
Proceedings of 1st International Conference on Computers and Information, ICCI 2021

 87

SBPAM:Secure Based Predictive Autoscaling

Model For containerized application

Mohamed.I.El-Shenawy

Information Technology Department

Canadian International College

New Cairo, Egypt

moh.shenawy1983@gmail.com

Hayam Mousa

Faculty of Computers and Information

Menoufia University

Shibin El Kom, Egypt

hayam910@gmail.com

khaled M. Amin

Faculty of Computers and Information

Menoufia University

Shibin El Kom, Egypt

kh.amin.0.0@gmail.com

Abstract— During the past few years, the virtual technology

used in the cloud has become unsuitable for service delivery,

with the emergence of containers technology and the spread of

its use throughout a wide range of cloud service providers

because of the ease of use and provision of the resources used.

The institutions have become widely seeking to develop this

technology to suit the different needs to provide a good service

for the end-user. In this paper, we use machine learning to

improve the container orchestration process. Our approach

focuses on getting containers cluster resources idle as much as

can by scanning and clearing malicious and unwanted fake

load to enhance the workers load then using machine learning

models to predict loads in advance. Hence, the Auto-Scaler

module begins to auto-scale the number of resources to meet

the cluster's workload, leading to efficient use of resources.

Keywords— Cloud computing, containers, autoscaling,

virtualization, orchestration, machine learning.

I. INTRODUCTION

The world lives during the recent period in a state of
panic and anxiety due to the spread of the Coronavirus
"COVID19" in many countries of the world, which forced
many countries to demand their citizens adhere to home
isolation, suspend studies, close schools, and even impose
curfews in many cases to limit its spread. The matter caused
many sectors, especially the educational sector, to become
confused. During this period, cloud computing has played a
critical role in providing numerous services to most
industries, including the educational sector.

Cloud computing (CC) may be a benefit show where
computing administrations that are accessible remotely
permit clients to get to applications, information, and
physical computation assets over an organized, on request,
through getting to gadgets that can be profoundly
heterogeneous. In cloud computing, assets are leased based
on requests and pay-per-use models from cloud suppliers.

"Cloud infrastructure consists of three service models.
(SaaS): The provider's applications have been granted to run
by consumers. However, they do not control cloud
infrastructures such as operating systems, servers, or storage.
(PaaS): there is no control over the cloud infrastructure, but
consumers control deployed applications. (IaaS): "The
underlying infrastructure such as virtual machines, operating
systems, are managed by consumers." [1] see Fig. 1.
Traditional virtualization hypervisors with heavyweights are
used to support resource sharing in cloud computing [2] [3].
Using hypervisor in the upper layer of the host operating
system decreases the performance of the virtual machine.
Containers [4] are a suitable replacement for virtual
machines that have grown in popularity among developers.

Containers use the kernel of the host operating system to
isolate each container by enclosing it with the services it
requires. The techniques that use containers offer the best
performance, fast, isolation and elastic deployment, and
powerful resource sharing. They have become widely used
by organizations to deploy their differing workloads in the
cloud. As a result, container orchestration platforms have
risen, used to manage containerized applications'
deployment. See Fig. 2.

Container orchestration [5] aims to manage container
lifecycles, including automating container deployment,
management, scaling, networking, and availability. The
automatic scaling allows scaling up or down based on CPU
or memory consumption. Automatic scaling ensures that the
application is always available and that sufficient resources
are available to prevent performance issues or outages. In
this research, the proposed Auto-scaling System can predict
the workload in advance and increase the capacity to reduce
the application response time efficiently. The rest of the

paper is organized as follows: Section Ⅱ gives a brief

introduction of related work, Section Ⅲ introduces the

proposed system, Section Ⅳ presents evaluation and

experimental results, and Section Ⅴ drive the conclusion.

Fig.1. Three types of services provided by Cloud

Computing providers [6]

Proceedings of 1st International Conference on Computers and Information, ICCI 2021

88

II. PROBLEM DEFINITION AND RELATED WORKS

A. Problem definition

We have a running system in a data center environment,
and the system provides service for large-scale users. When
there is a heavy load on the system, additional hardware
resources are required to respond efficiently. Therefore, the
system scales up in a moment of bottlenecks, but that
requires some time to get the required resources from the
host hardware, which affects the system response time and
stability. We integrate machine learning to predict the future
system resources usage based on the history of resources
usage and scaling the system resources if needed. The system
will get stable and always have the sufficient resources it
needs.

B. Related Work

Over the past years, auto scaling the VMs and containers
in the cloud infrastructure has been widely recognized as an
exciting research topic in computer science, and different
research groups work on different aspects. Meanwhile, cost-
efficient resource provisioning based on real-time changes of
workloads is critical in auto-scaling the VMs and containers
in cloud environments to achieve the quality of service (QoS)
[7].

Several related projects are highlighted here with their
approaches to our problem statement. Zhang et al. [8]
developed video surveillance using a container-based cloud
platform; they use prediction to achieve fine-grained
resource provisioning. Al-Dhuraibi. [9], proposed Elastic
Docker, an autonomic controller powering the vertical
elasticity of Docker containers autonomously; elastic Docker
is used to scale CPU and memory containers. Moore et al.
[10] proposed a hybrid elastic controller predictive and
reactive to control scaling to improve cloud application
performance. Matteo Nardelli et al. [11] propose Adaptive
Container Deployment, a model for containerized application
deployment using the Integer Linear Programming problem.
Gandhi et al. [12] proposed an auto-scaling approach; they
aim to scale cloud infrastructure resources without the
intervention of application-level automatically. Lin et al. [13]
developed an autoscaling system to monitor network traffic
requests and HTTP response time to identify application
performance in the cloud. Karl Mason et al. [14] used the
Simple RNN method to accurately predict CPU utilization
over short periods if there is a sudden change in CPU usage.
Raouia Bouabdallah et al. [15] propose an automated

resource provisioning method based on workload prediction
using the Simple Exponential Smoothing method.

We found that most of the related work focuses on the
application's performance without considering external
issues that can affect the system autoscaling stability, so we
focus on this work to enhance the system autoscaling with
model scaling stability and reduce consumed resources.

III. PROPOSED SYSTEM

Application performance is a vital keystone for the
success of any organization, therefore predicting the future
workload of the running application is vital for getting their
required hardware resources to work efficiently. So, we can
get any application running efficiently by Appling security
scanning before predicting its future workload and
autoscaling the application to get its required resources; by
applying this enhancement, we can decrease the required
resources needed in the autoscaling process. Fig. 3 shows the
autoscaling process.

A. System architecture

Many container orchestration frameworks can deploy and
manage multi-tiered applications in a cluster. One of the
most famous ones of the containers framework is Kubernetes
[16]. Kubernetes is an open-source container-management
system that automates the deployment, scaling, and
management of computer applications. Google invented it,
and the Cloud Native Computing Foundation now backs it
up. Kubernetes integrates various container tools and runs
containers in a cluster, frequently with images created with
Docker, which is now deprecated in favor of containers. The
architecture of Kubernetes is divided as the following.

Control-plane is the central node that manages the whole
cluster, the workload and communication, and states between
nodes. It also manages job scheduling such as starting,
removing, deploy containers.

The workers nodes are a location that hosts containers
deployment. The cluster workers node must run a container
runtime such as Docker and the following services that
handle the configuration and communications of these
containers.

Kubelet is responsible for the workers nodes operational
state. It manages the start, stops, and maintenance of
application containers in pods. It continuously checks a pod's
state and re-deploys if it is not in the desired state.

Kube-proxy combines a load-balancer and a network
proxy in addition to networking operations. It routes traffic
to the containers based on incoming request port number and
IP address.

The container combines the running application and
related libraries and any other dependencies. The containers
are placed in pods, and containers are accessed from the
outside world by exposing the external IP address.

B. Auto-scaler architecture

The auto-scaling [17] issue is an old-style programmed
control issue that aims to powerfully tune the resources and
measure the resources assigned to reach a specific objective.
In particular, it is regularly abstracted as a "MAPE control
loop" [18], which continuously repeats itself over time. The
auto-scaler uses a time-series database that stores the

Infrastructure

Container Engine

Operating System

Bins/Lib Bins/Lib Bins/Lib

APP3 APP2 APP1

Infrastructure

Hypervisor

Bins/Lib Bins/Lib Bins/Lib

APP3 APP2 APP1

Guest

OS

Guest

OS
Guest

OS

Fig 2. difference between virtual and containers

n virtual and containers

Proceedings of 1st International Conference on Computers and Information, ICCI 2021

89

monitored data so the analyzer can get that data in real-time
for analysis.

Monitoring is the first phase in the loop, which
continuously collects data needed during analysis and
planning to regulate appropriate scaling actions. The
monitored data is different for "HTTPS workload" network
traffic and hardware resources such as CPU, memory, and
storage. Many vendors offer to monitor apps in the market,
for example, Prometheus [19] and CloudWatch [20].

Time series database is used for storing and serving time
series through associated pairs of times and values, for
example, influx-DB [21]. The primary purpose of adding
TSDB to the auto-scaler is to properly maintain collected
data as a historical record to improve its prediction accuracy;
these records are used to train the prediction model.

Analyzer retrieves the most recent collected data from the
database regularly and continuously uses a predefined
window size to analyze it.

The planner uses the analyzer's output. It depends on the
predicted workload instead of using the current workload to
determine the number of replicas. It horizontally scales up or
down container replicas in response to predicted workload.
The predictable replicas (H estimated) is determined using
(1)

 ()

Where (Ltotal predicted) is the total predicted incoming workload,
where (Lmax container) is the maximum workload. We get the
value of (Ltotal predicted) from the analyzer, but we get the value

of (Lmax container) by using stress tests during the development
stage.

The executor starts after the planner decides the number
of replicas, it is the turn to execute those commands by
changing the number of container replicas.

C. Prediction model

In this section, we discuss the proposed model, which
uses machine learning regression models. Any machine
learning model must pass through five steps [22], as shown
in Fig. 4. The first step is collecting the data from the time
series database, as explained earlier. Then, data
preprocessing uses EDA "Engineering Data Analysis" to
clear and add feature data to the collected data to fit the
model. This helps during model building. The next step is to
build the model using a suitable machine learning model. In
our case, we used the following ML regression models
"XGboost, LightGBM, Random Forest, Decision tree. The
fourth step is to train the model on the collected data to
ensure that the model can give estimated actual values when
testing and fitted in natural production. The final step is to
test the model on unseen data and evaluate the model

performance.

Fig. 4. The overall machine learning process.

XG-Boost [23] XG-Boost is a distributed algorithm that

boosts a gradient decision tree for computational speed. It

was developed for machine learning.

LightGBM [24] LightGBM is a framework for building light

gradient boosting machines. Microsoft has introduced this

framework for machine learning. It gets ranking of decision

trees for classification and regression

Random forests [25]Random forests are ensemble learning

methods that involve training many trees. They then yield a

class or mean or average regression of each tree..

D. Integrating Auto-scaler System with prediction

Model

We have applied the scaling on the Kubernetes cluster
and integrated the machine learning prediction model to
apply the autoscaling. The system resources are continuously
monitored using a monitoring system and save the resources
metrics to the database system to use the machine learning
model. The monitoring module obtains the indicator data of
the pod, and it then passes this acquired data to the prediction
module for estimations. The prediction module provides the
estimated number of pods and delivers it to the auto-scaler
module for scaling. The auto-scaler module then scales the
cluster based on the prediction given by the prediction
module. As seen in Fig. 5.

Fig.3. The autoscaling process.

Proceedings of 1st International Conference on Computers and Information, ICCI 2021

90

Fig. 5. Proposed Auto-scaler System Architecture.

E. Enhancing the application and cluster performance

All published applications constantly suffer from
malicious and unwanted data, which makes the unwanted
heavy load on back-end servers that host the published
application.

To illustrate the effects of unclean traffic on autoscaling, we
will discuss our real case. Our case consists of a web server
hosted in a container cluster that serves our organization's
online and local users, and the containers cluster exists in the
on-premises data center. The issue was that there was
unexpected traffic during the admission period of students,
which led to a heavy load on the workers server, which hosts
web server containers, as seen in Fig. 6.

We found that much traffic is not related to the actual source
and has many requests per second by troubleshooting the
issue. Also, by inspecting the traffic, we found much traffic
related to the port scanner. This is a symptom of a DDOS
attack. DDoS attacks are classified into four types: UDP
flood, TCP SYN flood, Ping of Death, and Smurf attack [26].
DDoS attacks are classified into three categories: volume-
based attacks, protocol attacks, and application-layer attacks.
Although the auto-scaler model has scaled up the web app
cluster to the maximum number of pods, the worker was
fully loaded, and there is no available resource for
responding to incoming real traffic from online or internal
organization users. We tend to solve this issue by preserving
the stability of the auto-scaler model and preventing DDOS
from consuming the available workers resources.

We have to apply security filtration on multiple stages to
filter incoming data. The target of a DDOS attack is to
consume the available resources to block servers' responses
to actual requests. To avoid that, we added a security layer
on the cloud using cloud vendors like cloud flare [27], which
has distributed Iaas overworld and let the DDOS traffic
filtered out and free the local internet bandwidth from Fake

traffic. The security profile applied to filter the incoming
traffic by applying a web security challenge to filter fake
service requests, apply filtration based on geographics
income source IP location, block bots traffic, scan web
request per second per source IP, and block the high source
rate the result is cleaning 80% of fake incoming traffic. The
next layer is the local security device which has applied
another security profile as stated earlier. The security profile
scans traffic vs. locally installed web application signature
database. In addition, it applies the same security profile
applied in the cloud except for the geographics location
filter. The source comes from the Cloudflare IPs. The
containers cluster workers resources become idle most time
and available for actual load based on simple increased web
server requests in the admission period. By applying traffic
scanning, we show how malicious and unwanted data traffic
affects the performance of applications. The Proposed Auto-
scaler System Architecture is shown in Fig 5.

IV. PERFORMANCE EVALUATION

A. Evaluation environment settings

1) Test environment:
The test was done on Huawei 1288H V5 server with

specs "28 CPUs x Intel(R) Xeon(R) Gold 5120 CPU @
2.20GHz, 512 GB RAM ", There was 10 virtual machine
host Kubernetes cluster, the Kubernetes cluster using ubuntu
20.04 LTS Linux operating system, The mentoring server
was Prometheus version 2.25.0, Prometheus/alert manager
version 0.21.0, node exporter version 1.1.1, For metrics
visualization we used Grafana version 7.4.2, For security, I
used Huawei firewall, Cloudflare.

2) Dataset
The dataset used in this paper is for our system resources

usage history for a year. Data have been collected, and
Preprocessing done on it. The data is collected every 5
minutes. It contains about 105k records. The dataset has been
divided into standard train and validation and test as
70:20:10, respectively. We have cleaned missing data and

Fig. 6. Kubernetes cluster and other datacenter

equipment’s.

Proceedings of 1st International Conference on Computers and Information, ICCI 2021

91

scaled it to 15 minutes. Also, we have added lagged feature
for the history of the needed features. We have added the
calendar's days, weeks, months, years based on the
timestamp to enhance the model during training processes.
However, instead of using a standard train and validation
dataset, we used time-series cross-validation for its benefits.
It Starts by using a small subset of data for training and
forecast for the later data points, then the same forecasted
data are included as part of the following training dataset and
forecast the next data point. We used GapWalkForward from
the TSCV library for validation. The prediction model then
reads the data from the time-series database.

3) Evaluation metrics
The prediction model will be evaluated according to

mean absolute error (MAE), root-mean-square error
(RMSE), and NRMSE metrics [28] [29] as depicted in
equations (2), (3), and (4).

 (2)

 (3)

 (4)

We test the model to predict the system usage for replica

estimation calculation using unseen test data.

B. Evaluation results

in this section, we first evaluated our ML models and
their results. The validation results are summarized in Table
1.

Table 1: Different ML algorithms results using the dataset

of System resources usage.

Model MAE RMSE NRMSE

Decision tree 0.818 2.521 0.025

LGBM 0.669 1.793 0.018

Random forest 0.497 1.778 0.017

XG-Boost 0.476 1.588 0.015

Table 1 and Fig. 7 shows validation results, the best result for
MAE was 0.476 using XG-Boost, and the best result for
RMSE was 1.588 using XG-Boost, and the best result for
NRMSE was 0.015 using XG-Boost. So, based on the result
we got, we will use the XG-Boost model in our autoscaling
prediction model using security and without security
modules.

As we see from Fig. 8a, the uncleaned traffic directly
affects the performance of the application and systems,
where CPU average unitization is 81% , which affects

resource availability required to scale application running
inside containers, which leads to not serving the end-users
efficiently. But as we see in Fig. 8b, after we have scanned
the incoming traffic to cluster and cleaning unwanted traffic,
the CPU average unitization is 32 % , and this lets the auto
scaler and prediction model can accurately predict the real
resources needed by the application. Fig. 9 shows the
difference between the CPU utilization in the two uncleaned
and cleaned traffic cases.

The prediction model can do its work to archive the best
performance. Hence, the application runs efficiently.

It can serve the end-users requests as shown in Fig.10, the
auto-scaler start with 3 replicas then start to scale up the
application containers to 9 replicas based on the predicted
next load, then start increasing the replicas to full replicas
based on predicted heavy CPU utilization, the replicas get to
minimum replicas 3 after the load has ended. The predictor
scale down the replicas step by step using the cooldown

Fig. 8 a & b: the quantization with and without security filter applied

Fig 7. The predicted results regarding application pod

autoscaling.

Proceedings of 1st International Conference on Computers and Information, ICCI 2021

92

feature to not sudden down the replicas for system stability.

The number of replicas usually cope with the CPU
utilization, which means that the system scales up and down
efficiently, saving the resources when available without
causing bottlenecks in the system performance.

V. CONCLUSION AND FUTURE WORK

 The container has become the trend of the current

deployment of most applications. While many cloud vendors

widely use containers, this technology has many

developments to meet the immediate need for elastic

resource provisioning using autoscaling methods. We

proposed in this paper a model to predict the future

workloads for a containerized application and use an auto

scaler model based on Kubernetes and machine learning. The

prediction model used the XG-boost ML algorithm where it

gets the best results of 0.015 using NRMSE. XG-boost used

historical time data to predict the future workload accurately.

In addition, experimental results that were proposed proven

that as it can decrease hardware used resources from 81% to

32% by applying security scanning on incoming filtered data

to container clusters to clean the traffic from unnecessary

malicious traffic, which consumes many resources. XG-

Boost model shows it get the best results for auto-scaler

metrics and elastic speedup. For future work, we will try to

use deep learning to forecast other types of resources like

memory and network in addition to CPU. Apply integration

between horizontal and vertical scaling and check its impact

on applied systems.

REFERENCES

[1] R. Chandramouli, M. Iorga, S. Chokhani, Cryptographic key

management issues and challenges in cloud services, in: Secure Cloud
Computing,Springer, New York, 2014, pp. 1–30.

[2] A. M. Joy, "Performance comparison between linux containers and
virtual machines," in Computer Engineering and Applications
(ICACEA), 2015 International Conference on Advances in. IEEE,
2015, pp. 342–346.

[3] Desai, Prashant. A Survey of Performance Comparison between Virtual
Machines and Containers. INTERNATIONAL JOURNAL OF
COMPUTER SCIENCES AND ENGINEERING. 2016. pp. 55-59.

[4] A. Celesti, D. Mulfari, M. Fazio, M. Villari and A. Puliafito, "Exploring
Container Virtualization in IoT Clouds," 2016 IEEE International
Conference on Smart Computing (SMARTCOMP), 2016, pp. 1-6.

[5] Casalicchio E. (2019) Container Orchestration: A Survey. In: Puliafito
A., Trivedi K. (eds) Systems Modeling: Methodologies and Tools.
EAI/Springer Innovations in Communication and Computing.
Springer, Cham. 2019, pp 221-235.

[6] Lucidchart. 2021. The Basics of Cloud Computing. [online] Available
at: https://www.lucidchart.com/blog/cloud-computing-basics

[7] P. R. Desai. A survey of performance comparison between virtual
machines and containers. ijcseonline. org, 2016.

[8] Zhang H, Ma H, Fu, G, Yang, X, Jiang, Z, and Gao Y, Container based
video surveillance cloud service with fine-grained resource
provisioning, in Proceedings of 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), pp. 758-765.

[9]. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Autonomic
vertical elasticity of docker containers with elasticdocker. In:
Proceedings of the 2017 IEEE 10th International Conference on
Cloud Computing, pp. 472–479.

[10] K.B. Laura R.Moore and T.Ellahi, "A coordinated reactive and
predictive approach to cloud elasticity," in CLOUD COMPUTING
2013 : The Fourth International Conference on Cloud Computing,
GRIDs,and Virtualization, 2013.

[11] Nardelli, M., Cardellini, V., Casalicchio, E.: Multi-level elastic
deployment of containerized applications in geo-distributed
environments. In: Proceedings of 2018 IEEE 6th International
Conference on Future Internet of Things and Cloud. IEEE (2018).

[12] A.Gandhi, P.Dube, A.Karve, A.Kochut, and L.Zhang, "Adaptive,
model-driven autoscaling for cloud applications," in 11th
International Conference on Autonomic Computing (ICAC 14).
Philadelphia, PA: USENIX Association, pp. 57–64.

[13] C.-C. Lin, J.-J. Wu, P.Liu, J.-A. Lin, and L.-C. Song,
"EnglishAutomatic resource scaling for web applications in the
cloud," in English Grid and Pervasive Computing, ser. Lecture Notes
in Computer Science, J.Park, H.Arabnia, C.Kim, W.Shi, and J.-M.
Gil, Eds. Springer Berlin Heidelberg, vol. 7861, pp. 81–90.

[14] Karl Mason, Martin Duggan, Enda Barrett, Jim Duggan, Enda
Howley, Predicting host CPU utilization in the cloud using
evolutionary neural networks, Future Generation Computer
Systems,Volume 86,2018, Pages 162-173.

[15] Raouia Bouabdallah, Soufiene Lajmi, Khaled Ghedira," Use of
Reactive and Proactive Elasticity to Adjust Resources Provisioning in
the Cloud Provider", in 2016 IEEE 18th International Conference on
High Performance Computing and Communications, 12-14
December, 2016.

[16] Kubernetes 2021 .Kubernetes. [online] Available at:
https://kubernetes.io.

[17] E. Casalicchio and V. Perciballi, "Auto-Scaling of Containers: The
Impact of Relative and Absolute Metrics," 2017 IEEE 2nd
International Workshops on Foundations and Applications of Self*
Systems (FAS*W), 2017, pp. 207-214.

[18] M. Tahir, Q. Mamoon Ashraf and M. Dabbagh, "Towards Enabling
Autonomic Computing in IoT Ecosystem," 2019 IEEE Intl Conf on

Fig 10. Number of replicas in response to CPU

utilization

Fig 9. The resources utilization for two security cases.

Proceedings of 1st International Conference on Computers and Information, ICCI 2021

93

Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), 2019, pp. 646-
651.

[19] Prometheus.io. 2021. Overview | Prometheus. [online] Available at:
https://prometheus.io/docs/introduction/overview/

[20] Amazon Web Services, Inc. 2021. Amazon CloudWatch - Application
and Infrastructure Monitoring. [online] Available at:
https://aws.amazon.com/cloudwatch/

[21] InfluxData. 2021. InfluxDB: Purpose-Built Open Source Time Series
Database | InfluxData. [online] Available at:
https://www.influxdata.com/

[22] Behera, Rabi & Das, Kajaree. (2017). A Survey on Machine Learning:
Concept, Algorithms and Applications. International Journal of
Innovative Research in Computer and Communication Engineering.

[23] Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM Sigkdd International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; pp. 785–794.

[24] Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.;
Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the Advances in Neural Information
Processing Systems,Long Beach, CA, USA, 4–9 December 2017; pp.
3146–3154.

[25] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

[26] RivalHost. 2021. The 12 Types of DDoS Attacks Used By Hackers |
RivalHost. [online] Available at: https://www.rivalhost.com/12-types-
of-ddos-attacks-used-by-hackers/.

[27] cloudflare , https://www.cloudflare.com. (Online).

[28] Jie Zhang, Anthony Florita, Bri-Mathias Hodge, Siyuan Lu, Hendrik
F. Hamann, Venkat Banunarayanan, Anna M. Brockway, A suite of
metrics for assessing the performance of solar power forecasting,
Solar Energy, Volume 111, 2015, Pages 157-175.

[29] Medium. 2021. MAE and RMSE — Which Metric is Better?. [online]
Available at: https://medium.com/human-in-a-machine-world/mae-
and-rmse-which-metric-is-better-e60ac3bde13d.

