can be executed accurately and in a reasonable time. Our approach isn't game-
specific, it doesn't depend on any type of RTS games. Different RTS games will have different data 
sets, these data sets will have different races, and these races might be all simple (easily separable) or all 
complex (interleaved) or have a combination of both simple and complex opponent models. Our 
approach preprocesses opponent models according to their detected type so that the classification 
process can use the preprocessed opponent models for training and testing. 
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Table 4. Protoss mean feature vector 

Feature \ Race Protoss Feature\Race Protoss 

Probe 72.358971 MothershipCore 1.435897 

Zealot 32.717949 Mothership 0 

Sentry 8.230769 Nexus 3.871795 

Stalker 68.128204 Pylon 24.153847 

HighTemplar 4.461538 Assimilator 6.256410 

DarkTemplar 1.923077 Gateway 9.205129 

Archon 1.435897 WarpGate 0 

Phoenix 8.666667 CybemeticsCorc 0.974359 

Oracle 0.307692 Forge 1.051282 

VoidRay 2.256410 PhotonCannon 6.743590 

Tempest 0.358974 TwilightCouncil 0.948718 

Carrier 0 Stargate 1.025641 

Observer 3.282051 RoboticsFacility 1.205128 

WarpPrism 0.743590 Temp larArchi ves 0 

Immortal 1.897436 DarkShrine 0.256410 

Colossus 5.128205 RoboticsBay 0.769231 

Table 5. Protoss (column 1) and Zerg (column 2) mean euclidean distances 

36 285 

70 183 

131 611 

82 328 

38 264 

102 364 

55 390 

64 625 

57 159 

93 737 

With threshold 100, protoss and terran are complex, while zerg is simple. 
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