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Abstract:   

In this paper, a new numerical solution of Gardner equation via composite finite difference scheme 

is introduced. Numerical experiments compare the approximate solution and exact solution.    
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1 Introduction 
 

Partial differential equations play a very important role in various scientific and engineering fields. 

Such as fluid mechanics, plasma physics, optical fibers, solid state physics and geochemistry. In 

recent years a variety of powerful and efficient methods have been proposed. For example, Sine- 

Cosine method [1], Exp-function method [2], the Darboux transformation [3], the Lie group 

analysis [4], the modified homogeneous balance method [5], and the extended tanh method [6]. 

New methods for determining solutions of partial differential equations can be given in [7–15]. 

The Gardner equation belongs to the category of integrable non-linear partial differential 

equations. The introduction of this equation is attributed to the famous mathematician Clifford 

Gardner in 1968 [16]. It is an important model to understand the propagation of negative ion 

acoustic plasma waves [17]. We can derive Gardner equation from the system of plasma motion 

equations in one dimension with arbitrarily charged cold. The Gardner equation is a good model 

for describing internal waves with large amplitudes [18]. In [19] The tanh method is applied for 

generating interacting solutions for this equation. Some interacting of two wave solutions were 

presented in [20]. These solutions have various terms including trigonometric or hyperbolic 

functions in rational forms. G'/G gave Some solitary wave, periodic, exponential, rational and 

complex-type traveling wave solutions [21]. Numerical solutions of Gardner equations are 
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presented in various papers. The conservative finite difference schemes are developed to determine 

propagation of one soliton and collusion of two soliton solutions numerically [22]. Restrictive 

Taylor’s technique has been implemented to simulate the propagation of some solutions 

numerically [23].  

Composite finite difference scheme (CFDS) has been introduced and applied to some nonlinear 

equations, such as Burger equation, KdV equation, KdVB equation and reaction diffusion 

equations [24-25]. In this article, a new numerical solution of Gardner equation via composite 

finite different scheme is obtained. 

  

2 Composite Finite Difference Scheme 

Consider the general Gardner equation [26] of the form 

𝒰𝑡 + (𝛼𝒰 + 𝛽𝒰2)𝒰𝑥 + 𝛾𝒰𝑥𝑥𝑥 = 0, (𝑥, 𝑡) ∈ 𝑍𝑇                                                    (1) 

Where 𝑍𝑇 = 𝜎 × 𝜁, 𝜎 = (𝑎, 𝑏), 𝜁 = (0, T), 𝑎 and 𝑏 are real positive constants, 𝛼, 𝛽 and 𝛾 are 

parameters. We consider equation (1) associated with initial condition 𝒰(𝑥, 0)  = 𝒰0(𝑥). In finite 

difference method [24] the domain is discretized forming a grid of a finite number of intersected 

points with horizontal step ℎ =
𝑏−𝑎

𝑁
, where 𝛮 is the number of horizontal intervals, 0 < 𝚤 <

𝛮 and 𝜅 is the time step such that  T = 𝜅𝑗, 0 < 𝑗 < 𝛭.  

Equation (1) known as the mixed KdV- mKdV equation which have very widely applications in 

physics, plasma, Quantum Field theory. We can rewrite it in the form   

𝒰𝑡 = −(𝛼𝒰 + 𝛽𝒰2)𝒰𝑥 − 𝛾𝒰𝑥𝑥𝑥                                                                                     (2) 

Multiply both sides of (2) by  
𝑑𝐹

𝑑𝒰
 , where 𝐹(𝒰) is a continuous and differentiable function, we 

obtain 

𝑑𝐹 

𝑑𝒰

𝜕𝒰

𝜕𝑡
= −𝐹′ (𝒰)((𝛼𝒰 + 𝛽𝒰2)𝒰𝑥 + 𝛾𝒰𝑥𝑥𝑥)                                                                  (3) 

In Equation (3) reset 𝒰𝒰𝑥 =
1

2
𝒰2

𝑥 ,we have  

𝜕𝐹 

𝜕𝑡
= −𝐹′ (𝒰) ((𝛼 + 𝛽𝒰)

𝒰𝑥
2

2
+ 𝛾𝒰𝑥𝑥𝑥).                                                                                 (4) 

 FDM based on replacing derivatives by difference formulas [30, 31] as follows, for  1 ≤ 𝚤 ≤ 2 

we apply the forward difference formulas, 

(𝒰𝑥)𝚤
𝑗

=
−3𝒰𝚤

𝑗
+ 4𝒰𝚤+1

𝑗
− 𝒰𝚤+2

𝑗

2ℎ
,                                                                                                      

(𝒰𝑥𝑥𝑥)𝑖
𝑗

=
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
,                                                  (5) 

(𝒰𝑡)𝚤
𝑗

=
𝒰𝚤

𝑗+1
− 𝒰𝚤

𝑗

𝜅
,    (𝐹𝑡)𝚤

𝑗
=

𝐹(𝒰𝚤
𝑗+1

) − 𝐹(𝒰𝚤
𝑗
)

𝜅
.                                                                        

Substitute from (5) into (4) we get,  
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𝐹(𝒰𝑖
𝑗+1

) = 𝐹(𝒰𝚤
𝑗
)

− 𝜅 𝐹′(𝒰𝚤
𝑗
) ((𝛼 + 𝛽𝒰𝚤

𝑗
) 

−3(𝒰𝚤
𝑗
)2 + 4(𝒰𝚤+1

𝑗
)2 − (𝒰𝚤+2

𝑗
)2

4ℎ

+
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
).                

(6) 
When  3 ≤ ı ≤ Ν − 2 we apply the central difference formulas, 

(𝒰𝑥)𝚤
𝑗

=
𝒰𝚤+1

𝑗
− 𝒰𝚤−1

𝑗

2ℎ
,                                                                                                                      

(𝒰𝑥𝑥𝑥)𝚤
𝑗

=
𝒰𝚤+2

𝑗
− 2𝒰𝚤+1

𝑗
+ 2𝒰𝚤−1

𝑗
−𝒰𝚤−2

𝑗

2ℎ3
                                                                            (7) 

From (7) substitute in (4), we obtain 

𝐹(𝒰𝑖
𝑗+1

) = 𝐹(𝒰𝚤
𝑗
)

− 𝜅 𝐹′(𝒰𝚤
𝑗
) ((𝛼 + 𝛽𝒰𝚤

𝑗
)

(𝒰𝚤+1
𝑗

)2 − (𝒰𝚤
𝑗
)2

4ℎ

+
𝒰𝚤+2

𝑗
− 2𝒰𝚤+1

𝑗
+ 2𝒰𝚤−1

𝑗
−𝒰𝚤−2

𝑗

2ℎ3
).  (8) 

 

When   𝛮 − 1 ≤ 𝚤 ≤ 𝛮 we apply the backward difference formulas, 

 

(𝒰𝑥)𝚤
𝑗

=
3𝒰𝚤

𝑗
− 4𝒰𝚤−1

𝑗
+ 𝒰𝚤−2

𝑗

2ℎ
,                                                                                                       

(𝑢𝑥𝑥𝑥)𝚤
𝑗

=
5𝒰𝚤

𝑗
− 18𝒰𝚤−1

𝑗
+ 24𝒰𝚤−2

𝑗
−14𝒰𝚤−3

𝑗
+ 3𝒰𝚤−4

𝑗

2ℎ3
,                                                 (9)  

Substitute from (9) into (4) we get 

𝐹(𝒰𝑖
𝑗+1

) = 𝐹(𝒰𝚤
𝑗
)

− 𝜅 𝐹′(𝒰𝚤
𝑗
) ((𝛼 + 𝛽𝒰𝚤

𝑗
)  

3(𝒰𝚤
𝑗
)2 − 4(𝒰𝚤−1

𝑗
)2 + (𝒰𝚤−2

𝑗
)2

4ℎ

+
5𝒰𝚤

𝑗
− 18𝒰𝚤−1

𝑗
+ 24𝒰𝚤−2

𝑗
−14𝒰𝚤−3

𝑗
+ 3𝒰𝚤−4

𝑗

2ℎ3
). 

(10) 

2.1 Exponential Finite Difference Method  

In this sub section we apply the exponential finite difference method (Exp FDM) which was 

developed by Bhattachary [27, 28]. He used Exp FDM for solving the one-dimensional heat 
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conduction in a solid slab. In [29] aA. R. Bahadir applied Exp FDM to find the numerical solution 

of Korteweg de Vries equation. In [24] M. S. EL-AZAB et al studied the stability of CFDS when 

applied to linearized version of KdVB equation.  

In Exp FDM, we set F (𝒰) = Ln 𝒰, then 𝐹′ (𝒰) =
1

𝒰
  substitute in equations (6), (8) and (10) 

   we obtain, for  1 ≤ ı ≤ 2    

Ln (𝒰𝑖
𝑗+1

) = Ln (𝒰𝚤
𝑗
)

−
𝜅

𝒰𝚤
𝑗

 ((𝛼 + 𝛽𝒰𝚤
𝑗
)

−3(𝒰𝚤
𝑗
)2 + 4(𝒰𝚤+1

𝑗
)2 − (𝒰𝚤+2

𝑗
)2

4ℎ

+
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
),         (11)   

When 3 ≤ ı ≤ Ν − 2, equation (8) becomes, 

Ln (𝒰𝑖
𝑗+1

) = Ln (𝒰𝚤
𝑗
)

−
𝜅

𝒰𝚤
𝑗

((𝛼 + 𝛽𝒰𝚤
𝑗
)

(𝒰𝚤+1
𝑗

)2 − (𝒰𝚤
𝑗
)2

4ℎ

+
𝒰𝚤+2

𝑗
− 2𝒰𝚤+1

𝑗
+ 2𝒰𝚤−1

𝑗
−𝒰𝚤−2

𝑗

2ℎ3
),            (12) 

(Ln (𝒰𝑖
𝑗+1

) = Ln (𝒰𝚤
𝑗
)

−
𝜅

𝒰𝚤
𝑗

((𝛼 + 𝛽𝒰𝚤
𝑗
)

3(𝒰𝚤
𝑗
)2 − 4(𝒰𝚤−1

𝑗
)2 + (𝒰𝚤−2

𝑗
)2

4ℎ

+
5𝒰𝚤

𝑗
− 18𝒰𝚤−1

𝑗
+ 24𝒰𝚤−2

𝑗
−14𝒰𝚤−3

𝑗
+ 3𝒰𝚤−4

𝑗

2ℎ3
) ,

Ν − 1 ≤ ı ≤ Ν                   (13) 

Simplify Equations (11-13) we obtain the following equations, 

𝒰i
j+1

=  𝒰ı
j
 exp (

−κ

𝒰ı
j

 ((𝛼 + 𝛽𝒰𝚤
𝑗
)

−3(𝒰ı
j
)2 + 4(𝒰ı+1

j
)2 − (𝒰ı+2

j
)2

4h

+
−5𝒰ı

j
+ 18𝒰ı+1

j
− 24𝒰ı+2

j
+14𝒰ı+3

j
− 3𝒰ı+4

j

2h3
)) , 1 ≤ ı

≤ 2,                              (14) 
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𝒰i
j+1

= 𝒰ı
j
 exp ( 

−κ

𝒰ı
j

 ((𝛼 + 𝛽𝒰𝚤
𝑗
)

(𝒰ı+1
j

)2 − (𝒰ı
j
)2

2h

+
𝒰ı+2

j
− 2𝒰ı+1

j
+ 2𝒰ı−1

j
−𝒰ı−2

j

2h3
)),             (15) 

𝒰i
j+1

= 𝒰ı
j
 exp (−

κ

𝒰ı
j
((𝛼 + 𝛽𝒰𝚤

𝑗
)

3(𝒰ı
j
)2 − 4(𝒰ı−1

j
)2 + (𝒰ı−2

j
)2

4h

+
5𝒰ı

j
− 18𝒰ı−1

j
+ 24𝒰ı−2

j
−14𝒰ı−3

j
+ 3𝒰ı−4

j

2h3
)) ,

Ν − 1 ≤ ı ≤ Ν.                 (16) 

  ِ 

Logarithmic finite difference method was introduced by M. S. El-Azab and S. A. El Morsy for 

solving the nonlinear evolution equations. They applied the method to a class of solitary waves 

equations, such as KdV and KdVB equations [30]. In [25] M. S. El-Azab et al applied 

Logarithmic finite difference method to nonlinear reaction diffusion equation. The method is 

simple and effective for arbitrarily large values of parameters. 

Consider F (𝒰) = exp (𝒰), then F′ (𝒰) = exp(𝒰),  substitute in equations (6), (8) and (10) to 

obtain, 

   we obtain, 

  

exp (𝒰𝑖
𝑗+1

) = exp (𝒰𝚤
𝑗
)

− 𝜅 exp (𝒰𝚤
𝑗
) ((𝛼 + 𝛽𝒰𝚤

𝑗
)

−3(𝒰𝚤
𝑗
)2 + 4(𝒰𝚤+1

𝑗
)2 − (𝒰𝚤+2

𝑗
)2

4ℎ

+
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
) , 1 ≤ ı ≤ 2                          (17)  

When 3 ≤ ı ≤ Ν − 2, equation (8) becomes, 

exp (𝒰𝑖
𝑗+1

) = exp (𝒰𝚤
𝑗
)

− 𝜅 exp (𝒰𝚤
𝑗
) ((𝛼 + 𝛽𝒰𝚤

𝑗
)

−3(𝒰𝚤
𝑗
)2 + 4(𝒰𝚤+1

𝑗
)2 − (𝒰𝚤+2

𝑗
)2

4ℎ

+
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
)                                                (18) 
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exp (𝒰𝑖
𝑗+1

) = exp (𝒰𝚤
𝑗
)

− 𝜅 exp (𝒰𝚤
𝑗
) ((𝛼 + 𝛽𝒰𝚤

𝑗
) 

3(𝒰𝚤
𝑗
)2 − 4(𝒰𝚤−1

𝑗
)2 + (𝒰𝚤−2

𝑗
)2

2ℎ

+
5𝒰𝚤

𝑗
− 18𝒰𝚤−1

𝑗
+ 24𝒰𝚤−2

𝑗
−14𝒰𝚤−3

𝑗
+ 3𝒰𝚤−4

𝑗

2ℎ3
) , Ν − 1 ≤ ı ≤ Ν            (19) 

Simplify Equations (17-19) we can obtain the following algebraic system of equations, 

𝒰𝑖
𝑗+1

= 𝒰𝚤
𝑗

+ Ln (−𝜅 ((𝛼 + 𝛽𝒰𝚤
𝑗
)

−3(𝒰𝚤
𝑗
)2 + 4(𝒰𝚤+1

𝑗
)2 − (𝒰𝚤+2

𝑗
)2

4ℎ

+
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
) + 1) , 1 ≤ ı ≤ 2                (20)  

When 3 ≤ ı ≤ Ν − 2, equation (8) becomes, 

𝒰𝑖
𝑗+1

= 𝒰𝚤
𝑗

+ Ln (−𝜅 ((𝛼 + 𝛽𝒰𝚤
𝑗
)

−3(𝒰𝚤
𝑗
)2 + 4(𝒰𝚤+1

𝑗
)2 − (𝒰𝚤+2

𝑗
)2

4ℎ

+
−5𝒰𝚤

𝑗
+ 18𝒰𝚤+1

𝑗
− 24𝒰𝚤+2

𝑗
+14𝒰𝚤+3

𝑗
− 3𝒰𝚤+4

𝑗

2ℎ3
)

+ 1),                                        (21) 

𝒰𝑖
𝑗+1

= 𝒰𝚤
𝑗

+ Ln (− 𝜅 ((𝛼 + 𝛽𝒰𝚤
𝑗
)

3(𝒰𝚤
𝑗
)2 − 4(𝒰𝚤−1

𝑗
)2 + (𝒰𝚤−2

𝑗
)2

4ℎ

+
5𝒰𝚤

𝑗
− 18𝒰𝚤−1

𝑗
+ 24𝒰𝚤−2

𝑗
−14𝒰𝚤−3

𝑗
+ 3𝒰𝚤−4

𝑗

2ℎ3
) + 1) ,

Ν − 1 ≤ ı ≤ Ν          (22) 

 

3 Numerical Experiments 

 

Case study 1 

Consider Gardner equation [31] when 𝛼 = 4, 𝛽 = −3  and 𝛾 =1, with the initial 

condition 𝒰(𝑥, 0) =  
2

12+3√14 Cosh (−
𝑥

3
+

5

3
)
  and the exact solution (𝑥, 𝑡) =  

2

12+3√14 Cosh (−
𝑥

3
+

5

3
+

𝑡

27
)
 . 
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Table 1. Absolute errors for Exp. FDM and Log.FDM when ℎ =0.1 

𝜅 = 0.0001, ℎ = 0.1 and  𝑡 = 0.001 

Log. FDM Exp. FDM 𝒙 

3.79303× 10−7 1.9331 × 10−8 0.0 

2.80823× 10−6 7.2528 × 10−9 0.1 

3.46015× 10−6 2.9034 × 10−9 0.2 

4.24513 × 10−6 9.4034 × 10−10 0.3 

4.96094× 10−6 1.8390 × 10−10 0.4 

5.68259× 10−6 2.3134 × 10−10 0.5 

6.10547 × 10−6 6.7394× 10−11 0.6 

4.4415× 10−6 2.0092 × 10−11 0.7 

4.42334× 10−6 4.7687 × 10−11 0.8 

7.04767 × 10−6 4.6039 × 10−10 0.9 

6.42047× 10−7 1.4084  × 10−9 1.0 

 

 Table 2. Absolute errors for Exp. FDM and Log. FDM when ℎ =1.0 

𝜅 = 0.0001, ℎ = 1 and  𝑡 = 0.001 

Log. FDM Exp. FDM 𝒙 

1.97198 × 10−6 3.60921× 10−7 0.0 

1.82722 × 10−6 5.83107 × 10−7 1.0 

1.73770 × 10−6 5.431 × 10−7 2.0 

5.80394 × 10−6 1.00206 × 10−8 3.0 

3.45538 × 10−6 8.86987 × 10−9 4.0 

1.30074 × 10−6 4.63718 × 10−12 5.0 

3.45796 × 10−6 8.99999 × 10−9 6.0 

5.80334 × 10−6 9.94002 × 10−9 7.0 

6.52653 × 10−6 2.15564× 10−9 8.0 

1.83816 × 10−6 8.06268× 10−9 9.0 

1.97448 × 10−6 1.41102 × 10−8 10.0 

 

 

Case study 2 

Consider Gardner equation [32] when 𝛼 = 1, 𝛽 = −5  and 𝛾 =1, with the initial 

condition 𝒰(𝑥, 0) = 0.1( 1 − tanh( 
𝑥

2√30
))  with exact solution 𝒰(𝑥, 𝑡) =  0.1 (1 −

tanh( 
𝑥−0.1𝑡

2√30
))  

 

 

 

 

  . 
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Table 3. Absolute errors for Exp. FDM and Log. FDM when ℎ =0.1  

𝜅 = 0.0001, ℎ = 0.1and  𝑡 = 0.001 

Log. FDM Exp. FDM 𝒙 

1.63261 × 10−7 1.53809 × 10−6 0.0 

4.08396 × 10−7 1.51488 × 10−6 0.1 

4.87864× 10−7 1.52308 × 10−6 0.2 

6.30548 × 10−7 1.51889 × 10−6 0.3 

7.35689 × 10−7 1.51844 × 10−6 0.4 

8.03524 × 10−7 1.51628 × 10−6 0.5 

8.35254 × 10−7 1.51415 × 10−6 0.6 

6.04582 × 10−7 1.51148 × 10−6 0.7 

5.97121 × 10−7 1.50851 × 10−6 0.8 

9.42587 × 10−7 1.50529 × 10−6 0.9 

1.59377 × 10−7 1.5017 × 10−6 1.0 

 

Table 4. Absolute errors for Exp. FDM and Log. FDM when ℎ =0.1  

𝜅 = 0.00001, ℎ = 1.0 and  𝑡 = 0.0001 

Log. FDM Exp. FDM 𝒙 

2.8845 × 10−7 1.53816× 10−7 0.0 

2.96338 × 10−7 1.51316 × 10−7 1.0 

3.17768 × 10−7 1.44889× 10−7 2.0 

6.73696 × 10−7 1.35135 × 10−7 3.0 

6.16856 × 10−7 1.23766 × 10−7 4.0 

5.53123 × 10−7 1.10903× 10−7 5.0 

4.86214 × 10−7 9.74436 × 10−8 6.0 

4.20061 × 10−7 8.41595 × 10−8 7.0 

3.57718 × 10−7 7.16318× 10−8 8.0 

4.02963 × 10−7 5.88746× 10−8 9.0 

3.84064 × 10−7 4.88345× 10−8 10.0 

 

4 Conclusion 

Exponential and Logarithmic Finite Difference methods are applied effectively to Gardner 

equation. Numerical experiments show that the absolute error between numerical solution and 

exact solution is neglectable for different times and for different exact solutions. 
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