Journal of Plant Production

Journal homepage: <u>www.jpp.mans.edu.eg</u> Available online at: <u>www.jpp.journals.ekb.eg</u>

Possibility of Using Compost as A Partial Substitute for Mineral Nitrogen Fertilizer and Evaluating This on Performance of Sugar Beet Plants Sprayed with Boron from Different Sources.

Seadh, S. E.¹; M. A. Abdel-Moneam¹; H. M. Sarhan²; M. A. El-Sherpiny^{3*} and Hadeer E. M. El-Agamy¹

¹Agronomy Department, Faculty of Agriculture, Mansoura University- El-Mansoura-Egypt.
²Sugar Crops Research Institute, Agriculture Research Centre, Egypt.
³Soil & Water and Environment Research Institute, Agriculture Research Centre, Giza, Egypt.

ABSTRACT

Two field experiments were conducted at Dakahlia., Egypt during 209/2020 and 2020/2021 seasons to evaluate the response of sugar beet to boron spraying (Control, 1.0 mg B as Milano [15 %boron]/15 L water, 2.0 mg B as Milano 15 %boron/15 L water, 0.5 g B as borax 11%boron /15 L water, 1.0 g B as borax 11%boron /15 L water, 0.5 g B as boric acid 17%boron/15 L water and 1 g B as boric acid 17%boron /15 L water) and combinations of compost with mineral nitrogen fertilizer (100% N mineral nitrogen, 75 mineral N + 25 % compost, 50 mineral N + 50 % compost, 25 mineral N + 75 % compost and 100% N as compost.). Split plot design in 3 replications was used where, the N sources were attributed at the main plots while, the sub plots included boron treatments. The results showed that 100% N mineral nitrogen was superior treatment compared with the other N treatments, as well as spraying B at rate of 1.0 g 15 L-1 as boric acid came in the first order compared with the other B treatments. On the other hand, the plants received 75 mineral N + 25 % compost and sprayed by Boron from any source and by any rate recorded the better responses compared with plants received 100% N mineral nitrogen as mineral fertilizer without B application.

Keywords: Sugar beet, sustainable agricultural development, boron element, N-fertilizer and compost.

INTRODUCTION

Sugar beet (*Beta vulgaris* L.) yield and quality are important issues for farmer's income in Egypt, where it consider an important position as a winter crop in crop rotation in Egypt. Presently, the Egyptian Government strategy aims at reducing the gap between the consumption and production of sugar so it encourages sugar beet growers to increase the cultivated area (Leilah *et al.*, 2017). Presently, some research works has proven that chemical nitrogen fertilizers are related to the increases in impurities content in sugar beet (Faiyad and Hozayn, 2020).

Even though the mineral nitrogen fertilizers are essential to high plant growth, the continued utilization of chemical fertilizers *eg.*, urea and ammonium nitrate causes environmental and health hazards and thereby reducing the amount of mineral nitrogen fertilizers applied to the field without nitrogen deficiency will be the biggest challenge in the agricultural sector (Seadh, 2014).

Compost improves the environmental sustainability of agriculture via decreasing chemical inputs (Safina and Fatah, 2011), where it is a rich source of nutrients *e.g.*, N, P, K, S with high organic matter content, thus soil addition of compost before cultivation is beneficial to improve soil fertility status, where biological, physical and chemical attributes of soil can be enhanced as a result of compost addition, which may ultimately increase total and cumulative crop yields (Ilupeju, 2015).

The boron is considered as the second most vital micronutrients constraints in crop production after zinc. It is plays a vital role in sugar transport, cell division, cell-wall synthesis, differentiation, root elongation, membrane functioning, regulation of plant hormone levels, and generative growth of plants (El-Sherpiny, 2016). Currently, there is an increase in the sugar beet fields, which have appeared boron deficiency symptoms. In beginning sugar beets life, Boron deficiency symptoms occur as wilting of leaves or a white netted chapping of the upper blade surfaces. Later, if the deficiency becomes severe, transverse cracking of the petioles develops and the new leaves in the growing point may turn black as mentioned by Kristek et al. (2006) and El Hamdi et al. (2017) they reported that correcting or preventing the B deficiency through B addition either by soil or foliar applications can improve yield and sugar content, there is still a lack of information on the effect of boron application on sugar beet yield and quality particularly under Egyptian condition.

Finally, N management is key to achieving profitable sugar beet yield and quality. When synthetic fertilizers price increases, producers often consider alternatives sources as organic fertilizers (compost) and foliar applications of different boron sources may be enhance yield and quality of sugar beet plants. Therefore, the objective of this study was to assess the t effect of boron spraying and combinations of compost and mineral nitrogen fertilizer on sugar beet productivity and their interactions on

some physiological characters, productivity and quality of sugar beet under the condition of dakahlia., governorate, Egypt.

MATERIALS AND METHODS

1.Experimental site:

Two field trials were done for the period of 2019/20 and 2020/21 seasons at a private farm located in El-Shaarawi Village, Belgas District, Dakahlia Governorate, Egypt.

2.Soil sampling:

Soil sample taken at depth of 0-30 cm before sowing at both studied seasons were analyzed according to Dane and Topp (2020) and Sparks et al. (2020) as shown in Table1.

3.Compost used:

The analysis of compost (animal residues) is presented in Table 2.

Table 1. Characteristics of initial soil before sowing at both seasons.

		Val	lues
Initial soil charac	rteristics	First season	Second season
		(2019/20)	(2020/21)
	C. sand	2.200	2.500
Particle size	F. sand	19.30	19.00
distribution (%)	Silt	28.30	28.60
	Clay	50.20	49.90
Textural class		C	lay
EC dSm ⁻¹		1.470	1.570
pH**		8.130	8.070
CaCO ₃ %		2.130	2.170
Organic matter, %		0.990	1.150
Field capacity,%		34.50	35.00
Saturation,%		69.00	70.00
A :1-1-1	Nitrogen	61.59	66.59
Available macro-	Phosphorus	10.50	11.30
nutrients, mgKg ⁻¹	Potassium	235.3	243.9
Available boron,,	mgKg ⁻¹	0.500	0.700
-			

1 abic 2. Cl	iennear anai	y 515 01 C	ompose	uscu.								
pH 1:10	EC (1:10)	O.M	O.C	Ν	C/N	Р	K	Mg	Fe	Cu	Zn	Cd
рп 1:10	(dSm ⁻¹)		(%)		ratio	0	/o			(mg	g kg ⁻¹)	
6.67	4.10	32.0	19.08	1.22	15.7	0.42	0.66	26.4	62.3	5.56	18.43	1.05

4. Experimental Design and Treatments:

The trial was hold out in a split-plot design with treatments total number of 35 with three replicates (5 N sources x 7 B treatments x 3 replicates = 105), where the experimental unit was 84.0 m² (12.0 m \times 7.0 m) for each main plot, which contained 7.0 ridges (0.85 m wide and 12.0 m long). Each ridge was divided into 3 replicates (4.0 m for each replicate).

Main plots were N-fertilization sources as follows:

- T1:100% (NRD) of nitrogen recommended dose as mineral fertilizer
- T₂: 75% of NRD as mineral fertilizer + 25% of NRD as compost.
- T₃: 50% of NRD as mineral fertilizer + 50% of NRD as compost.
- T₄: 25% of NRD as mineral fertilizer + 75% of NRD as compost.
- T₅: 100% of NRD as compost.

Sub main plots were boron treatments as follows:

- B₁: Control (without boron).
- B₂: Boron at rate of 1.0 mg B 15 L⁻¹ water using Milano [15 %boron].
- B₃: Boron at rate of 2.0 mg B 15 L⁻¹ water using Milano [15 %boron].
- B₄: Boron at rate of 0.5 g B 15 L⁻¹ water using borax [11%boron].
- B₅: Boron at rate of 1.0 g B 15 L⁻¹ water using borax [11%boron].
- B₆: Boron at rate of 0.5 g B 15 L⁻¹ water using boric acid [17%boron].
- B₇: Boron at rate of 1.0 g B 15 L⁻¹ water using boric acid [17%boron].

5.Cultivation:

Seeds of sugar beet (C.v. Finoget) were obtained from the Sugar Res. Institute, Agriclutural Research Center (ARC), Egypt, sowing date was in 19th of October in both seasons at rate of 3-4 balls hill-1 in one side of the ridge with distance of 20 cm among the plants, then the thinning was at 30 and 45 days from sowing aiming at ensuring one plant hill⁻¹ (almost 35000 plants fed⁻¹). All plots received calcium superphosphate during soil preparation before sowing (100 kg fed⁻¹, 15% P₂O₅). Also, compost was added at the abovementioned rates during soil preparation before sowing. Irrigation process was done immediately after sowing. Urea (46.5%N) was used for N fertilization, where it was applied with the above-mentioned rates at two equal doses; the 1st was done after thinning, while the 2nd was done after one month later. On the other hand, potassium fertilization was added using potassium sulfate (48 % K₂O) at rate of 50.0 kg fed⁻¹ with the 1st dose of urea. All boron sources were purchased from El-Gamhoria Company, Egypt, and then studied boron solutions at investigated rates were prepared. The first foliar application of B treatments was implemented after 70 days from cultivation and repeated two times with two weeks interval. It is also worth noting that all traditional agricultural practices were done.

6.Measurements parameters:

First stage (at 90 days from sowing).

Using five plants from every treatment, chlorophyll content (SPAD reading value) and chemical constituents Ν (using Kjeldahl method), P(using i.e.. spectrophotometer), and K (using flam photometer) in sugar beet foliage were determined after completely wet digested according to Walinga et al., (2013).

Second stage (maturity stage, 180 days from sowing).

Samples of five plants were taken and carefully uprooted for estimating top and root fresh weights (g plant⁻¹ and ton fed⁻¹) as well as root length and diameter (cm). 7.Statistical analysis:

The obtained data were subjected to analysis of variance according to [Gomez and Gomez (1984), Treatment means were compared by using least significant difference (LSD) at 0.05 level of probability, all statistical analysis was performed using analysis of variance technique by means of CoStat computer software package (Version 6.303, CoHort, USA, 1998-2004).

RESULTS AND DISCUSSION

1. Plant performance at the first stage:

Data in Tables 3 and 4 show the impact of combined application of mineral nitrogen fertilizer and compost at different ratios with foliar applications of different boron sources at different rates and their interactions on sugar beet performance expressed in total N, P and K contents in leaves at a period of 90 days from sowing as well as chlorophyll content (SPAD reading value) during both growing seasons of 2019/20 and 2020/21.

Individual effect:

Data in Table 3 illustrate that different studied ratios between both urea and compost significantly affected N,P,K and chlorophyll content values, where the superior treatment was T_1 treatment (100 % of NRD as urea) followed by T_2 treatment (75% of NRD as urea +25% compost) then T_3 treatment (50% of NRD as urea +50% compost) followed by T_4 treatment (25% of NRD as urea +75% compost) and lately T_5 treatment (100% of NRD as compost). The same trend was found for both studied seasons.

The superiority of T₁ treatment (100 % of NRD mineral nitrogen as urea) compared to others combined treatments of mineral nitrogen as urea (at rate of 75, 50,25 and 0.0 % of NRD) and compost (at rate of 25,50,75,100% of NRD) may be attributed to that urea contains nitrogen in form of amide which fast turn into available N forms to plants (NH4⁺ and NO3⁻) in addition to urea is not possessed osmotic pressure thus, this reason made the plants absorbed mineral N fast than organic N in compost which needs a long period to turn into available N forms to plants (NH4⁺ and NO_3^{-}) through some processes *e.g.*, ammonification and nitrification (Barker and Bryson, 2016). Even though the ease of plant absorption to mineral N from studied synthetic fertilizer (urea) compared to organic N from studied compost, the compost had a vital role in supplying nutrients to sugar beet plants, where it contained many essential nutrient elements that are associated with improving photosynthetic efficiency, physiological and meristematic activities in the plants. In addition to its ability in improving soil fertility status and this led to enhancing the performance of sugar beet plants (Manirakiza and Şeker, 2020)

Table 3. Effect of different combination between mineral nitrogen with compost and foliar application of boron sources on chemical constituents of sugar beet shoots at both 90 days after sowing during the tow growing seasons 2019/20 and 2020/21.

Turnet	N,	%	P,	%	K,	%	Chlorophy	ll, SPAD
Treatments	1 st	2 nd						
Nitrogen fertilization ratios (mineral + compost)								
T ₁ : 100 % of NRD as urea	3.09a	3.15a	0.367	0.376a	3.93a	4.09a	41.85a	42.64a
T ₂ : 75% of NRD as urea +25 % compost	2.90b	2.96b	0.341	0.349b	3.65b	3.78b	41.06b	41.94b
T ₃ : 50% of NRD as urea +50 % compost	2.61c	2.67c	0.299	0.307c	3.22c	3.35c	39.43c	40.34c
T4: 25% of NRD as urea +75 % compost	2.32d	2.37d	0.261	0.267d	2.81d	2.92d	37.98d	38.81d
T ₅ : 100 % of NRD as compost	2.00e	2.06e	0.217	0.222e	2.38e	2.47e	36.28e	37.08e
LSD at 5%	0.03	0.02	0.002	0.002	0.03	0.02	0.24	0.17
Foliar application								
B ₁ : Control (without B)	2.43f	2.50g	0.274g	0.281f	2.96g	3.08g	38.48e	39.35e
B ₂ : Rate of 1.0 mg B 15 L ⁻¹ as Milano	2.59d	2.63d	0.298d	0.305c	3.21d	3.33d	39.37bcd	40.17bc
B ₃ : Rate of 2.0 mg B 15 L ⁻¹ as Milano	2.63c	2.70c	0.303c	0.313b	3.26c	3.39c	39.55abc	40.45ab
B ₄ : Rate of 0.5 g B 15 L^{-1} as borax.	2.52e	2.57f	0.288f	0.294e	3.10f	3.22f	38.98d	39.73de
B ₅ : Rate of 1.0 g B 15 L^{-1} as borax.	2.57e	2.60e	0.293e	0.299d	3.16e	3.27e	39.15cd	39.97cd
B ₆ : Rate of 0.5 g B 15 L^{-1} as boric acid.	2.67b	2.72b	0.308b	0.315b	3.31b	3.44b	39.76ab	40.61a
B ₇ : Rate of 1.0 g B 15 L^{-1} as boric acid.	2.71a	2.79a	0.314a	0.322a	3.37a	3.50a	39.95a	40.86a
LSD at 5%	0.03	0.02	0.003	0.003	0.03	0.03	0.42	0.41

Our findings are in accordance with those of El-Mantawy *et al.*, (2021) they reported possibility of using compost as a partial substitute for mineral nitrogen fertilizer with maize plants.

Concerning boron treatments, it can be noticed that all treatments of boron sources at all studied rates positively affected N, P, K and chlorophyll content values compared to corresponding plants grown without boron foliar application. On the other hand, the best boron source was boric acid, while the commercial product named Milano came in the second ranking followed by borax. Also, it can be noticed that the values of all aforementioned traits increased as the B rate increased. On other words, the sequence rank of B treatment from the most effective to less was as follows; $B_7 > B_6 > B_3 > B_2 > B_5 > B_4 > B_1$. The same trend was found for both studied seasons.

The positive role of boron may be attributed to its role in sugar transport, cell division, cell-wall synthesis, differentiation, root elongation, membrane functioning, regulation of plant hormone levels, and generative growth of plants (El-Sherpiny, 2016). These findings closely agree with those of Ibrahim *et al.*, (2020) who reported that spraying sugar beet plants with boron at the rate of 100 mg L^{-1} was more effective compared to plants untreated (control) in increasing chemical constituents values in leaves and general performance of plant.

Interaction effect:

Data in Table 4 show that plants received 100% of NRD as mineral nitrogen in form of urea and simultaneously sprayed with B at rate of 1.0 g 15 L⁻¹ of water as boric acid came in the first rank compared to other combination treatments. On the other hand, the plants received 75 % of NRD as mineral nitrogen in form of urea plus 25% of NRD as compost and simultaneously sprayed with B from any source at any rate improve sugar beet performance expressed in total N, P, K (%) and chlorophyll content (SPAD reading value), the contents in leaves at 90 days after sowing better than the corresponding plants received 100 % of NRD as mineral nitrogen in form of urea without B application.

	sowing during growing scasons 2017/20	N,		P,	%	K,	%	Chlorophyll, SPAD	
Treatmen	ts	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
	B ₁ : Control (without B)	2.82jk	2.90k	0.327kl	0.334hi	3.50lm	3.64ij	40.52g-j	41.31e-h
rea	B ₂ : Rate of 1.0 mg B 15 L ⁻¹ as Milano		3.18cd	0.371cd	0.379b	3.97cd	4.13b	41.97a-d	42.80abc
E .	B ₃ : Rate of 2.0 mg B 15 L^{-1} as Milano	3.15abc	3.21bc	0.376bc	0.389a	4.03bc	4.21a	42.15abc	42.84abc
80	B4: Rate of 0.5 g B 15 L^{-1} as borax.	3.06de	3.12ef	0.364ef	0.371cd	3.87ef	4.04c	41.79а-е	42.56a-d
10	B ₅ : Rate of 1.0 g B 15 L^{-1} as borax.	3.08cde	3.13de	0.368de	0.374bc	3.93de	4.08bc	41.89a-d	42.66abc
T ₁ : 100 % urea	B_6 : Rate of 0.5 g B 15 L ⁻¹ as boric acid.	3.19ab	3.26ab	0.380ab	0.390a	4.07ab	4.24a	42.26ab	43.11ab
	B7: Rate of 1.0 g B 15 L ⁻¹ as boric acid.	3.22a	3.28a	0.385a	0.393a	4.12a	4.27a	42.38a	43.18a
%	B ₁ : Control (without B)	2.77kl	2.85lm	0.3211	0.328ij	3.45m	3.58j	40.44hij	41.26fgh
-25	B ₂ : Rate of 1.0 mg B 15 L ⁻¹ as Milano	2.91ghi	2.94jk	0.342hi	0.350g	3.66ij	3.78fg	41.06d-h	42.02c-f
a + ost	B ₃ : Rate of 2.0 mg B 15 L ⁻¹ as Milano	2.94fgh	3.00hi	0.345h	0.358f	3.70hi	3.84ef	41.24c-h	42.21b-e
% urea + compost	B ₄ : Rate of 0.5 g B 15 L^{-1} as borax.	2.84ijk	2.90k	0.332jk	0.338h	3.55kl	3.70hi	40.77f-i	41.67d-g
T ₂ : 75% urea +25 % compost	B ₅ : Rate of 1.0 g B 15 L^{-1} as borax.	2.87hij	2.96ij	0.336ij	0.341h	3.61jk	3.73gh	40.89e-i	41.74d-g
: 75	B ₆ : Rate of 0.5 g B 15 L^{-1} as boric acid.	2.98fg	3.04gh	0.352g	0.362ef	3.76gh	3.88e	41.44b-g	42.16c-f
T_{2}	B7: Rate of 1.0 g B 15 L ⁻¹ as boric acid.	3.01ef	3.07fg	0.358fg	0.366de	3.81fg	3.96d	41.58a-f	42.54a-d
0	B ₁ : Control (without B)	2.49pq	2.56pq	0.284r	0.291m	3.07r	3.20o	38.78m-p	39.70klm
T3: 50% urea +50 % compost	B ₂ : Rate of 1.0 mg B 15 L ⁻¹ as Milano	2.61no	2.640	0.299op	0.310k	3.23p	3.36mn	39.49klm	40.27i-l
50% urea ⊣ % compost	B ₃ : Rate of 2.0 mg B 15 L ⁻¹ as Milano	2.66mn	2.74n	0.305no	0.313k	3.27op	3.41lm	39.59j-m	40.59h-k
n ŷ	B4: Rate of 0.5 g B 15 L^{-1} as borax.	2.54op	2.59p	0.290qr	0.295lm	3.12qr	3.230	38.98l-o	39.77klm
%0%	B ₅ : Rate of 1.0 g B 15 L^{-1} as borax.	2.570	2.60op	0.294pq	0.3011	3.16q	3.30n	39.26k-n	40.07j-m
 	B_6 : Rate of 0.5 g B 15 L ⁻¹ as boric acid.	2.70m	2.75n	0.309mn	0.316k	3.33no	3.45kl	39.81jkl	40.91g-j
	B7: Rate of 1.0 g B 15 L ⁻¹ as boric acid.	2.72lm	2.84m	0.314m	0.325j	3.37n	3.50k	40.09ijk	41.04ghi
%	B ₁ : Control (without B)	2.22uv	2.29st	0.245x	0.250s	2.64x	2.74t	37.40r-u	38.14pqr
-75	B ₂ : Rate of 1.0 mg B 15 L ⁻¹ as Milano	2.32st	2.34s	0.261uv	0.266pq	2.82uv	2.93r	38.01p-s	38.69nop
% urea ⊦ compost	B ₃ : Rate of 2.0 mg B 15 L ⁻¹ as Milano	2.36rs	2.41r	0.266tu	0.273op	2.86tu	2.96qr	38.14o-r	39.23mno
un du	B4: Rate of 0.5 g B 15 L^{-1} as borax.	2.27tu	2.30s	0.252w	0.258r	2.71w	2.80st	37.60q-t	38.39opq
60 2%	B ₅ : Rate of 1.0 g B 15 L^{-1} as borax.	2.18v	2.31s	0.257vw		2.77vw	2.86s	37.76q-t	38.61nop
T4: 25% urea +75 compost	B ₆ : Rate of 0.5 g B 15 L^{-1} as boric acid.	2.39rs	2.44r	0.272st	0.2760	2.91 st	3.02q	38.43n-q	39.24mno
T_4	B ₇ : Rate of 1.0 g B 15 L ⁻¹ as boric acid.	2.43qr	2.53q	0.277s	0.284n	2.97s	3.11p	38.52n-q	39.38lmn
ost	B ₁ : Control (without B)	1.84B	1.90x	0.195C	0.199x	2.14C	2.24y	35.28y	36.34t
ubc	B ₂ : Rate of 1.0 mg B 15 L ⁻¹ as Milano	2.01yz	2.03v	0.218A	0.222v	2.38A	2.48w	36.34vwx	37.06st
con	B ₃ : Rate of 2.0 mg B 15 L ⁻¹ as Milano	2.06xy	2.14u	0.225z	0.233u	2.45z	2.54vw	36.61u-x	37.38rs
%	B ₄ : Rate of 0.5 g B 15 L^{-1} as borax.	1.91AB	1.95wx	0.204B	0.208w	2.26B	2.35x	35.75xy	36.25t
8	B ₅ : Rate of 1.0 g B 15 L^{-1} as borax.	1.97zA	1.99vw	0.209B	0.215vw	2.33A	2.41x	35.97wxy	36.75st
T ₃ : 100 % compost	B ₆ : Rate of 0.5 g B 15 L ⁻¹ as boric acid.	2.10wx	2.14u	0.230yz	0.233u	2.51z	2.60uv	36.88t-w	37.64qrs
	B7: Rate of 1.0 g B 15 L ⁻¹ as boric acid.	2.15vw	2.24t	0.236y	0.242t	2.58y	2.66u	37.15s-v	38.13pqr
LSD at 5%		0.07	0.05	0.007	0.007	0.06	0.07	0.94	0.92

Table 4. Interaction effect among studied treatments on chemical constituents of sugar beet shoots at 90 days after sowing during growing seasons 2019/20 and 2020/21.

T1:100% of NRD;T2: 75% of NRD as mineral fertilizer + 25% of NRD as compost;T3: 50% of NRD as mineral fertilizer + 50% of NRD as compost; T4: 25% of NRD as mineral fertilizer + 75% of NRD as compost; T5: 100% of NRD as compost; B1: Control (without boron); B2: Boron at rate of 1.0 mg B 15 L⁻¹ water using Milano [15 %boron];B₃: Boron at rate of 2.0 mg B 15 L⁻¹ water using Milano [15 %boron];B₄: Boron at rate of 0.5 g B 15 L⁻¹ water using borax [11%boron];B₅: Boron at rate of 1.0 g B 15 L⁻¹ water using borax [11%boron];B₆: Boron at rate of 0.5 g B 15 L⁻¹ water using boric acid [17%boron];B7: Boron at rate of 1.0 g B 15 L⁻¹ water using boric acid [17%boron].

Therefore, it can be said that a combination between mineral nitrogen in form of urea and compost as a source of N under foliar application of B may be suppressed environmental hazards of synthetics fertilizers and simultaneously is beneficial for sugar beet plants. The same trend was found for both studied seasons. These obtained results are in agreement with those of Mekdad, (2015) and Maharjan and Hergert, (2019).

2.Plant performance at a maturity stage (180 days after planting).

Data in Tables 5,6,7 and 8 show the influence of combined between mineral nitrogen as urea and compost at different ratios with foliar applications of different boron sources at different rates on physical root traits expressed in root diameter and length (cm), root fresh and dry weights(g plant⁻¹), root yield (ton fed⁻¹) (Tables 5 and 7), top fresh weights (g plant⁻¹ & ton fed⁻¹) and top dry weight (g plant⁻¹) (Tables 6 and 8) of sugar beet at a maturity stage (180 days after planting) during growing seasons of 2019/20 and 2020/21. All above mentioned characteristics could be considered as the main factors influencing production and performance of sugar beet.

Individual effect:

Different combinations between both mineral nitrogen as urea and compost showed significantly effect at physical root traits *i.e.*, root diameter and length (cm), root fresh and dry weights (g plant⁻¹), root yield (ton fed⁻¹) (Table 5), top fresh weight (g plant⁻¹), top dry weight (g plant⁻¹) and top fresh yield (ton fed⁻¹), (Table 6), where the highest values of all aforementioned traits were realized when sugar beet plants received 100 % of NRD as mineral nitrogen as urea followed by that of plants received 75% of NRD as mineral nitrogen in form of urea urea +25 % compost then the values of plants received 50% of NRD as urea +50 % compost then the values of plants received 25% of NRD as urea +75 % compost, while the lowest values were recorded with plants received 100 % of NRD as compost. Generally, it can be noticed that the performance of plant due to studied treatments at harvest stage looked just like performance of plant at period of 90 days and this proved that the effect of studied treatments on chemical constituents of leaves at 90 days after sowing positively reflected on physical traits and yield of root and top yield at harvest stage.

The differences among all studied treatments were discussed above. The same trend was found in both seasons. The results are in harmony with those of Hlisnikovský *et al.*, (2021).

Regarding to the boron treatments, the data in previous tables showed that spraying B at rate of 1.0 g 15 L⁻¹ as boric acid recorded the first ranking compared with other

B treatments, where the best boron source was boric acid, while the commercial product named Milano came in the second rank followed by borax. Also, the values of all aforementioned traits increased as the B rate increased. The positive role of boron in this stage may be attributed to its role in sugar translocation and root elongation of plants (El-Sherpiny, 2016). These findings closely agree with those of Ibrahim *et al.*, (2020). The same trend was found in both seasons.

Table 5. Individual effect of different combination ratios between mineral nitrogen as urea and compost as well as foliar application of different boron sources at different rates on root yield and its physical characteristics of sugar beet plants at a period of 180 days after sowing during growing seasons of 2019/20 and 2020/21.

Treatments	Root dia	neter, cm	Root ler	ıgth, cm	Root fre	sh weight, g	Root dry	weight, g	Root yield, ton fed-1		
Treatments	1 st	2 nd	1 st	2^{nd}	1 st	2^{nd}	1 st	2^{nd}	1 st	2^{nd}	
Nitrogen fertilization	n ratios (mir	neral + com	ipost)								
T_1	15.48a	15.85a	39.77a	40.64a	1415.86a	1442.86a	368.57a	375.43a	29.67a	30.23a	
T_2	14.43b	14.75b	38.26b	39.02b	1333.76b	1358.90b	346.14b	353.48b	27.95b	28.52b	
T3	13.07c	13.33c	36.19c	37.04c	1187.29c	1208.76c	309.29c	314.76c	24.88c	25.37c	
T_4	11.33d	11.59d	33.88d	34.64d	1045.52d	1064.29d	277.43d	282.43d	21.91d	22.30d	
T ₅	9.51e	9.74e	31.76e	32.45e	930.71e	947.57e	245.86e	250.52e	19.50e	19.85e	
LSD at 5%	0.04	0.05	0.17	0.19	7.07	6.77	1.84	1.13	0.15	0.18	
Foliar application											
B1 (control)	11.91g	12.19g	34.83f	35.61e	1109.27g	1130.13g	290.27g	296.67f	23.24g	23.68g	
B_2	12.83d	13.10d	36.01cd	36.72c	1186.67d	1208.40d	311.00d	317.13c	24.86d	25.32d	
B ₃	12.99c	13.26c	36.29bc	37.11b	1204.27c	1225.00c	314.27c	320.13c	25.23c	25.67c	
B ₄	12.40f	12.67f	35.55e	36.26d	1149.40f	1167.47f	301.67f	306.87e	24.08f	24.53f	
B5	12.62e	12.93e	35.81de	36.57cd	1167.33e	1190.53e	306.47e	312.00d	24.46e	24.95e	
B ₆	13.22b	13.50b	36.49ab	37.37ab	1222.13b	1245.87b	319.20b	325.13b	25.61b	26.17b	
B ₇	13.37a	13.70a	36.83a	37.66a	1239.33a	1263.93a	323.33a	329.33a	25.97a	26.48a	
LSD at 5%	0.13	0.13	0.36	0.37	11.90	12.25	3.20	3.21	0.25	0.28	
C. C. A. A. CT. 11	4										

See footnote of Table 4.

Table 6. Individual effect of different combination between mineral nitrogen as urea and compost as well as foliar application of different boron sources at different rates on top fresh and dry weights of sugar beet plants at a period of 180 days after sowing during growing seasons of 2019/20 and 2020/21.

T	Top fresh	weight, g	Top dr	y weight, g	Top fresh yi	eld, ton fed ⁻¹
Treatments	1 st	2 nd	1 st	2 nd	1 st	2 nd
Nitrogen fertilization ratio	s (mineral + compo	st)				
T ₁	376.90a	384.48a	87.18a	88.95a	7.90a	8.06a
T ₂	351.48b	358.00b	82.45b	83.90b	7.36b	7.50b
T ₃	314.81c	319.19c	75.68c	77.43c	6.57c	6.69c
T4	278.33d	283.38d	69.70d	70.64d	5.83d	5.94d
T5	236.33e	240.67e	63.10e	65.39e	4.95e	5.04e
LSD at 5%	3.10	2.9	0.31	0.23	0.04	0.05
Foliar application						
B ₁ (control)	290.93g	296.73g	71.91g	75.81f	6.10g	6.22g
B2	313.00d	318.93d	75.80d	76.70d	6.56d	6.68d
B ₃	317.07c	323.40c	76.70c	77.90c	6.64c	6.78c
B ₄	303.13f	308.67f	73.97f	76.46d	6.35f	6.47f
B5	309.53e	313.13e	74.91e	76.13e	6.44e	6.56e
B ₆	321.00b	326.53b	77.55b	78.22b	6.72b	6.84b
B7	326.33a	332.60a	78.53a	79.62a	6.84a	6.97a
LSD at 5%	3.18	3.11	0.79	0.29	0.06	0.07

See footnote of Table 4

Interaction effect:

Data in Tables 7 and 8 illustrate that plants fertilized by 100% of NRD as urea and simultaneously sprayed with B at rate of 1.0 g 15 L⁻¹ as boric acid had the highest values of root diameter and length (cm), root fresh and dry weights (g plant⁻¹), root yield (ton fed⁻¹) (Table 7), top fresh weights (g plant⁻¹ & ton fed⁻¹) and top dry weight (g plant⁻¹) (Table 8) compared with other combination treatments. On the other hand, the plants received 75 % of NRD as urea plus 25% of NRD as compost and simultaneously sprayed with B from any studied source at any rate possessed values of all aforementioned traits higher than plants received 100 % of NRD as urea without B application. Therefore, these results confirmed possibility of using compost as a partial substitute for mineral nitrogen fertilizer (in form of urea). Our results are in harmony with those of El-Mantawy *et al.* (2021) who adopted that the use of compost as a partial substitute for mineral fertilizers leads to producing a good maize yield.

Table 7. Interaction effect among studied treatments on root yield and its physical characteristics of sugar beet plants
at 180 days after sowing in both seasons 2019/20 and 2020/21.

$\begin{array}{c c c} \hline Root diameter, \\\hline 1^{st} & 2^{st} \\\hline 1$	1st Ohi 37.67ghi Obc 40.00ab 7b 40.27ab 7d 39.57bc 8cd 40.00ab 7ab 40.33ab	41.13ab 40.50bc	1 st 1284.33k	h weight, g 2 nd 1307.67i 1453.33cd 1468.67bc	Root dry 1 st 332.00jk 372.67cd 375.67bc	weight, g 2 nd 340.33j 380.67bc 383.00ab	1 st 26.91k 29.96cd	d, ton fed ⁻¹ 2 nd 27.40kl 30.45cd
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ohi 37.67ghi Obc 40.00ab 7b 40.27ab 7d 39.57bc 3cd 40.00ab 7ab 40.33ab	38.37ghi 40.80abc 41.13ab 40.50bc	1284.33k 1430.00cd 1444.00bc	1307.67i 1453.33cd 1468.67bc	332.00jk 372.67cd	340.33j 380.67bc	26.91k 29.96cd	27.40kl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	bbc 40.00ab 7b 40.27ab 7d 39.57bc 3cd 40.00ab 7ab 40.33ab	40.80abc 41.13ab 40.50bc	1430.00cd 1444.00bc	1453.33cd 1468.67bc	372.67cd	380.67bc	29.96cd	
$\begin{array}{cccccccc} B_3 & 15.80ab & 16.1\\ T_1 & B_4 & 15.30d & 15.6\\ B_5 & 15.50cd & 15.83\\ B_6 & 15.97ab & 16.27\\ B_7 & 16.07a & 16.5\\ \hline B_1 (control) & 13.80i & 14.1\\ B_2 & 14.37g & 14.70\\ B_3 & 14.70f & 14.9\\ T_2 & B_4 & 14.10gh & 14.44\\ B_5 & 14.20gh & 14.6\\ B_6 & 14.87ef & 15.1\\ \hline B_7 & 15.00e & 15.3\\ \hline B_1 (control) & 12.50n & 12.7\\ \end{array}$	7b 40.27ab 7d 39.57bc 3cd 40.00ab 7ab 40.33ab	41.13ab 40.50bc	1444.00bc	1468.67bc				30.45cd
$\begin{array}{ccccccc} T_1 & B_4 & 15.30d & 15.6\\ B_5 & 15.50cd & 15.8\\ B_6 & 15.97ab & 16.27\\ \hline B_7 & 16.07a & 16.5\\ \hline B_1 (control) & 13.80i & 14.11\\ B_2 & 14.37g & 14.70\\ T_2 & B_4 & 14.10gh & 14.44\\ B_5 & 14.20gh & 14.6\\ B_6 & 14.87ef & 15.12\\ \hline B_7 & 15.00e & 15.3\\ \hline B_1 (control) & 12.50n & 12.7\\ \hline \end{array}$	7d 39.57bc 3cd 40.00ab 7ab 40.33ab	40.50bc			375.67bc	282 00ab		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3cd 40.00ab 7ab 40.33ab		1399.67ef				30.26bc	30.77bc
$\begin{array}{c ccccc} B_6 & 15.97ab & 16.27\\ \hline B_7 & 16.07a & 16.5\\ \hline B_1 (control) & 13.80i & 14.11\\ B_2 & 14.37g & 14.70\\ B_3 & 14.70f & 14.97\\ \hline T_2 & B_4 & 14.10gh & 14.40\\ B_5 & 14.20gh & 14.61\\ \hline B_6 & 14.87ef & 15.17\\ \hline B_7 & 15.00e & 15.3\\ \hline B_1 (control) & 12.50n & 12.7\\ \hline \end{array}$	7ab 40.33ab	40.77abc		1426.33de	366.33de	371.67de	29.32ef	29.89def
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1445.67cd	367.67d	374.67cd	29.63de	30.29cde
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 10 57	41.53a	1459.00ab	1489.67ab	380.67ab	388.00ab	30.57ab	31.21ab
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		41.37a	1480.00a	1508.67a	385.00a	389.67a	31.02a	31.61a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		38.20g-j	1275.67kl	1296.33ij	328.67kl	337.00j	26.73kl	27.16lm
$\begin{array}{cccccccc} T_2 & B_4 & 14.10 \text{gh} & 14.40 \\ B_5 & 14.20 \text{gh} & 14.6 \\ B_6 & 14.87 \text{ef} & 15.1' \\ \hline B_7 & 15.00 \text{e} & 15.3 \\ \hline B_1 \left(\text{control} \right) & 12.50 \text{n} & 12.7 \end{array}$		38.97efg	1332.67hi	1359.67gh	348.33gh	355.00gh	27.92hi	28.49hi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7fg 38.53def	39.23def	1355.00gh	1378.33] fg	351.33g	359.67fg	28.39ef	28.88gh
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0hi 37.80f-i	38.50fgh		1310.67i	336.67ij	343.67ij	27.11jk	27.79jk
$\frac{B_7 15.00e 15.3}{B_1 \text{ (control)} 12.50n 12.7}$		38.79efg	1313.67ij	1345.67h	343.33hi	350.33hi	27.52ij	28.21ij
B ₁ (control) 12.50n 12.7	7ef 38.73de	39.43de	1374.67fg	1403.67ef	354.67fg	361.67fg	28.80fg	29.41fg
	0e 39.10cd	40.00cd	1390.67ef	1418.00e	360.00ef	367.00ef	29.14ef	29.71ef
B ₂ 13.101 13.30	0n 35.27no	36.10no	1122.00rs	1144.33op	297.00q	302.67op	23.51rs	23.97pq
	0m 36.17lm	36.97klm	1190.67op	1208.67mn	309.000	314.00m	24.95op	25.33no
B ₃ 13.20kl 13.40)lm 36.47klm	37.40jkl	1209.67no	1230.67lm	312.67no	317.33lm	25.35no	25.78n
T ₃ B ₄ 12.80m 13.10			1143.00qr	1159.00o	300.67pq	304.67no	23.95qr	24.28p
B ₅ 13.00lm 13.30	0m 36.031mn	36.83lmn	1166.67pq	1188.67n	306.00op	312.00mn	24.45pq	24.910
B ₆ 13.40jk 13.70			1229.00mn	1254.00kl	317.67mn	323.67kl	25.75mn	26.61m
B7 13.50j 13.80	0jk 37.03ijk		1250.00lm	1276.00jk	322.00lm	329.00k	26.19lm	26.74m
B ₁ (control) 10.47s 10.6			991.00yz	1011.00u	263.67vw	268.67uv	20.76yz	21.18uv
B ₂ 11.40p 11.60			1047.67vw	1069.00s	278.00t	284.00rs	21.95vw	22.40t
B ₃ 11.57p 11.8	7p 34.07pqr	34.97pqr	1064.33uv	1080.33rs	281.00st	285.00rs	22.30uv	22.63st
T ₄ B ₄ 10.80r 11.0			1008.33xy	1025.33tu	269.00uv	274.33tu	21.13xy	21.48uv
B5 11.10q 11.4			1025.00wx	1039.00t	274.33tu	278.00st	21.48wx	21.77u
B ₆ 11.900 12.2			1085.67tu	1106.67qr	286.33rs	291.33qr	22.75tu	23.19rs
B7 12.100 12.40		35.47op	1096.67st	1118.67pq	289.67r	295.67pq	22.98st	23.44qr
B_1 (control) 8.80x 9.10		31.70z	873.33F	891.33z	230.00B	234.67B	18.30F	18.68A
B ₂ 9.60v 9.80	uv 31.70wxy	/ 32.27xyz	932.33CD	951.33wx	247.00yz	252.00yz	19.54CD	19.94xy
B ₃ 9.70uv 9.90			948.33BC	967.00w	250.67xy	255.67xy	19.87BC	20.26x
T ₅ B ₄ 9.00x 9.20		31.80z	902.00E	916.00yz	235.67AB	240.00AB	18.90E	19.19zA
B5 9.30w 9.50v		32.07yz		933.67xy	241.00zA	245.00zA	19.22DE	19.56yz
B ₆ 9.97tu 10.1	7+ 20 07	22.02						
B7 10.20st 10.5			962.33AB	975.33vw	256.67wx			20.44wx
LSD at 5% 0.30 0.3	0s 32.67tuv		962.33AB 979.33zA 26.71	975.33vw 998.33uv 27.39	256.67wx 260.00w 7.14	261.00wx 265.33vw 7.42	20.16AB 20.52zA 0.56	20.44wx 20.92vw 0.62

Table 8. Interaction effect among studied treatments on top fresh and dry weights of sugar beet plants at a period	L
of 180 days from sowing during growing seasons of 2019/20 and 2020/21.	

Treatments		Top fresh	weight, g	Top dry		Top fresh yield, ton fed ⁻¹		
1 reatments		1 st	2 nd	1 st	2 nd	1 st	2 nd	
	B ₁ (control)	338.33jk	345.33jk	79.97jk	81.73i	7.09ij	7.23ij	
	B ₂	381.67bc	389.67cd	87.99bc	90.62c	8.00bc	8.17bc	
	B_3	384.67b	393.00bc	88.80b	90.57c	8.06b	8.23b	
T_1	B_4	373.33d	380.67e	85.92de	87.74d	7.82d	7.98d	
	B 5	376.67cd	385.00de	87.02cd	88.34d	7.89cd	8.07cd	
	B_6	388.67ab	396.67ab	89.74ab	91.35b	8.14ab	8.31ab	
	\mathbf{B}_{7}	395.00a	401.00a	90.84a	92.27a	8.28a	8.40a	
	B ₁ (control)	333.67kl	339.67kl	79.24jk	80.45j	6.99jk	7.12jk	
	B ₂	353.33gh	358.33gh	82.54ghi	84.03g	7.40fg	7.51fg	
	B ₃	357.67fg	365.00fg	83.45fgh	85.09f	7.50ef	7.65ef	
T_2	B_4	342.67ij	350.33ij	80.92ij	82.03i	7.18hi	7.34hi	
	B 5	347.33hi	353.33hi	81.74hi	83.33h	7.28gh	7.40gh	
	B_6	360.67ef	367.67f	84.17efg	86.19e	7.56e	7.70e	
	\mathbf{B}_{7}	365.00e	371.67f	85.10ef	86.20e	7.65e	7.79e	
	B ₁ (control)	299.00pq	305.00qr	73.15opq	74.55p	6.26qr	6.39pq	
	B_2	314.000	319.67no	75.65mn	77.45m	6.58no	6.70mn	
	B_3	318.67no	325.00mn	76.53mn	78.321	6.68mn	6.81lm	
T ₃	\mathbf{B}_4	302.67p	307.67pq	73.87op	75.580	6.34pq	6.45op	
	B_5	317.67no	313.00op	74.80no	76.63n	6.45po	6.56no	
	B_6	322.67mn	327.67m	77.38lm	79.23k	6.76İm	6.871	
	\mathbf{B}_{7}	329.00lm	336.331	78.42kl	80.23j	6.89kl	7.05k	
	B_1 (control)	263.67w	268.67x	67.06uv	68.60w	5.52x	5.63w	
	\mathbf{B}_2	278.00tu	284.00uv	69.66st	70.30uv	5.82uv	5.95tu	
	B_3	283.67st	288.33tu	70.66rs	71.15st	5.94tu	6.04st	
T_4	\mathbf{B}_4	269.00vw	273.67wx	68.01tu	71.51s	5.64wx	5.73vw	
	B 5	273.00uv	277.33vw	68.77tu	69.70v	5.72vw	5.81uv	
	B_6	288.33rs	292.67st	71.43qr	70.59tu	6.04st	6.13rs	
	B_7	292.67qr	299.00rs	72.30pqr	72.62r	6.13rs	6.26qr	
	B ₁ (control)	220.00B	225.00y	60.15B	73.71q	4.61C	4.71Ê	
	B ₂	238.00yz	243.00zA	63.19yz	61.08B	4.99zA	5.09yz	
	B_3	240.67y	245.67z	64.05xy	64.35z	5.04z	5.15y	
T5	\mathbf{B}_4	228.00Å	231.00BC	61.11AB	65.43y	4.78B	4.84ÅB	
	B_5	233.00zA	237.00AB	62.21zA	62.63Å	4.88AB	4.97zA	
	B_6	244.67xy	248.00z	65.03wx	63.72z	5.13yz	5.20y	
	B_7	250.00x	255.00y	66.00vw	66.78x	5.24y	5.34x	
LSD at 5%		7.12	6.95	1.76	0.65	0.15	0.15	

CONCLUSION

From the results and under the conditions of this study it could be concluded that combination between mineral and organic fertilizers as a source of N under foliar application of B may be suppressed environmental hazards of synthetics fertilizers and simultaneously is beneficial for sugar beet plants.

REFERENCES

- Barker, A. V and Bryson, G. M. (2016). Nitrogen. In Handbook of plant nutrition (pp. 37-66). CRC Press
- Dane, J. H. and Topp, C. G. (Eds.) (2020). "Methods of soil analysis", Part 4: Physical methods (Vol. 20). John Wiley & Sons.
- El Hamdi; K., El-Shazly, M; Mosa, A. and El Derenv, M. (2017). Water use efficiency, yield and quality of sugar beet grown under center pivot and fixed sprinkler irrigation systems as affected by water deficit and boron application. J.of Soil Sci. and Agric. Engineering, 8(3): 133-138.
- El-Mantawy, R. F; Abd El-Azeiz, E. H. and El-Gazzar, I. (2021). Response of maize to combinations of organic and mineral nitrogen fertilization on growth. productivity and soil properties under calcareous and alluvial soils. *Plant Cell Biotechnology* and Molecular Biology, 183-198.
- El-Mantawy, R. F; Abd El-Azeiz, E. H. and El-Gazzar, I. (2021). Response of maize to combinations of organic and mineral nitrogen fertilization on growth, productivity and soil properties under calcareous and alluvial soils. Plant Cell Biotechnology and Molecular Biology, 183-198.
- El-Sherpiny, M.A. (2016). "Tolerance of barley and maize crops to boron element". Ph.D. Thesis Fac, Agric, Mansoura. Univ.
- Faiyad, R.M. and Hozayn, M. (2020). Effect of magnetic water and urea fertilizer on sugar beet yield and quality. Plant Archives, 2(20): 8622-8634.
- Gomez, K. A. and Gomez, A. A. (1984). "Statistical procedures for agricultural research". John Wiley and Sons, Inc., New York.pp:680.
- Hlisnikovský, L; Menšík, L; Křížová, K. and Kunzová, E. (2021). The effect of farmyard manure and mineral fertilizers on sugar beet beetroot and top yield and soil chemical parameters. Agron., 11(1): 133-147.

- Ibrahim, M. E. M; Faiyad, R and El-Gamal, I. S. H. (2020). Impact of foliar spraving of some potassium sources and boron levels on sugar beet quantity and quality. J. of Soil Sci. and Agric.Engineering, 11(12): 835-844.
- Ilupeju, E. A. O; Akanbi, W. B; Olanivi, J. O; Lawal, B. A., Oio, M. A. and Akintokun, P. O. (2015). Impact of organic and inorganic fertilizers on growth, fruit vield, nutritional and lycopene contents of three varieties of tomato (Lycopersicon esculentum (L.) Ogbomoso, Nigeria. Afri. J. Mill) in of Biotechnology, 14(31): 2424-2433.
- Kristek, A; Stojić, B. and Kristek, S. (2006). Effect of the foliar boron fertilization on sugar beet root yield and quality. Poljoprivreda, 12(1): 22-26.
- Leilah, A. A; Abdel-Moneam, M. A; Shalaby, G. A; Abdou, M. A. E. and AbdEl-Salam, H. M. (2017). Effect of plant population and distribution and nitrogen levels on yield and quality of sugar beet. J. of Plant Production, 8(5): 591-597.
- Maharjan, B. and Hergert, G. W. (2019). Composted cattle manure as a nitrogen source for sugar beet production. Agron., 111(2):917-923.
- Manirakiza, N. and Seker, C. (2020). Effects of compost and biochar amendments on soil fertility and crop growth in a calcareous Nutrition. 43(20): 3002-3019. soil. J. of Plant
- Mekdad, A. A. A. (2015). Sugar beet productivity as affected by nitrogen fertilizer and foliar spraying with boron. Int. J. Curr. Microbiol. App. Sci, 4(4): 181-196.
- Safina, S. A. and Fatah, E. A. (2011). Response of three sugar beet varieties to compost, mineral nitrogen fertilizer and their combination under sandy soil conditions: II-Yield and quality. Bull. Fac. Agric., Cairo Univ., 62(4): 447-456.
- Seadh, A.C.E.G. (2014). " Improvement of some wheat varieties productivity under organic and minerals fertilization". Ph.D. Thesis Fac, Agric, Mansoura. Univ.
- Sparks, D. L; Page, A. L., Helmke, P. A. and Loeppert, R. H. (Eds.). (2020)."Methods of soil analysis", part 3: Chemical methods (Vol. 14). John Wiley & Sons.
- Walinga, I; Van Der Lee, J. J; Houba, V. J., Van Vark, W. and Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.

امكانية استخدام سماد المكمورة كبديل جزئي للسماد النيتروجيني المعدني وتقييم ذلك على اداء نباتات بنجر السكر المعاملة رشا بمصادر بورون مختلفة. صالح السيد سعده1، مأمون أحمد عبد المنعم المصيلحى1 ،حازم محمد سرحان² ، محمد عاطف الشربيني³ و هدير العربي محمد العجمي¹

اقسم المحاصيل - كلية الزراعة جامعة المنصورة -مصر

²معهد المحاصيل السكرية – مركز البحوث الزراعية – الجيزة – مصر.

معهد بحوث الاراضي والمياه والبيئه- مركز البحوث الزراعيه - الجيزه . مصر أقيمت تجربتان حقليتان خلال موسمي 2020/2019 و2021/2020 بهدف تقييم إمكانية استخدام سماد المكمورة كبديل جزئي للأسمدة النيتر وجينية المعدنية مع نباتات بنجر السكر المعاملة رشا بمصادر بورون مرتبقي (20/10/12012 و2021) للقطع المنشقة في تصميم التجربة في الموسمين حيث وزعت مصادر التسميد النيتروجيني المختلفة في القطع الرئيسية كما يلي ، 100٪ من جرعة النيتروجين الموصي بها (NRD) كسماد معنني ، 75٪ من NRD كسماد معني بالإضافة إلى 25٪ من NRD مصدر ها سماد المكمورة ، 50٪ من NRD كسماد معني بالإضافة إلى 50٪ من NRD مصدر ها سماد المكمورة ، 25٪ من NRD كسماد معني بالإضافة إلى 75٪ من NRD مصدر ها سماد المكمورة ، 50٪ من NRD كسماد معني بالإضافة إلى 75٪ من NRD مصدر ها سماد المكمورة ، 50٪ من NRD كسماد معني بالإضافة إلى 75٪ من NRD مصدر ها سماد المكمورة ، 50٪ من NRD كسماد معني بالإضافة إلى 75٪ من NRD مصدر ها سماد المكمورة ، 50٪ من NRD و 100٪ من NRD مصدر ها سماد المكمورة بينما القطع المنشقة تضمنت معدلات ومصادر مختلفة من البورون كما يلي ، كنترول (بدون بورون) ، 1.0و 2.0 مجم بورون/ 15 لتر مصدر ها ميلانو (15٪ بورون) ، 0.5 و 10 جم بورون/ 15 لتر مصدر ها البوراكس (11٪ بورون) ، 0.5 و 1.0 جم بورون/ 15 لتر مصدر ها حمض البوريك (17٪ بورون) كإضافة ورقية. قد أظهرت النتائج أن اضافة 100٪ من NRD كسماد معدني كانت المعاملة الأفضل مقارنة بغير ها من معاملات التسميد النيتروجيني الأخرى. وكذلك رش البورون بمُعدل 1.0 جم بورون/ 15 لتر مصدر ها حمض البوريك جاء في المرتبة الأولى مقارنة بمعاملات البورون الأخرى. على الجانب الاخر وجد أن النباتات المعاملة ب 75٪ من NRD كسماد معدني بالإضافة إلى 25٪ من NRD مصدر ها سماد المكمورة وتم رشها في نفس الوقت باي مصدر بورون تم در استه تحت أي معدل اظهرت أداء أفضل من النباتات المقابلة التي حصلت على 100٪ من NRD كسماد معدني بدون تطبيق البورون. لذلك تحت ظروف هذه الدراسة نستطيع ان نوصي بانه بتسميد البنجر ب75% من جرعة التسميد المعدني الموصي بها مع التعويض ب25% من سماد الكومبوست مع رُش نباتات البنجر بأي مصدر من مصادر البورون للحصول علي اعلي إنتاجية من وحدة المساحة.