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116CASE-BY-CASE META-ANALYSIS FROM A BAYESIAN 

 PERSPECTIVE 

Abstract  

        Due to the advancement of science and the tendency to use the 

smallest of humans in needless clinical trials in many situations, the 

role of meta-analysis to summarize published study with the same 

objective, using statistics is becoming more and more fundamental. 

The integration of the knowledge available makes it easier to 

understand and allows strong conclusions. For example, increasing the 

number of clinical trials encourages a rising need to conduct meta-

analyses, making complexity possible. The purpose of the research 

was therefore to suggest a Bayesian meta-analytical methodology. 

Bayesian method was proposed to carry out a case-by-case meta-

analysis. The procedure was based on the mixture of the posterior 

distributions of the parameter in question from each study that is a 

percentage of the meta-analysis, thus producing a combined posterior 

distribution as a meta-analytical measure. In addition, a brief 

comparison is made between the proposed method and some methods 

used in meta-analysis. Some examples are presented and discussed. 

Keyword: Bayesian inference, meta-analysis, combined analysis, 

DerSimonian and Laird model    

1. Introduction 

The role of meta-analysis is to summarize published studies on a 

specific problem, using statistics; thus, each day is more fundamental 

due to the advancement of science and the growth in the number of 

publications. Systematic reviews and meta-analyses are considered to 

be important instruments in the evaluation of medical and useful 

therapies, when there is a desire not to ignore much of the available 

evidence. 
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Haidich A. B. (2010), de ne meta-analysis as an analysis, that is, a 

statistical analysis that aims to combine results already found in 

previous analyses of different studies of the same interest. The meta-

analysis aims to combine studies carried out under different 

conditions, with different levels of precision and by groups of 

researchers from different regions and backgrounds. Thus, broader 

conclusions are expected than those obtained by the studies that make 

up the systematization see Ried K. (2006) . 

When a meta-analysis is well planned and executed, it is a powerful 

tool for syntheses; it is an analytical method, in which all studies are 

integrated and their results grouped in a single conclusion. Thus, when 

the meta-analysis is compared to other forms of reviewing individual 

studies, it has the great advantage of being less influenced by the 

researcher's personal opinion, providing impartial conclusions. In 

addition, in a meta-analysis, all results from the individual studies 

examined are reported, and the reader can easily recalculate them and 

compare them with the conclusions obtained by Gopalakrishnan, S., & 

Ganeshkumar, P. (2013).  

The meta-analysis based on the literature, because it only works with 

the results of the studies, can lead us to biased and, often, wrong 

conclusions. Thus, it is preferable to use meta-analysis on a case-by-

case basis, since it works with the raw data of each individual; this 

type is more informative and allows any type of data analysis, 

including analyses with data that depend on time, providing more 

accurate results. On the other hand, there are circumstances in which 

data from the studies in question cannot be accessed for simple 

reasons, such as lack of collaboration or loss of data, making it 

impossible to use this technique see, Ried K.,(2006). 

The objective of this paper is to present a Bayesian meta-analytic 

measure based on the mixture of a posteriori distributions of the 

parameter of interest for each study belonging to the meta-analysis. 
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That is, this proposed meta-analytic measure is a probability 

distribution of the quantity of interest and not just a simple summary 

measure of it, leading to a better conclusion of the problem. 

This paper contains the methodology for producing the proposed 

Bayesian meta-analytical measure, presents two examples with meta-

analysis data using the proposed methodology. The first example uses 

proportion as a measure of effect and the second, the difference 

between averages  

2. Methodology 

Since the posterior distribution for the amount of interest represents, 

under the Bayesian approach, the most complete inference that can be 

made about it, the statistical proposal of this work to solve problems 

in meta-analysis is to mix the posterior distributions of the parameters 

of interest for each study belonging to the meta-analysis. As the 

Bayesian operation is often difficult to perform, numerical methods 

and the approximate Monte Carlo simulation method via Markov 

Chains are used. 

Minjie Xu, Jun Zhu, and Bo Zhang. (2012) introduce the Bayesian 

paradigm is based on specifying a probabilistic model for the observed 

data𝐷, given a vector of unknown parameters𝜃, leading to the 

likelihood function 𝐿 (𝐷, 𝜃). It is assumed that θ is random, with a 

priori function denoted by 𝜋 (𝜃). The inference about θ is based on the 

posterior distribution, obtained via Bayes' theorem. The posterior 

distribution of 𝜃 is given by: 

𝜋 (θ | D) =  
𝐿 (𝐷,𝜃)𝜋 (𝜃)

∫ 𝐿 (𝐷,𝜃)𝜋 (𝜃)𝑑𝜃Θ

           (1) 

where Θ denotes the parametric space of θ. From (1), 𝜋 (𝜃 𝐷) is 

proportional to the multiplication of the likelihood function and a 

priori, 
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𝜋 (𝜃 | 𝐷)  ∝  𝐿 (𝐷, 𝜃) 𝜋 (𝜃),           (2) 

Involving the contribution of the data observed through L (D, θ) and 

the contribution of a priori information quantified by 𝜋 (𝜃). The 

quantity 𝑚 (𝐷)  =  ∫ Θ  𝐿 (𝐷, 𝜃) 𝜋 (𝜃) 𝑑𝜃 is the normalizing constant 

of 𝜋 (𝜃 𝐷) and is often called the marginal data distribution or 

predictive distribution, see Ibrahim, JG; Chen M-H; Sinha, D (2005). 

To simplify and introduce the idea of the proposed method, consider 

an example of a meta-analysis of two studies. 

Example 1:  Suppose that the variable of interest is normally 

distributed with mean µ and variance σ2. Data from study 1 were 

generated from a Normal distribution with mean − 3 and variance 15, 

X ∼ Normal (−3; 15), and from study 2, from a Normal distribution 

with mean Example 1: Suppose the variable of interest is normally 

distributed with mean µ 3 and variance 12, Y ∼ Normal (3; 12). The 

sample size of both studies is equal to 30 (nx = ny = 30). The mean and 

sample variance of study 1 are �̅�  ∑
𝑥𝑖

𝑛𝑥

𝑛𝑥
𝑖=1 = −2.98 and 𝑠𝑥

2 =
∑ (𝑥𝑖−�̅�)2𝑛𝑥

𝑖=1

𝑛𝑥−1
= 18.04 

and study 2 are, respectively �̅�  ∑
𝑦𝑖

𝑛𝑦

𝑛𝑦

𝑖=1
= 3.35 and 𝑠𝑦

2 =
∑ (𝑦𝑖−�̅�)2𝑛𝑦

𝑖=1

𝑛𝑦−1
=

8.37 The likelihood function for studies 1 and 2 are, respectively 

𝐿𝑥  (𝑥, 𝜇, 𝜎2) ∝ (𝜎2)−
𝑛𝑥
2  exp {−

1

2𝜎2  [(𝑛𝑥 − 1)𝑠𝑥
2 + 𝑛𝑥(𝜇 − �̅�)2]}     (3)   

𝐿𝑦 (𝑦, 𝜇, 𝜎2) ∝ (𝜎2)−
𝑛𝑦

2  exp  {−
1

2𝜎2
 [(𝑛𝑦 − 1)𝑠𝑦

2 + 𝑛𝑦(𝜇 − �̅�)2]}  (4) 

Michael I. Jordan (2010), Considers a priors of Jeffreys1 for (µ, σ2), π 

(µ, σ2) σ2 −1, and the likelihood function in (3) and (4), the posterior 

distributions of µ and σ2 in both studies follow the Normal-Gamma-

Inverse distribution, given by: 

𝜋(𝜇, 𝜎2|𝑥) =
√𝑛𝑥

𝜎√2𝜋
 
[
(𝑛𝑥 − 1)𝑠𝑥

2

2
]

𝑛𝑥
2

Γ(𝑛𝑥/2)
 (

1

𝜎2
)

𝑛𝑥+1
2

+1
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exp {−
(𝑛𝑥 − 1)𝑠𝑥

2 + 𝑛𝑥(𝜇 − �̅�)2

2𝜎2
}        (5) 

𝜋(𝜇, 𝜎2|𝑦) =
√𝑛𝑦

𝜎√2𝜋
 

[
(𝑛𝑦 − 1)𝑠𝑦

2

2
]

𝑛𝑥
2

Γ(𝑛𝑦/2)
 (

1

𝜎2
)

𝑛𝑦+1

2
+1

 

 

exp {−
(𝑛𝑦 − 1)𝑠𝑦

2 + 𝑛𝑦(𝜇 − �̅�)2

2𝜎2
}      (6) 

That is (𝜇, 𝜎2|𝑥)  ~ NIG (�̅�, 𝑛𝑥 ,
(𝑛𝑥−1)

2
 

(𝑛𝑥−1)𝑠𝑥
2

2
) and (𝜇, 𝜎2|𝑦) ~ NIG 

(�̅�, 𝑛𝑦 ,
(𝑛𝑦−1)

2
 
(𝑛𝑦−1)𝑠𝑦

2

2
). The values expected a posteriori and the a 

posteriori variance-covariance matrix of µ and σ2 for (5) are, 

respectively, 

𝐸[𝜇, 𝜎2|𝑥] =

�̅�

(
(𝑛𝑥 − 1)𝑠𝑥

2

𝑛𝑥 − 3
) ,𝑛𝑥 > 3     (7) 

𝐶𝑜𝑣[𝜇, 𝜎2|𝑥] = [
𝑠𝑥

2 (𝑛𝑥 − 1)

𝑛𝑥(𝑛𝑥 − 3) 
  

0 

0
2𝑠𝑥

2 (𝑛𝑥 − 1)

(𝑛𝑥 − 5) (𝑛𝑥 − 3)2 
 ]

   𝑛𝑥 > 5  (8) 

The values expected a posteriori and the variance-covariance matrix 

of µ and 𝜎2 for model (6) are analogous to (7) and (8). It is worth 

mentioning that the joint posterior distribution of µ and σ2 depends on 

the data only by means of sufficient statistics nx, �̅�, s2 and ny, �̅�, s2, 

that is, the evidence provided by the sufficient statistics is identical to 

that provided by the data .In this case, performing a meta-analysis 

based on the literature is equivalent to performing a meta-analysis on 

a case-by-case basis, without loss of quality. Using (5) and (6), it is 

suggested to mix the posterior distributions of (µ, 𝜎2) of each study. 

This is, 

𝜋𝑀(𝜇, 𝜎2|𝑥, 𝑦) =  
𝑛𝑥𝜋 (𝜇, 𝜎2|𝑥) + 𝑛𝑦𝜋 (𝜇, 𝜎2|𝑦)

𝑛𝑥 + 𝑛𝑦

       (9) 
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  In Figure.1 (a), are the level curves of the a posteriori joint 

distribution of µ, σ2 for each study, in order to observe three-

dimensional graphs in only two dimensions. It is observed that the 

difference between the a posteriori averages seems large. In Figure.1 

(b), the level curves of the distribution for the posteriori meta-analytic 

distribution of µ, σ2, which is given by mixing the distributions of the 

a posteriori meta-analytic distribution given in (9). In other words, the 

proposed meta-analytic measure is a distribution of Σ µ, σ2 and not 

just a simple summary measure. In this case, the measure required a 

better investigation of the problem. It is worth mentioning that the 

regions with the highest density in graphics are those most likely to 

meet the "true" parameters. The estimation by region HPD (Highest 

Posterior Density) with 95% of credibility is in Figure.1 (d). HPD is 

less than or equal to 95%. Region / range that contains the true value 

of the parameter of interest, with greater probability at 0.21 with a 

95% confidence interval equal to [5.99; 6.41]. The results of this 

meta-analysis, if the meta-analytic al measure were calculated using 

the DerSimonian and Laird method see Jackson, D., Law, M.et all 

(2016), this would be the same based on the literature are summarized 

in the Forest Plot graph, Figure.2, Meta-analytic is given in (10). 

However, one wonders: does this make sense? Making a metaphor, A 

brief review of the method, for better understanding, is presented later 

and the estimator  

result found is the same as saying that, having your head in the freezer 

and with your feet in the oven, on average, the temperature is nice. 



122 
 

Figure.1: (a) Level curves of the posterior joint distribution of (µ, σ2) in each study. 

(b) Level curves of the a posteriori meta-analytic al distribution of (µ, σ2). (c) 

Three-dimensional graph of the a posteriori meta-analytic al distribution of (µ, σ2). 

(d) 95% credibility HPD region for (µ, σ2). 

Study                                  Median (CI 95%) 

Study 1    -2.98 [-4.50, -1.46] 

    

Study 2     3.35 [2.31, 4.39] 

RE model  0.21[-5.99,6.41] 

        

-6.00 -2.00 2.00 6.00 
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Figure.2: Forest Plot for the data in Example 1. 

In order to try to approximate the methods for possible comparisons, a 

posteriori meta-analytic distribution is found only in terms of µ. The 

marginal posterior distributions of µ, in the studies 1 and 2 are µ | x ∼ 

tn −1 �̅�, 𝑠𝑥
2/𝑛𝑥 and µ | y ∼ tn −1 �̅�, 𝑠𝑥

2/𝑛𝑦. To find the meta-analytic al 

measure of µ. It is important to note that the 95% credibility 

distribution given by the disjunction intervals [4.55; 1.41] and [2.17; 

4.53]. Also the marginal meta-analytic posteriori of µ is also a 

bimodal distribution with HPD interval. It can be observed that the 

meta-analytic value found by the DerSimonian and Laird method is 

outside the HPD ranges. In this case, the meta-analytic al distribution 

is bimodal and finding the a posteriori mean of µ does not provide 

much information. The proposed measure suggests the existence of 

two distinct groups, which leads us to think better about the problem 

and the possible combination of these studies see Veroniki, A. A., 

Jackson, D., et all(2016). 

Suppose, furthermore, that only the result of the usual meta-analysis, 

the traditional Forest Plot diamond, and the result of the proposed 

meta-analysis, the a posteriori meta-analytical distribution, are 

available. If only these results are available, it is clear that the result 

obtained by the proposed method allows for more comprehensive 

conclusions and is more informative than usual. Therefore, using a 

probability distribution as a meta-analytical measure is more 

plausible, since one can observe the behaviour of the parameter in 

question. It is worth mentioning that, in this example, there is also the 

advantage that the results obtained by the proposed method, 

considering the sufficiency statistics, are the same obtained by the 

case-by-case meta-analysis. An important observation is that this 

measure can also find similarities between studies and differences 

between the groups suggested by this distribution, which can be 

caused by some factor not investigated, showing an advantage when 
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using this measure. It is important to make it clear that the objective is 

not to compare methods, as they are not comparable. However, the 

aim is to highlight possible flaws in a methodology, which is widely 

used in meta-analysis and to draw attention to how the same problem 

can be solved. The DerSimonian and Laird method is nothing more 

than a weighted average of the measures of effect of the studies. In the 

method, there is no assumption of homogeneity between studies. The 

meta-analytic al measure is given by: 

�̂�𝑀𝐷𝐿 =
∑ 𝑤𝑗

∗𝐽
𝑗=1 �̂�𝑗

∑ 𝑤𝑗
∗𝐽

𝑗=1

         (10) 

Where, 𝑤𝑗
∗ =

1

τ2+𝑤𝑗
−1 𝑤𝑗

∗ =
1

𝜎𝑗
2, τ2 =  

𝑄−𝑗−1

∑ 𝑤𝑗−
∑ 𝑤𝑗

2𝐽
𝑗=1

∑ 𝑤𝑗
𝐽
𝑗=1

𝐽
𝑗=1

, 𝑄 = ∑ 𝑤𝑗(𝐽
𝑗=1 𝜃𝑗 − 𝜃𝑀)2, 𝜃𝑀 =

∑ 𝑤𝑗�̂�𝑗

∑ 𝑤𝑗
, 𝜃𝑗 is the measure of effect of the 𝑗𝑡ℎ study and τ is the estimated 

variability between studies, j = 1.2, �̂�2 can be less than zero and, if this 

happens, �̂�2 = 0 and the metanalytic measure is the same as the 

calculated by the Mantel-Haenszel method. The 95% confidence 

interval for 𝜃𝑀𝐷𝐿 is given by Ahn, E., & Kang, H. (2018),  �̂�𝑀𝐷𝐿 =

±2/√∑ 𝑤∗𝐽
𝑗=1 . 

Another important aspect in the meta-analysis to be highlighted is that 

it should not be confused with combined analysis. The combined 

analysis of data disregards the study factor, uniting all individuals in a 

single sample and considering a meta-analysis, as if it were a large 

study, is to lose all the existing variability between them. The 

comparison between the combined analysis and the meta-analysis, for 

the data in this example, can be seen in Figure 2.3. Ignoring, then, the 

fact that the data come from different studies, a single sample of size 

60 is assumed. From this single sample, the mean is equal to 0.18 and 

the standard deviation of 4.81. (µ, σ2) as in (5) and the posterior 

posterior distribution of µ, represented in Figure.3 (a) and Figure.3 
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(b). The a posteriori mean of µ is 0.18 with an HPD interval of 95% of 

credibility in the Bayesian approach described above, the joint 

posterior distribution of equal to [1.06; 1.42]. Note that the combined 

analysis differs considerably from the proposed meta-analysis, which 

does not occur with the meta-analysis via the DerSimonian and Laird 

method. 

 

Figure.3: (a) Level curves of the joint posterior distribution of µ and 

σ2. (b) Marginal posterior distribution of µ. 

2.1 Generalization of the proposed method 

Interest θ For the 𝑗𝑡ℎ study (𝑗 =  1, . . . 𝐽), suppose that xj = (x1, j, x2, j, 

..., xn, j)T denotes a vector of random variables of size nj, with 

probability density function f (xj, θ). Consider a meta-analysis of J 

independent studies that investigate a certain characteristic of in the 

probability space (X, F, P). Considering xj = (x1, j, x2, j, ..., xnj, j) an 

observed random vector of xj, the likelihood function for the 𝑗𝑡ℎ study 

is given Lj (xj, θ) =∏ 𝑓 (𝑥𝑖𝑗 , 𝜃)
𝑛𝑗

𝑖=1
. Admitting the Bayesian 

methodology, it is observed, respectively, the a-funi i = 1 a priori and 

the a posteriori distribution of θ, π (θ) and πj (θ │xj) Lj (xj, θ) π (θ). In 

general, the a priori function is the same for all studies, as it does not 

depend on where the experiment was conducted. Then, the proposed 

meta-analytic measure is the mixture of J posterior distributions of θ, 

producing a single distribution for θ, which is called the posterior 
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meta-analytic distribution of θ. Density mixing is a technique used in 

some cases to derive conclusions about θ see Haynes, M., Mengersen, 

K. (2005)  . Therefore, the a posteriori meta-analytic al distribution of 

θ is given by Eq.11 

𝜋𝑀(𝜃|𝑥) =  ∑ 𝑤𝑗

𝐽

𝑗=1

𝜋𝑗(𝜃|𝑥𝑗) ∝ [∑ 𝑤𝑗𝐿𝑗

𝐽

𝑗=1

(𝑥𝑗, 𝜃)] 𝜋 (𝜋)   (11) 

where 𝑤𝑗 is the weight of the 𝑗𝑡ℎ study. These weights are fixed and 

can represent the importance of the studies, the sample size, etc. 

Initially, consider 𝑤𝑗 =
𝑛𝑗

∑ 𝑛𝑗
𝐽
𝑗=1

  . The a posteriori mean meta-analytic 

and the a posteriori meta-analytic variance for θ are, respectively, 

𝐸𝑀(𝜃|𝑥) = ∑ 𝑤𝑗

𝐽

𝑗=1

𝐸𝑗(𝜃|𝑥)       (12) 

𝑉𝑎𝑟 𝑀(𝜃|𝑥) = ∑ 𝑤𝑗
2

𝐽

𝑗=1

𝑉𝑎𝑟𝑗(𝜃|𝑥𝑗)        (13) 

The proposed meta-analytic measure is a general measure, that is, any 

a priori function and any likelihood function can be used in (11). What 

makes it possible to use it, from the most trivial meta-analysis 

problem to the most complex ones? It is also worth mentioning that, 

when sufficient statistics for θ is available, performing a meta-analysis 

based on the literature will be equivalent to performing a meta-

analysis on a case-by-case basis, without loss of information. 

It is important to make it clear, in order to have a quality meta-

analysis, in addition to an appropriate statistical technique, it is 

important that the studies to be combined have been carefully 

evaluated, so that there is confidence in their association. Therefore, it 

is necessary that study selection criteria are established see Russo M. 

W. (2007). 
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 For Egger and Smith (2009), meta-analysis expresses cautious 

planning. The prior definition of qualifying criteria for studies is 

included in a detailed search, in order to guarantee a high quality of 

the meta-analysis. There are different statistical methods for 

combining the data; however, there is no single "correct method". 

Although the studies belonging to the meta-analysis involve the same 

subject, there are differences between them, which is called 

heterogeneity between the studies, this is one of the usual problems in 

meta-analysis and one solution is to incorporate it into the statistical 

analysis. Statistical models that incorporate the variability component 

between studies are widely discussed, both in classical and Bayesian 

theory. Berry (1989) considers the formulation of a Bayesian 

hierarchical model to describe and explain the heterogeneity that 

exists between individual studies, and classical theory involves 

combining the magnitude of the effects. Another model that has been 

used to analyse the heterogeneity existing between the studies, is the 

Nita mixture model suggested by Schlattmann (2009). 

 Bayesian methods are more flexible than classic ones. The data 

affect the Bayesian inference only by the likelihood function, that is, 

the stopping rule and other characteristics of the study design are 

irrelevant. Such methods also offer a convenient structure for 

incorporating the information available a priori and are applicable to 

problems that combine studies with small sample sizes, when 

Bayesian estimators are more accurate than those obtained through 

maximum likelihood. An important aspect to be highlighted is that the 

method proposed in this work does not discuss the question of 

heterogeneity or homogeneity between the studies, since the 

variability between the studies included in the meta-analysis is always 

taken into account see Etzioni, Ruth & Kadane, Joseph. (1995). 
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3. The results and Conclusion   are summarized in the following 

aspects: 

 A Bayesian meta-analytic al measure was proposed as an 

alternative to the methods used. This measure is a mixture of a 

posteriori distributions of the parameter of interest, θ, for each study. 

The proposed method produces a posteriori probability distribution of 

θ as a meta-analytic al measure. Through this distribution, the hope 

and a posteriori variance of θ can be calculated, in addition to other 

measures. It was observed that the proposed methodology is a general 

measure, making it possible to be used, from the most trivial meta-

analysis problem to the most complex ones. In addition, when 

sufficient statistics are available, performing a meta-analysis based on 

the literature is equivalent to performing a meta-analysis on a case-by-

case basis, without loss of information. This results in a quality gain 

for meta-analysis based on the literature, since case-by-case meta-

analysis is considered the gold standard. 

 The proposed methodology was used to solve meta-analysis 

problems with survival data. It was observed that, for the Exponential 

and Log-normal models, performing case-by-case meta-analysis with 

survival data is equivalent to doing a meta-analysis based on the 

literature, which seemed difficult in analyzes with these types of data. 

Weibull model was used to model life span. The survival curves and 

their credibility bands were estimated via Metropolis-Hastings, as well 

as the meta-analytic survival curve. 

 The method usually used to perform a meta-analysis based on 

the literature, is based on the DerSimonian and Laird model. This 

method incorporates the variability that exists between the studies in 

the weighting of the measures of effect of each study to then produce 

a meta-analytic al measure. Such a method tends to give greater 

weight to small studies, since these studies may reflect a publication 

bias, the use of this model can emphasize poor evidence at the 
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expense of good evidence. Furthermore, it was observed that the 

resulting meta-analytic al measure is poor, can be biased and does not 

provide much information about the parameter in question. The Nita 

mixture model used in meta-analysis presented difficulties in 

interpreting the results and, in addition, it did not take into account the 

variability that existed between the studies. The hierarchical model 

also left something to be desired in the use of all available 

information, ignoring important points of the problem presented. 

However, such problems did not occur with the proposed Bayesian 

meta-analysis. 

 The proposed meta-analytic al measure is a mixture of a 

posteriori distributions of the parameter of interest, θ, from each study. 

It is important to note that this method produces a probability 

distribution as a meta-analytic al measure, called the θ meta-analytic 

posteriori distribution. Through this distribution, the hope and a 

posteriori variance of θ can be calculated, in addition to other 

measures. Therefore, the proposed methodology is much more 

informative, intuitive and precise than the existing ones.  Several 

works may be developed based on the ideas and results of this 

research work. Some of them are cited: 

• Computational improvement to carry out the proposed meta-

analysis; 

• Applications in other types of statistical models; 
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