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Abstract  

In this paper, we apply the Adomian decomposition method (ADM) for solving linear and 

nonlinear fractional differential equations (FDEs). The existence and uniqueness of the solution 

are proved. The convergence of the series solution and the error analysis are discussed. Some 

applications are solved such as relaxation-oscillation equation, Basset problem and fractional 

Riccati differential equation. 
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1 Introduction 
 

In this paper, we are concerned with studying the following FDE: 

 𝑫𝛼𝑦(𝑡) + 𝑔(𝑡)𝑓(𝑦(𝑡)) = 𝑥(𝑡),     𝛼 ∈ (𝑛 − 1, 𝑛) (1) 

subject to the initial conditions,  

 𝑫𝛼−𝑘𝑦(𝑡)|𝑡=0 = 0,    𝑘 = 1,2, … , 𝑛. (2) 

 

where 𝑫𝛼 is Riemann-Liouville fractional derivative, the proof of convergence and error analysis 

of ADM when applied to problem (1)-(2), is introduced. The linear case is a special case from the 

nonlinear case; So we solve some linear and nonlinear numerical examples and comparing the 

results with another traditional methods. The existence and uniqueness of the solution  𝑦 ∈

𝐶(𝐽),where 𝐶(𝐽) is the space of all continuous functions and 𝐽 =  [0, 𝑇],  𝑇 < ∞  of the problem 

(1)-(2) will be proved, the integral representation of this solution will be proved, the solution 

algorithm and the convergence of the series solution using ADM will be discussed. Some 
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applications are given such as relaxation-oscillation equation, Basset problem and fractional 

Riccati differential equation 

2 The solution algorithm 

 

Applying the integral operator of order 𝛼 to the problem (1)-(2), this reduces it to its equivalent 

fractional integral equation (FIE):  

 
𝑦(𝑡) =

1

𝛤(𝛼)
∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1𝑥(𝜏)𝑑𝜏 −
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡

− 𝜏)𝛼−1𝑓(𝑦(𝜏))𝑑𝜏 

(3) 

 

Assume that 𝑥(𝑡) is bounded ∀ 𝑡 ∈ 𝐼 = [0, 𝑇], 𝑇 ∈ 𝑅+, |𝑔(𝜏)| ≤ 𝑀 ∀ 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇, 𝑀 is a 

positive finite constant, 𝑦 ∈ 𝐶[𝐼], and 𝑓(𝑦) satisfies Lipschitz condition with Lipschitz constant 𝐿 

such as,  

 |𝑓(𝑦) − 𝑓(𝑧)| ≤ 𝐿|𝑦 − 𝑧| (4) 

and has Adomian polynomials representation,  

 𝑓(𝑦) = ∑ 𝐴𝑛

∞

𝑛=0

(𝑦0, 𝑦1, … , 𝑦𝑛) (5) 

where,  

 𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑓 (∑ 𝜆𝑖

∞

𝑖=0

𝑦𝑖)]

𝜆=0

 (6) 

Substitute from equation (5) into equation (3) we get,  

 

𝑦(𝑡) =
1

𝛤(𝛼)
∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1𝑥(𝜏)𝑑𝜏 −
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡

− 𝜏)𝛼−1 ∑ 𝐴𝑛

∞

𝑛=0

𝑑𝜏 

(7) 

Let 𝑦(𝑡) = ∑ 𝑦𝑛
∞
𝑛=0 (𝑡) in (7) and applying ADM, we get the following recursive relations,  

 𝑦0(𝑡) =
1

𝛤(𝛼)
∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1𝑥(𝜏)𝑑𝜏, (8) 

 𝑦𝑖(𝑡) = −
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡 − 𝜏)𝛼−1𝐴𝑖−1𝑑𝜏,  𝑖 ≥ 1. (9) 

Finally, the solution is,  

 𝑦(𝑡) = ∑ 𝑦𝑖

∞

𝑖=0

(𝑡) (10) 

 

3  Convergence analysis 

3.1. Existence and uniqueness of the solution 

Define the mapping 𝐹: 𝐸 → 𝐸 where 𝐸 is the Banach space (𝐶[𝐼], ‖⋅‖), the space of all 



 

3 
 

continuous functions on 𝐼 with the norm ‖𝑓(𝑡)‖ =  max
𝑡∈𝐼

|𝑓(𝑡)| . 

 

Theorem 1:  

The problem (1)-(2) has a unique solution whenever 0 < 𝛽 < 1 where  𝛽 =
𝐿𝑀𝑇𝛼

𝛤(𝛼+1)
.  

Proof:  

The mapping 𝐹: 𝐸 → 𝐸 is defined as,  

𝐹𝑦(𝑡) =
1

𝛤(𝛼)
∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1𝑥(𝜏)𝑑𝜏 −
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡 − 𝜏)𝛼−1𝑓(𝑦(𝜏))𝑑𝜏 

 

Let 𝑦(𝑡), 𝑧(𝑡) ∈ 𝐸:  

‖𝐹𝑦 − 𝐹𝑧‖ = max
𝑡∈𝐼

 |
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡 − 𝜏)𝛼−1[𝑓(𝑦) − 𝑓(𝑧)]𝑑𝜏 | 

    ≤
1

𝛤(𝛼)
max

𝑡∈𝐼
∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1|𝑔(𝜏)||𝑓(𝑦) − 𝑓(𝑧)|𝑑𝜏 

  ≤
𝐿𝑀

𝛤(𝛼)
max

𝑡∈𝐼
|𝑦 − 𝑧| ∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1𝑑𝜏 

≤
𝐿𝑀𝑇𝛼

𝛤(𝛼 + 1)
‖𝑦 − 𝑧‖ 

≤ 𝛽‖𝑦 − 𝑧‖ 

Under the condition 0 < 𝛽 < 1, the mapping 𝐹 is contraction [1] and hence there exists a unique 

solution of the problem (1)-(2) and this completes the proof.  

3.2. Proof of convergence 

Theorem 2:  

The series solution (10) of the problem (1)-(2) using ADM converges if |𝑦1| < ∞ and 0 < 𝛽 <

1,  𝛽 =
𝐿𝑀𝑇𝛼

𝛤(𝛼+1)
.  

Proof:  

Define the sequence {𝑆𝑛} such that, 𝑆𝑛 = ∑ 𝑦𝑖
𝑛
𝑖=0 (𝑡) is the sequence of partial sums from the series 

solution ∑ 𝑦𝑖
∞
𝑖=0 (𝑡) since,  

  𝑓(𝑦) = 𝑓 (∑ 𝑦𝑖

∞

𝑖=0

(𝑡)) = ∑ 𝐴𝑖

∞

𝑖=0

(𝑦0, 𝑦1, … , 𝑦𝑖)   

so,  

 𝑓(𝑆𝑛) = ∑ 𝐴𝑖

𝑛

𝑖=0

(𝑦0, 𝑦1, … , 𝑦𝑖)  

 

Let 𝑆𝑛 and 𝑆𝑚 be two arbitrary partial sums with 𝑛 > 𝑚. Now, we are going to prove that {𝑆𝑛} is 

a Cauchy sequence in this Banach space.  

‖𝑆𝑛 − 𝑆𝑚‖ =  max
𝑡∈𝐼

|𝑆𝑛 − 𝑆𝑚| = max
𝑡∈𝐼

| ∑ 𝑦𝑖

𝑛

𝑖=𝑚+1

(𝑡)| 
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 =  max
𝑡∈𝐼

| ∑ −

𝑛

𝑖=𝑚+1

1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡 − 𝜏)𝛼−1𝐴𝑖−1𝑑𝜏| 

 = max
𝑡∈𝐼

|
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡 − 𝜏)𝛼−1 ∑ 𝐴𝑖

𝑛−1

𝑖=𝑚

𝑑𝜏| 

= max
𝑡∈𝐼

 |
1

𝛤(𝛼)
∫ 𝑔

𝑡

0

(𝜏)(𝑡 − 𝜏)𝛼−1[𝑓(𝑆𝑛−1) − 𝑓(𝑆𝑚−1)]𝑑𝜏| 

≤
1

𝛤(𝛼)
max

𝑡∈𝐼
 ∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1|𝑔(𝜏)||𝑓(𝑆𝑛−1) − 𝑓(𝑆𝑚−1)|𝑑𝜏 

≤
𝐿𝑀

𝛤(𝛼)
max

𝑡∈𝐼
 |𝑆𝑛−1 − 𝑆𝑚−1| ∫ (

𝑡

0

𝑡 − 𝜏)𝛼−1𝑑𝜏 

‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝐿𝑀𝑇𝛼

𝛤(𝛼 + 1)
‖𝑆𝑛−1 − 𝑆𝑚−1‖ 

≤ 𝛽‖𝑆𝑛−1 − 𝑆𝑚−1‖ 

Let 𝑛 = 𝑚 + 1 then,  

‖𝑆𝑚+1 − 𝑆𝑚‖ ≤ 𝛽‖𝑆𝑚 − 𝑆𝑚−1‖ ≤ 𝛽2‖𝑆𝑚−1 − 𝑆𝑚−2‖ ≤ ⋯ ≤ 𝛽𝑚‖𝑆1 − 𝑆0‖ 

From the triangle inequality we have,  

‖𝑆𝑛 − 𝑆𝑚‖ ≤ ‖𝑆𝑚+1 − 𝑆𝑚‖ + ‖𝑆𝑚+2 − 𝑆𝑚+1‖ + ⋯ + ‖𝑆𝑛 − 𝑆𝑛−1‖ 
 ≤ [𝛽𝑚 + 𝛽𝑚+1 + ⋯ + 𝛽𝑛−1]‖𝑆1 − 𝑆0‖ 
≤ 𝛽𝑚[1 + 𝛽 + ⋯ + 𝛽𝑛−𝑚−1]‖𝑆1 − 𝑆0‖ 

≤ 𝛽𝑚 [
1 − 𝛽𝑛−𝑚

1 − 𝛽
] ‖𝑦1(𝑡)‖ 

Since, 0 < 𝛽 < 1, and 𝑛 > 𝑚 then, (1 − 𝛽𝑛−𝑚) ≤ 1. Consequently,  

‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
‖𝑦1(𝑡)‖ 

≤
𝛽𝑚

1 − 𝛽
max

𝑡∈𝐼
 |𝑦1(𝑡)|     

but, |𝑦1(𝑡)| < ∞ and as 𝑚 → ∞ then, ‖𝑆𝑛 − 𝑆𝑚‖ → 0 and hence, {𝑆𝑛} is a Cauchy sequence in 

this Banach space so, the series ∑ 𝑦𝑛
∞
𝑛=0 (𝑡) converges and this completes the proof.  

3.3. Error analysis 

For ADM, we can estimate the maximum absolute truncated error of Adomian’s series solution in 

the following theorem. 

 

 

Theorem 3:  The maximum absolute truncation error of the series solution (10) to the problem 

(1)-(2) is estimated to be,  

max
𝑡∈𝐼

 |𝑦(𝑡) − ∑ 𝑦𝑖

𝑚

𝑖=0

(𝑡)| ≤
𝛽𝑚

1 − 𝛽
max

𝑡∈𝐼
|𝑦1(𝑡)| 

 

Proof:  From Theorem 2 we have,  
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 ‖𝑆𝑛 − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
max

𝑡∈𝐼
 |𝑦1(𝑡)| 

but, 𝑆𝑛 = ∑ 𝑦𝑖
𝑛
𝑖=0 (𝑡) as 𝑛 → ∞ then, 𝑆𝑛 → 𝑦(𝑡) so,  

‖𝑦(𝑡) − 𝑆𝑚‖ ≤
𝛽𝑚

1 − 𝛽
max

𝑡∈𝐼
 |𝑦1(𝑡)| 

so, the maximum absolute truncation error in the interval 𝐼 is,  

max
𝑡∈𝐼

 |𝑦(𝑡) − ∑ 𝑦𝑖

𝑚

𝑖=0

(𝑡)| ≤
𝛽𝑚

1 − 𝛽
max

𝑡∈𝐼
 |𝑦1(𝑡)| 

and this completes the proof.  

4. Numerical Examples 

4.1. Examples for linear FDEs: 

4.1.1.  Application (1): Relaxation-oscillation equation 

Consider the following linear FDE,  

0𝑫𝑡
𝛼𝑦(𝑡) + 𝐴𝑦(𝑡) = 𝑓(𝑡),    𝑡 > 0,   𝑛 − 1 < 𝛼 ≤ 𝑛, 

 𝑫𝛼−𝑘𝑦(𝑡)|𝑡=0 = 0,       𝑘 = 1,2, … , 𝑛. (11) 

For 0 < 𝛼 ≤ 2 this equation is called the relaxation-oscillation equation. In [7] and [3], this 

problem was solved by the numerical methods, while in [4] was solved by ADM as a system.  

Applying the integral operator 𝐽𝛼where (𝐽𝛼 = 0𝑫𝑡
−𝛼) on both sides of equation (11) and taking 

𝐴 = 1 and 𝑓(𝑡) = 𝐻(𝑡). We get,  

𝐽𝛼( 0𝑫𝑡
𝛼𝑦(𝑡)) = 𝐽𝛼[𝐻(𝑡)] − 𝐽𝛼𝑦(𝑡), 

 𝑦(𝑡) = 𝐽𝛼[𝐻(𝑡)] − 𝐽𝛼𝑦(𝑡), (12) 

Applying ADM to the equation (12) we have,  

𝑦0(𝑡) = 𝐽𝛼[𝐻(𝑡)], 
 𝑦𝑛(𝑡) = −𝐽𝛼𝑦𝑛−1(𝑡),   𝑛 ≥ 1. (13) 

 

The results of our computations for different values of 𝛼 (1 ≤ 𝛼 ≤ 2), are shown in figures 1.a-1.f 

(𝑛 = 50). We see from these figures that the solution is a damped oscillator whenever 1 < 𝛼 < 2, 
and it will be perfect oscillator if 𝛼 = 2. These results are in perfect agreement with the analytical 

solutions; obtained with the help of fractional Green’s function for a two-term fractional 

differential equation. This solution is:  

𝑦(𝑡) = ∫ 𝐺2

𝑡

0

(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏, 

𝐺2(𝑡) = 𝑡𝛼−1𝐸𝛼,𝛼(−𝑡𝛼), 𝑓(𝑡) = 𝐻(𝑡). 
then,  

 𝑦(𝑡) = 𝑡𝛼𝐸𝛼,𝛼+1(−𝑡𝛼) (14) 
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Using the relation (13), the first four-terms of the series solution (𝛼 = 3/2) are,  

 𝑦(𝑡) =
𝑡3/2

𝛤(5/2)
−

𝑡3

𝛤(4)
+

𝑡9/2

𝛤(11/2)
−

𝑡6

𝛤(7)
+ ⋯. (15) 

A comparison between ADM and Green’s solutions given in Fig. 2 (𝑛 = 50). 
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4.1.2. Basset problem 

Consider the following linear FDE,  

 𝑫𝑢(𝑡) + 2𝑎𝑫1/2𝑢(𝑡) + 𝑏𝑢(𝑡) = 𝑞(𝑡), (16) 

 𝑫−1/2𝑢(𝑡)|
𝑡=0

= 0, 

where 𝑎 is a positive constant. If 𝑏 = 1, then the linear FDE (16) is called Basset problem, a 

classical problem in fluid dynamics concerning the unsteady motion of a particle accelerating in a 

viscous fluid under the action of the gravity [5].  

The Laplace transform solution of this problem [6] when ( 𝑎 = 𝑏 = 𝑞(𝑡) = 1) is:  

 𝑢(𝑡) = 1 − ((1 − 2𝑡)𝐸1/2(−√𝑡) + 2√𝑡/𝜋). (17) 

 

Using ADM to equation (17), we get  

𝑢0 = 𝑡, 
 𝑢𝑛 = −2𝐽1/2[𝑢𝑛−1(𝑡)] − 𝐽1[𝑢𝑛−1(𝑡)],   𝑛 ≥ 1. (18) 

From the relation (18), the first three-terms of the series solution are:  

 𝑢(𝑡) = 𝑡 −
8𝑡3/2

3√𝜋
−

𝑡2

2
+

1

30
𝑡2 (60 +

64√𝑡

√𝜋
+ 5𝑡) + ⋯. (19) 

Figures 3.a and 3.b show a comparison between ADM solution and Laplace solution. 
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4.2. Examples for Nonlinear FDEs 

Example 1.  Consider the initial value problem,  

 𝑫𝜇𝑦 = 𝑦2 + 1,  𝑚 − 1 < 𝜇 ≤ 𝑚, 0 < 𝑡 < 1, (20) 

 𝑫𝜇−𝑘𝑦(𝑡)|𝑡=0 = 0,  𝑘 = 1,2, … , 𝑚. (21) 

 

Operating with 𝐽𝜇 on both sides of equation (20) and using the initial condition (21) we obtain,  

 𝑦(𝑡) = 𝐽𝜇[1] + 𝐽𝜇[𝑦2], (22) 

Use ADM and replace the nonlinear term 𝑓(𝑦) = 𝑦2 by its corresponding Adomian polynomials 

we have,  

 𝑦0 = 𝐽𝜇[1], (23) 

 𝑦𝑛 = 𝐽𝜇[𝐴𝑛−1],  𝑛 ≥ 1. (24) 

from the two relations (23) and (24), the six-terms approximation are,  

 𝜙6 = ∑ 𝐶𝑘𝑡(2𝑘+1)𝜇 = 1,

5

𝑘=0

 (25) 

where, the coefficients are given by,  

𝐶0 =
1

𝛤(𝜇 + 1)
,  𝐶1 =

𝛤(2𝜇 + 1)

𝛤(3𝜇 + 1)
𝐶0

2, 

𝐶2 =
𝛤(4𝜇 + 1)

𝛤(5𝜇 + 1)
(2𝐶0𝐶1),  𝐶3 =

𝛤(6𝜇 + 1)

𝛤(7𝜇 + 1)
(2𝐶0𝐶2 + 𝐶1

2), 

𝐶4 =
𝛤(8𝜇 + 1)

𝛤(9𝜇 + 1)
(2𝐶0𝐶3 + 2𝐶1𝐶2),  𝐶5 =

𝛤(10𝜇 + 1)

𝛤(11𝜇 + 1)
(2𝐶0𝐶4 + 2𝐶1𝐶3 + 𝐶2

2). 

The solution of the problem (20)-(21) by using the numerical method given in [7] is:  

ℎ−𝜇 ∑ 𝑤𝑗
(𝜇)

𝑦𝑛−𝑗 − 𝑦𝑛
2 = 1

𝑛

𝑗=0

, 

where, 𝑡𝑛 = 𝑛ℎ, 𝑦𝑛 = 𝑦(𝑡𝑛), 𝑤𝑗
(𝜇)

= (−1)𝑗 (𝜇
𝑗
) , (𝑛, 𝑗 = 0,1,2, … ). Therefore, we get  

ℎ−𝜇 ∑(−1)𝑗
𝛤(𝜇 + 1)

𝛤(𝑗 + 1)𝛤(𝜇 − 𝑗 + 1)
𝑦𝑛−𝑗 − 𝑦𝑛

2 = 1,

𝑛

𝑗=0

 

then,  
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 𝑦𝑛 = ℎ𝜇 + ℎ𝜇  𝑦𝑛−1
2 − ∑(−1)𝑗

𝛤(𝜇 + 1)

𝛤(𝑗 + 1)𝛤(𝜇 − 𝑗 + 1)
𝑦𝑛−𝑗

𝑛

𝑗=1

. (26) 

 

Figures 4.a-4.f illustrate a comparison between ADM solution (𝑛 = 5) and the numerical 

solution (ℎ = 0.01). For 𝜇 = 0.5; the numerical method gives unbounded solution when 𝑡 ∈
[0,1], see Fig. 4.a, while, ADM gives a bounded solution in the same interval, see Fig. 4.b. 

 

 
 

Table (3.1) shows the relative error between exact and ADM solution of 𝜇 = 1. The value 𝜇 = 1 

(ODE) is the only case for which we know the exact solution (𝑦 = tan 𝑡) and our approximate 

solution is in good agreement with the exact values.  
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Table (3.1):  Relative error (𝜇 = 1) 

𝑡 Exact solution ADM solution Relative error 

0.1 0.100334672 0.100334672 3.3195594351 × 10−15 

0.2 0.2027100355 0.2027100355 1.4756006633 × 10−11 

0.3 0.3093362496 0.309336249 1.921474304 × 10−9 

0.4 0.42279321874 0.42279319296 6.097058134 × 10−8 

0.5 0.54630248984 0.54630200191 8.931495255 × 10−7 

0.6 0.68413680834 0.68413131533 8.0291143934 × 10−6 

0.7 0.84228838046 0.84224495232 0.0000515597 

0.8 1.02963855705 1.02937191571 0.000258966 

0.9 1.26015821755 1.25879891374 0.001078677 

1.0 1.55740772466 1.5513676447 0.003878291 

 

Example 2. Consider the nonlinear FDE,  

 𝑫5/2𝑦 =
1

4
𝑦4 + 𝑡,      0 < 𝑡 ≤ 1, (27) 

𝑫3/2𝑦|
𝑡=0

= 𝑫1/2𝑦|
𝑡=0

= 𝑫−1/2𝑦|
𝑡=0

= 0. 

 

Using ADM to the equation (27), we get  

 𝑦0 = 𝐽5/2(𝑡), (28) 

 𝑦𝑛 =
1

4
𝐽5/2(𝐴𝑛−1),  𝑛 ≥ 1. (29) 

From the relations (28) and (29), the first two-terms of the series solution are,  

 𝑦(𝑡) = (
16𝑡7/2

105√𝜋
) + (

274877906944𝑡33/2

2009196669692953125𝜋3/2
) + ⋯. (30) 

Figures 5.a-5.d show ADM solution of problem (27) at different values of 𝑚. 
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Now, we will evaluate the maximum absolute truncated error of the series solution (30).  

 Lipschitz constant (𝐿):  

|𝑓(𝑦) − 𝑓(𝑧)| = |𝑦4 − 𝑧4| 
= |𝑦2 + 𝑧2||𝑦 + 𝑧||𝑦 − 𝑧| 
≤ 4|𝑦 − 𝑧|    ⇒   𝐿 = 4. 

  

 𝑀:    |𝑔(𝜏)| ≤
1

4
  ⇒  𝑀 =

1

4
.  

 𝛽:     𝛽 =
𝐿𝑀𝑇𝛼

𝛤(𝛼+1)
=

1

𝛤(7/2)
.  

 max
𝑡∈𝐼

 |𝑦1(𝑡)| =
274877906944

2009196669692953125𝜋3/2
.  

The maximum error:  

i.    For 𝑚 = 5:      max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
5
𝑖=0 (𝑡)| ≤ 8.66908 × 10−11.  

ii.    For 𝑚 = 10:    max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
10
𝑖=0 (𝑡)| ≤ 2.13841 × 10−13.  

iii.   For 𝑚 = 15:    max
𝑡∈𝐼

 |𝑦(𝑡) − ∑ 𝑦𝑖
15
𝑖=0 (𝑡)| ≤ 5.27486 × 10−16.  

iv.   For 𝑚 = 20:    max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
20
𝑖=0 (𝑡)| ≤ 1.30116 × 10−18.  

4.2.1. Application: Fractional Riccati differential equation 

The fractional Riccati differential equation,  

 𝑫𝛼𝑦 + 𝑦2 = 1,    𝑘 − 1 < 𝛼 ≤ 𝑘,  0 < 𝑡 ≤ 0.5, (31) 

𝑫𝛼−𝑖𝑦(𝑡)|
𝑡=0

= 0,    𝑖 = 1,2, … , 𝑘.   

was solved before using the numerical methods in [8]-[10].  

Applying ADM to equation (31) and using the given initial conditions, we get  

𝑦0 = 𝐽𝛼(1), 
 𝑦𝑛 = −𝐽𝛼(𝐴𝑛−1),  𝑛 ≥ 1. (32) 

From the relation (32), the first three-terms of the series solution at (𝛼 = 1/2) are,  

 𝑦(𝑡) = (
2√𝑡

√𝜋
) + (

−16𝑡3/2

3𝜋3/2
) + (

1024𝑡5/2

45𝜋5/2
) + ⋯. (33) 

while, the solution algorithm in this case using the numerical method given in [7] is:  

 𝑦𝑛 = ℎ1/2 − ℎ1/2 𝑦𝑛−1
2 − ∑(−1)𝑗

𝛤(3/2)

𝛤(𝑗 + 1)𝛤(3/2 − 𝑗)
𝑦𝑛−𝑗

𝑛

𝑗=1

 (34) 

where, 𝑡𝑛 = 𝑛ℎ, 𝑦𝑛 = 𝑦(𝑡𝑛), (𝑛, 𝑗 = 0,1,2, … ).  

The exact solution of this problem at (𝛼 = 1) is 𝑦(𝑡) =
𝑒2𝑡−1

𝑒2𝑡+1
, while ADM series solution is:  

 𝑦(𝑡) = 𝑡 −
𝑡3

3
+

2𝑡5

15
+ ⋯. (35) 

 

A comparison between ADM solution (𝛼 = 1/2, 𝑛 = 9) and numerical solution (ℎ = 0.01) is 

given in Fig. 6.a, while Fig. 6.b shows a comparison between ADM solution (𝛼 = 1, 𝑛 = 5) and 

exact solution. 
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From the relation (32), the first three-terms of ADM series solution at (𝛼 = 3/2) is,  

 𝑦(𝑡) =
4𝑡3/2

3√𝜋
−

1024𝑡9/2

2835𝜋3/2
+

33554432𝑡15/2

383107725𝜋5/2
− ⋯. (36) 

 

A comparison between ADM solution (𝛼 = 3/2, 𝑛 = 5) and numerical solution (ℎ = 0.01) is 

given in Fig. 6.c. 

 

 
 

Now, we will evaluate the maximum absolute truncated error of the series solution (36). 
 

The maximum error:  

i.   For 𝑚 = 5:      max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
5
𝑖=0 (𝑡)| ≤ 5.19711 × 10−6.  

ii.   For 𝑚 = 10:    max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
10
𝑖=0 (𝑡)| ≤ 6.91602 × 10−9.  

iii.  For 𝑚 = 15:    max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
15
𝑖=0 (𝑡)| ≤ 9.20344 × 10−12.  

iv.  For 𝑚 = 20:    max
𝑡∈𝐼

|𝑦(𝑡) − ∑ 𝑦𝑖
20
𝑖=0 (𝑡)| ≤ 1.22474 × 10−14.  
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