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Abstract— During the past few years, the virtual technology 

used in the cloud has become unsuitable for service delivery, 

with the emergence of containers technology and the spread of 

its use throughout a wide range of cloud service providers 

because of the ease of use and provision of the resources used. 

The institutions have become widely seeking to develop this 

technology to suit the different needs to provide a good service 

for the end-user. In this paper, we use machine learning to 

improve the container orchestration process. Our approach 

focuses on getting containers cluster resources idle as much as 

can by scanning and clearing malicious and unwanted fake 

load to enhance the workers load then using machine learning 

models to predict loads in advance. Hence, the Auto-Scaler 

module begins to auto-scale the number of resources to meet 

the cluster's workload, leading to efficient use of resources. 

Keywords— Cloud computing, containers, autoscaling, 

virtualization, orchestration, machine learning. 

I. INTRODUCTION  

The world lives during the recent period in a state of 
panic and anxiety due to the spread of the Coronavirus 
"COVID19" in many countries of the world, which forced 
many countries to demand their citizens adhere to home 
isolation, suspend studies, close schools, and even impose 
curfews in many cases to limit its spread. The matter caused 
many sectors, especially the educational sector, to become 
confused. During this period, cloud computing has played a 
critical role in providing numerous services to most 
industries, including the educational sector.  

Cloud computing (CC) may be a benefit show where 
computing administrations that are accessible remotely 
permit clients to get to applications, information, and 
physical computation assets over an organized, on request, 
through getting to gadgets that can be profoundly 
heterogeneous. In cloud computing, assets are leased based 
on requests and pay-per-use models from cloud suppliers.  

"Cloud infrastructure consists of three service models. 
(SaaS): The provider's applications have been granted to run 
by consumers. However, they do not control cloud 
infrastructures such as operating systems, servers, or storage. 
(PaaS): there is no control over the cloud infrastructure, but 
consumers control deployed applications. (IaaS): "The 
underlying infrastructure such as virtual machines, operating 
systems, are managed by consumers." [1] see Fig. 1. 
Traditional virtualization hypervisors with heavyweights are 
used to support resource sharing in cloud computing [2] [3]. 
Using hypervisor in the upper layer of the host operating 
system decreases the performance of the virtual machine. 
Containers [4] are a suitable replacement for virtual 
machines that have grown in popularity among developers.  

Containers use the kernel of the host operating system to 
isolate each container by enclosing it with the services it 
requires. The techniques that use containers offer the best 
performance, fast, isolation and elastic deployment, and 
powerful resource sharing. They have become widely used 
by organizations to deploy their differing workloads in the 
cloud. As a result, container orchestration platforms have 
risen, used to manage containerized applications' 
deployment. See Fig. 2. 

Container orchestration [5] aims to manage container 
lifecycles, including automating container deployment, 
management, scaling, networking, and availability. The 
automatic scaling allows scaling up or down based on CPU 
or memory consumption. Automatic scaling ensures that the 
application is always available and that sufficient resources 
are available to prevent performance issues or outages. In 
this research, the proposed Auto-scaling System can predict 
the workload in advance and increase the capacity to reduce 
the application response time efficiently. The rest of the 

paper is organized as follows: Section Ⅱ  gives a brief 

introduction of related work, Section Ⅲ  introduces the 

proposed system, Section Ⅳ  presents evaluation and 

experimental results, and Section Ⅴ drive the conclusion. 

 

 

 
Fig.1. Three types of services provided by Cloud 

Computing providers [6] 
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II. PROBLEM DEFINITION AND RELATED WORKS  

A. Problem definition 

We have a running system in a data center environment, 
and the system provides service for large-scale users. When 
there is a heavy load on the system, additional hardware 
resources are required to respond efficiently. Therefore, the 
system scales up in a moment of bottlenecks, but that 
requires some time to get the required resources from the 
host hardware, which affects the system response time and 
stability. We integrate machine learning to predict the future 
system resources usage based on the history of resources 
usage and scaling the system resources if needed. The system 
will get stable and always have the sufficient resources it 
needs. 

B. Related Work 

Over the past years, auto scaling the VMs and containers 
in the cloud infrastructure has been widely recognized as an 
exciting research topic in computer science, and different 
research groups work on different aspects. Meanwhile, cost-
efficient resource provisioning based on real-time changes of 
workloads is critical in auto-scaling the VMs and containers 
in cloud environments to achieve the quality of service (QoS) 
[7]. 

Several related projects are highlighted here with their 
approaches to our problem statement. Zhang et al. [8] 
developed video surveillance using a container-based cloud 
platform; they use prediction to achieve fine-grained 
resource provisioning. Al-Dhuraibi. [9], proposed Elastic 
Docker, an autonomic controller powering the vertical 
elasticity of Docker containers autonomously; elastic Docker 
is used to scale CPU and memory containers. Moore et al. 
[10] proposed a hybrid elastic controller predictive and 
reactive to control scaling to improve cloud application 
performance. Matteo Nardelli et al. [11] propose Adaptive 
Container Deployment, a model for containerized application 
deployment using the Integer Linear Programming problem. 
Gandhi et al. [12] proposed an auto-scaling approach; they 
aim to scale cloud infrastructure resources without the 
intervention of application-level automatically. Lin et al. [13] 
developed an autoscaling system to monitor network traffic 
requests and HTTP response time to identify application 
performance in the cloud. Karl Mason et al. [14] used the 
Simple RNN method to accurately predict CPU utilization 
over short periods if there is a sudden change in CPU usage. 
Raouia Bouabdallah et al. [15] propose an automated 

resource provisioning method based on workload prediction 
using the Simple Exponential Smoothing method.   

We found that most of the related work focuses on the 
application's performance without considering external 
issues that can affect the system autoscaling stability, so we 
focus on this work to enhance the system autoscaling with 
model scaling stability and reduce consumed resources. 

III. PROPOSED SYSTEM 

Application performance is a vital keystone for the 
success of any organization, therefore predicting the future 
workload of the running application is vital for getting their 
required hardware resources to work efficiently. So, we can 
get any application running efficiently by Appling security 
scanning before predicting its future workload and 
autoscaling the application to get its required resources; by 
applying this enhancement, we can decrease the required 
resources needed in the autoscaling process. Fig. 3 shows the 
autoscaling process. 

A. System architecture 

Many container orchestration frameworks can deploy and 
manage multi-tiered applications in a cluster. One of the 
most famous ones of the containers framework is Kubernetes 
[16]. Kubernetes is an open-source container-management 
system that automates the deployment, scaling, and 
management of computer applications. Google invented it, 
and the Cloud Native Computing Foundation now backs it 
up. Kubernetes integrates various container tools and runs 
containers in a cluster, frequently with images created with 
Docker, which is now deprecated in favor of containers. The 
architecture of Kubernetes is divided as the following. 

Control-plane is the central node that manages the whole 
cluster, the workload and communication, and states between 
nodes. It also manages job scheduling such as starting, 
removing, deploy containers.  

The workers nodes are a location that hosts containers 
deployment. The cluster workers node must run a container 
runtime such as Docker and the following services that 
handle the configuration and communications of these 
containers. 

Kubelet is responsible for the workers nodes operational 
state. It manages the start, stops, and maintenance of 
application containers in pods. It continuously checks a pod's 
state and re-deploys if it is not in the desired state. 

Kube-proxy combines a load-balancer and a network 
proxy in addition to networking operations. It routes traffic 
to the containers based on incoming request port number and 
IP address.  

The container combines the running application and 
related libraries and any other dependencies. The containers 
are placed in pods, and containers are accessed from the 
outside world by exposing the external IP address. 

B. Auto-scaler architecture 

The auto-scaling [17] issue is an old-style programmed 
control issue that aims to powerfully tune the resources and 
measure the resources assigned to reach a specific objective. 
In particular, it is regularly abstracted as a "MAPE control 
loop" [18], which continuously repeats itself over time. The 
auto-scaler uses a time-series database that stores the 
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monitored data so the analyzer can get that data in real-time 
for analysis. 

 

Monitoring is the first phase in the loop, which 
continuously collects data needed during analysis and 
planning to regulate appropriate scaling actions. The 
monitored data is different for "HTTPS workload" network 
traffic and hardware resources such as CPU, memory, and 
storage. Many vendors offer to monitor apps in the market, 
for example, Prometheus [19] and CloudWatch [20]. 

Time series database is used for storing and serving time 
series through associated pairs of times and values, for 
example, influx-DB [21]. The primary purpose of adding 
TSDB to the auto-scaler is to properly maintain collected 
data as a historical record to improve its prediction accuracy; 
these records are used to train the prediction model. 

Analyzer retrieves the most recent collected data from the 
database regularly and continuously uses a predefined 
window size to analyze it. 

The planner uses the analyzer's output. It depends on the 
predicted workload instead of using the current workload to 
determine the number of replicas. It horizontally scales up or 
down container replicas in response to predicted workload. 
The predictable replicas (H estimated) is determined using 
(1)   

    () 

 

Where (Ltotal predicted) is the total predicted incoming workload, 
where (Lmax container) is the maximum workload. We get the 
value of (Ltotal predicted) from the analyzer, but we get the value 

of (Lmax container) by using stress tests during the development 
stage. 

The executor starts after the planner decides the number 
of replicas, it is the turn to execute those commands by 
changing the number of container replicas.  

C. Prediction model 

In this section, we discuss the proposed model, which 
uses machine learning regression models. Any machine 
learning model must pass through five steps [22], as shown 
in Fig. 4. The first step is collecting the data from the time 
series database, as explained earlier. Then, data 
preprocessing uses EDA "Engineering Data Analysis" to 
clear and add feature data to the collected data to fit the 
model. This helps during model building. The next step is to 
build the model using a suitable machine learning model. In 
our case, we used the following ML regression models 
"XGboost, LightGBM, Random Forest, Decision tree. The 
fourth step is to train the model on the collected data to 
ensure that the model can give estimated actual values when 
testing and fitted in natural production. The final step is to 
test the model on unseen data and evaluate the model 

performance. 

Fig. 4. The overall machine learning process. 

XG-Boost [23]  XG-Boost is a distributed algorithm that 

boosts a gradient decision tree for computational speed. It 

was developed for machine learning. 

LightGBM [24] LightGBM is a framework for building light 

gradient boosting machines. Microsoft has introduced this 

framework for machine learning. It gets ranking of decision 

trees for classification and regression   

Random forests [25]Random forests are ensemble learning 

methods that involve training many trees. They then yield a 

class or mean or average regression of each tree.. 

D. Integrating Auto-scaler System with prediction 

Model  

We have applied the scaling on the Kubernetes cluster 
and integrated the machine learning prediction model to 
apply the autoscaling. The system resources are continuously 
monitored using a monitoring system and save the resources 
metrics to the database system to use the machine learning 
model. The monitoring module obtains the indicator data of 
the pod, and it then passes this acquired data to the prediction 
module for estimations. The prediction module provides the 
estimated number of pods and delivers it to the auto-scaler 
module for scaling. The auto-scaler module then scales the 
cluster based on the prediction given by the prediction 
module. As seen in Fig. 5. 

 
Fig.3. The autoscaling process.  
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Fig. 5. Proposed Auto-scaler System Architecture. 

E. Enhancing the application and cluster performance 

All published applications constantly suffer from 
malicious and unwanted data, which makes the unwanted 
heavy load on back-end servers that host the published 
application. 

To illustrate the effects of unclean traffic on autoscaling, we 
will discuss our real case. Our case consists of a web server 
hosted in a container cluster that serves our organization's 
online and local users, and the containers cluster exists in the 
on-premises data center. The issue was that there was 
unexpected traffic during the admission period of students, 
which led to a heavy load on the workers server, which hosts 
web server containers, as seen in Fig. 6. 

We found that much traffic is not related to the actual source 
and has many requests per second by troubleshooting the 
issue. Also, by inspecting the traffic, we found much traffic 
related to the port scanner. This is a symptom of a DDOS 
attack. DDoS attacks are classified into four types: UDP 
flood, TCP SYN flood, Ping of Death, and Smurf attack [26]. 
DDoS attacks are classified into three categories: volume-
based attacks, protocol attacks, and application-layer attacks.  
Although the auto-scaler model has scaled up the web app 
cluster to the maximum number of pods, the worker was 
fully loaded, and there is no available resource for 
responding to incoming real traffic from online or internal 
organization users.  We tend to solve this issue by preserving 
the stability of the auto-scaler model and preventing DDOS 
from consuming the available workers resources. 

We have to apply security filtration on multiple stages to 
filter incoming data. The target of a DDOS attack is to 
consume the available resources to block servers' responses 
to actual requests. To avoid that, we added a security layer 
on the cloud using cloud vendors like cloud flare [27], which 
has distributed Iaas overworld and let the DDOS traffic 
filtered out and free the local internet bandwidth from Fake 

traffic. The security profile applied to filter the incoming 
traffic by applying a web security challenge to filter fake 
service requests, apply filtration based on geographics 
income source IP location, block bots traffic, scan web 
request per second per source IP, and block the high source 
rate the result is cleaning 80% of fake incoming traffic. The 
next layer is the local security device which has applied 
another security profile as stated earlier. The security profile 
scans traffic vs. locally installed web application signature 
database. In addition, it applies the same security profile 
applied in the cloud except for the geographics location 
filter. The source comes from the Cloudflare IPs. The 
containers cluster workers resources become idle most time 
and available for actual load based on simple increased web 
server requests in the admission period. By applying traffic 
scanning, we show how malicious and unwanted data traffic 
affects the performance of applications. The Proposed Auto-
scaler System Architecture is shown in Fig 5. 

 

IV. PERFORMANCE EVALUATION 

A. Evaluation environment settings 

1) Test environment: 
The test was done on Huawei 1288H V5 server with 

specs "28 CPUs x Intel(R) Xeon(R) Gold 5120 CPU @ 
2.20GHz, 512 GB RAM ", There was 10 virtual machine 
host Kubernetes cluster, the Kubernetes cluster using ubuntu 
20.04 LTS Linux operating system, The mentoring server 
was Prometheus version 2.25.0, Prometheus/alert manager 
version 0.21.0, node exporter version 1.1.1, For metrics 
visualization we used Grafana version 7.4.2, For security, I 
used Huawei firewall, Cloudflare. 

2)  Dataset  
The dataset used in this paper is for our system resources 

usage history for a year. Data have been collected, and 
Preprocessing done on it. The data is collected every 5 
minutes. It contains about 105k records. The dataset has been 
divided into standard train and validation and test as 
70:20:10, respectively. We have cleaned missing data and 

 
Fig. 6. Kubernetes cluster and other datacenter 

equipment’s. 
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scaled it to 15 minutes. Also, we have added lagged feature 
for the history of the needed features. We have added the 
calendar's days, weeks, months, years based on the 
timestamp to enhance the model during training processes. 
However, instead of using a standard train and validation 
dataset, we used time-series cross-validation for its benefits. 
It Starts by using a small subset of data for training and 
forecast for the later data points, then the same forecasted 
data are included as part of the following training dataset and 
forecast the next data point. We used GapWalkForward from 
the TSCV library for validation. The prediction model then 
reads the data from the time-series database. 

3) Evaluation metrics  
The prediction model will be evaluated according to 

mean absolute error (MAE), root-mean-square error 
(RMSE), and NRMSE metrics [28] [29] as depicted in 
equations (2), (3), and (4). 

    (2) 

 

  (3) 

 

 

     (4) 

 

We test the model to predict the system usage for replica 

estimation calculation using unseen test data.  

B. Evaluation results 

in this section, we first evaluated our ML models and 
their results. The validation results are summarized in Table 
1. 

Table 1:  Different ML algorithms results using the dataset 

of System resources usage. 

 

Model MAE RMSE NRMSE 

Decision tree  0.818 2.521 0.025 

LGBM 0.669 1.793 0.018 

Random forest  0.497 1.778 0.017 

XG-Boost 0.476 1.588 0.015 

Table 1 and Fig. 7 shows validation results, the best result for 
MAE was 0.476 using XG-Boost, and the best result for 
RMSE was 1.588 using XG-Boost, and the best result for 
NRMSE was 0.015 using XG-Boost. So, based on the result 
we got, we will use the XG-Boost model in our autoscaling 
prediction model using security and without security 
modules. 

As we see from Fig. 8a, the uncleaned traffic directly 
affects the performance of the application and systems, 
where CPU average unitization is 81% , which affects 

resource availability required to scale application running 
inside containers, which leads to not serving the end-users 
efficiently. But as we see in Fig. 8b, after we have scanned 
the incoming traffic to cluster and cleaning unwanted traffic, 
the CPU average unitization is 32 % , and this lets the auto 
scaler and prediction model can accurately predict the real 
resources needed by the application. Fig. 9 shows the 
difference between the CPU utilization in the two uncleaned 
and cleaned traffic cases.  

The prediction model can do its work to archive the best 
performance. Hence, the application runs efficiently. 

It can serve the end-users requests as shown in Fig.10, the 
auto-scaler start with 3 replicas then start to scale up the 
application containers to 9 replicas based on the predicted 
next load, then start increasing the replicas to full replicas 
based on predicted heavy CPU utilization, the replicas get to 
minimum replicas 3 after the load has ended. The predictor 
scale down the replicas step by step using the cooldown 

 
 

Fig. 8 a & b: the quantization with and without security filter applied 

 

 
Fig 7. The predicted results regarding application pod 

autoscaling. 
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feature to not sudden down the replicas for system stability. 

 

 

The number of replicas usually cope with the CPU 
utilization, which means that the system scales up and down 
efficiently, saving the resources when available without 
causing bottlenecks in the system performance. 

 

V. CONCLUSION AND FUTURE WORK 

 The container has become the trend of the current 

deployment of most applications. While many cloud vendors 

widely use containers, this technology has many 

developments to meet the immediate need for elastic 

resource provisioning using autoscaling methods. We 

proposed in this paper a model to predict the future 

workloads for a containerized application and use an auto 

scaler model based on Kubernetes and machine learning. The 

prediction model used the XG-boost ML algorithm where it 

gets the best results of 0.015 using NRMSE. XG-boost used 

historical time data to predict the future workload accurately. 

In addition, experimental results that were proposed proven 

that as it can decrease hardware used resources from 81% to 

32% by applying security scanning on incoming filtered data 

to container clusters to clean the traffic from unnecessary 

malicious traffic, which consumes many resources. XG-

Boost model shows it get the best results for auto-scaler 

metrics and elastic speedup. For future work, we will try to 

use deep learning to forecast other types of resources like 

memory and network in addition to CPU. Apply integration 

between horizontal and vertical scaling and check its impact 

on applied systems. 
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