Journal of Plant Protection and Pathology

Journal homepage: <u>www.jppp.mans.edu.eg</u> Available online at: <u>www.jppp.journals.ekb.eg</u>

Effect of Weed Control Treatments on some Maize Hybrids and its Associated Weeds

May H. M. Elattar¹ and S. R. Nagib^{2*}

¹Weed Res. Central Lab., Agric, Res. Center, Giza, Egypt. ²Agron. Dept, Fac. Agric, Minia Univ. Minia, Egypt.

ABSTRACT

Two field trials were conducted in 2018 and 2019 seasons at Mallawy Agric. Res., Station, El-Minia Governorate, Egypt, to study the effect of fifteen weed control treatments, (Maister power at 750, 500 and 250 cm³/fed alone, Maister power at 750, 500 and 250 cm³ /fed. tank mixed with Divest at 500 cm³ /fed. Equib at 1125, 750 and 375 cm³ /fed. alone, Equib at 1125,750 and 375 cm³/fed tank mixed with Divest at 500 cm³/fed. alone as well as hand hoeing twice and unweeded (check) on weeds, yield and its components of three maize hybrids (SC 168, SC 131 and TC 324). The results indicated that: Maize hybrids exhibited a significant effect on dry weight of grassy and total annual weeds in both seasons. SC 168 surpassed the other tested hybrids in all maize grain yield and its components. Except 100- grain weight. Weed control treatments decreased significantly the dry weight of grassy, broad-leaved and total annual weeds on both seasons, and had a significant effect on maize yield and its component in both seasons. Grassy, broad leaved and total annual weeds differed significantly in first season only. Maize ear diameter, no. rows/ear in both seasons and ear length in the second season only were significantly affected by the interaction between maize hybrids and weed control treatments. Grain yield ardab/fed. were positively and highly significantly correlated with maize yield and its components and negatively and highly significantly correlated with weed characters in both seasons.

Keywords: Maize hybrid, weed control, post-emergence, yield, yield components

INTRODUCTION

Maize (Zea mays L.) is ranked as the third of the most important cereal crops in the world which surpassed by wheat and rice. In Egypt, Maize is essential for livestock and human consumption as an available source of carbohydrate, oil and slightly for protein. Weeds are considered to be the most important factor which decrease maize productivity as weeds compete for space, water, light and nutrients with main crop and thereby decreasing crop yield and increasing production cost Shah et al., (2003), extreme weeds growth in corn field leads to 66-80% reduction in crop yield. Ismail et al., (2016), showed that increasing common cocklebur density, decreased maize grain yield and yield components such as plant height, ear length, ear weight, grains number ear⁻¹, 100- grain weight and grain yield of maize (ardab/fed.). Abouziena et al., (2007), found that application of two hand hoeing gave the best control of total weeds and increased maize yield up to 74.5% over the control. Darkwa et al., (2001), maize weeds comprise diverse plant species from grasses to broadleaf weeds and sedges and cause substantial yield losses (18-85%). Ghanizadeh et al. (2014), maize crop is very often characterized by a complex plurispecific weed flora, composed of grass and broadleaved weeds, Pannacci and Tei (2014), thus, in maize production, it is very necessary to take into account weed control which causes to increase maize grain yield. So, herbicide application offers effective and economical weed control and increase crop yield Noor et al., (2011), despite the environmental and some management problems with herbicides, they remain one of the most popular and practical methods in weed control.

* Corresponding author. E-mail address: sami.nagib@mu.edu.eg DOI: 10.21608/jppp.2021.209685

The reduction in maize productivity due to weed competition varied according to maize cultivar sowing. Use of aggressive cultivars can be effective cultural practice for weed growth suppression. Hucl (1998), indicated that the less competitive genotypes suffered a 7-9% greater yield loss than that of the more competitive genotypes. On the other hand, Cardina (1995), reported that more competitive cultivars are not necessarily higher yielding. Abouziena et al., (2013), found that the broad-leaved weeds were more sensitive than the narrow leaved weeds to the variation in the cultivars growth habit, where SC164 cv plots had significant lower broad leaved weeds dry weight by 12.6 and 18.3% than that of SC166 cv at 8 and 12WAS, respectively. Cultivar SC164 significant had more values of plant height and ear length than SC166 cv, while cultivar SC166 significant surpassed the other one in the values of ear diameter and weight, grain weight/ear, grain index and grain yields. Ismail et al., (2016), showed that SC173 was high competitive than SC 166 to common cocklebur, reduce its dry weight and gave highest yield and yield component of maize.

Many results reported herbicides usage for weed control, improved growth and maximize yield of maize Zargar *et al.*,(2017) showed that herbicide weed control particularly during critical period of crop-weed competition is an important alternative to manual weeding because it is cheaper, faster and gives better weed control Jagadish and Prashant (2016), using herbicides for weed control may reduce yield losses, and reduce weed population density Mehmeti *et al.*,(2012), nowadays, post-emergence herbicides

can be used as alternative to pre-emergence and soil acting herbicides which causing environmental pollution. Maister power (formasulfuron sodium + iodosulfuron methyl-sodium + thiencarbazone-methyl 4.53 % OD) herbicide is a new post-emergence herbicide used at rate of 500 cm3/fed. for weed control on maize.

Foramsulfuron showed a good crop selectivity without negative effect on maize yield. Zaremohazabieh and Ghadiri (2011), found that maximum weed biomass reduction and the highest maize grain yield were obtained with foramsulfuron herbicide. Foramsulfuron is a sulfonylurea that exerts its herbicidal activity by inhibiting acetolactate synthase also known as acetohydroxy acid synthase and provides control of grass, perennial and some broad-leaved weeds with a good selectivity to the maize. Richard et al., (2005), showed that all the herbicides evaluated did not reduce corn yields as compared to the untreated controls. However, not all were effective for control of weeds which emerged in our study. Nicosulfuron plus rimsulfuron, or foramsulfuron in combination with dicamba, dicamba plus atrazine, and diflufenzopyr plus dicamba were the best treatments for weed control and corn yield. Stefanovic et al., (2010), investigated the selectivity of herbicides isoxaflutole, nicosulfuron, foramsulfuron, dicamba + rimsulfuron, mesotrione and thifensulfuron-methyl. They were applied in 2-3 leaf of maize. Phytotoxic effect of herbicides on the grain yield of maize is assessed by a 9-point scale of EWRS (Europian Weed Research Society). maize hybrids show different sensitivity to the applied herbicides. The lowest is the selectivity of herbicides rimsulfuron and thifensulfuron-methyl, in which the lowest values of maize grain yield were registered. Waligora et al., (2008), found that the highest maize yield of cobs is obtained after treatment with the combination Meister (formasulfuron + iodosulfuron), Aminopielik Gold (fluroxypyr + 2.4-D)and Ivanovic et al., (1998), reported that foliar sulfonylurea herbicides rimsulfuron, primsulfuron-methyl, prosulfuron + primsulfuronmethyl and nicosulfuron have a retarding effect - increased grain yield, but decreased plant height. Two hands hoeing produced the maximum of ear length, weight of kernels plant¹, while, applying of metribuzin gave the highest of grain maize yield. Tagour and Mosaad (2017), showed that Nicosulfuron plus rimsulfuron, or foramsulfuron in combination with dicamba, dicamba plus atrazine, and diflufenzopyr plus dicamba were the best treatments for weed control and corn yield without any reduction in the grain yield. Mobarak and Eid (2017), found that Maister power at rate of 500 cm3 /fed. reduced grassy, broad-leaved and total annual weeds by 89.8, 92.1 and 91.7% in 2014 season and 86.0, 90.2 and 89.3% in 2015 season. Sepahvand et al., (2014), found that application of Equip herbicide + hand hoeing once gave the highest grain yield (6758 kg/ha). However, Ali et al., (2011), recorded that hand weeded and chemical weed control treatments gave the highest 1000-grain weight, grain and biological yields of maize. Abana and Godwin (2015), indicated that application of herbicides significantly increased the vegetative and yield attributes of maize than of un-weeded plots. Also, similar results that obtained from all weed control practices decreased the weed density over weedy check have been cleared by Arnold et al., (2005) and James et al., (2006).

For these reasons, the aim of this investigation was to optimize the efficacy of Maister power and Equip by tank mixing with Divest against weeds associated with maize crop, maize yield and its components.

MATERIALS AND METHODS

Two field experiments were conducted at Mallawy Agric. Res., station, (latitude of 28° N, longitude of 30° E and altitude of 49 m above sea level), Agricultural Research Center, El-Minia Governorate, Middle Egypt, during two successive growing summer seasons 2018 and 2019. To study the effect of some weed control treatments on yield and yield components of some maize hybrids and its associated weeds. A randomized complete block design (RCBD) was used, in a split plot arrangement and replicated four times. Each experiment included combinations of forty-five treatments. The preceding winter crop was wheat in both seasons. The soils of this study were silt clay loam texture with 7.99 and 8.14 sand, 53.32 and 54.35 silt and 36.69 and 37.51 clay, pH were 8.01 and 8.14 and organic matter (%) were 1.14 and 1.18 during 2018 and 2019 seasons, respectively. The main plots were devoted three maize hybrids, while, fifteen weed control treatments were assigned in sub- plots as follows:

- A. Maize hybrids (main plots): SC 168, SC 131 and TC 324
- B. Weed control treatments (sub-plots):
- T1. Formasulfuron sodium + iodosulfuron methyl-sodium+ thiencarbazone-methyl 4.53 % OD) known commercially as Maister power at rate of 750 cm³/fed. applied at 2-6 maize leaves stage.
- T2. Maister power at rate of $500 \text{ cm}^3/\text{fed}$.
- T3. Maister power at rate of $250 \text{ cm}^3/\text{fed}$.
- T4. Maister power at rate of 750 cm³/fed. tank mixed with dicamba48% known commercially as Divest 4 S 48% at rate of 100 cm³/fed.
- T5. Maister power at rate of 500 cm³/fed. tank mixed with Divest 500cm³/fed.
- T6. Maister power at rate of 250 cm³/fed. tank mixed with Divest 500cm³/fed.
- T7. Formasulfuron 2.25% OD known commercially as Equip at rate of 1125 cm 3 /fed.
- T8. Equip 22.5% OD at rate of $750 \text{ cm}^3/\text{fed}$.
- T9. Equip 22.5% OD at rate of $375 \text{ cm}^3/\text{fed}$.
- T10. Equip 22.5% OD at rate of 1125 cm³/fed. + Divest 500cm³/fed.
- T11. Equip 22.5% OD at rate of 750 cm³/fed. + Divest 500cm³/fed.
- T12. Equip 22.5% OD at rate of 375 cm³/fed. + Divest 500cm³/fed.
- T13. Divest 500cm³/fed.
- T14. Hand hoeing twice.
- T15. Unweeded check.

Plot area was $10.5 \text{ m}^2(3.0 \text{ m length } 3.5 \text{ m width})$. Maize seeding rate was 10 kg/ fed. in hills at 25 cm distance and ridges of 70 cm apart in the 2nd week of June in both seasons. Herbicide treatments were sprayed post-emergence after 15 days after maize sowing. A knapsack sprayer (battery sprayer with constant pressure of 5 bar) equipped with one flat fan nozzle was used. The normal agricultural practices for growing maize (i.e., fertilization, irrigation, pest and diseases control) were done as recommended by the Ministry of Agriculture. During growing seasons, the following data were recorded:

A- Weed assessment:

Weeds were hand pulled from one square meter chosen randomly from each plot at 45 days after sowing and weed species identified according to Tackholm (1974), Weeds were air-dried for seven days and then were oven-dried at 70 $^{\circ}$ for 24

hours until a constant weight. The dry weight of annual broadleaved, grassy and total annual weeds (g/m^2) was estimated.

B- Yield and yield components:

At harvest, a sample of ten maize plants were randomly taken from central area of each plot to study: plant height (cm), ear length (cm), ear diameter (cm), no. of rows ear⁻¹, number of grain ear⁻¹, ear weight (g), grains weight ear⁻¹ (g) and 100- grain weight (g). In addition, grain yield (ardab/ fed.) was estimated from each whole plot.

Data were subjected to analysis of variance as described by Gomez and Gomez (1984). Using MSTAT-C software (1989) Least significant difference (LSD) test at 0.05 level was used to compare between means of treatments.

RESULTS AND DISCUSSION

1-Effect of maize hybrids on weeds and maize characters. Effect on weeds characters:

Weed assessment show that, existed weed species in the experimental site in both seasons were *Xanthium strumarium* L., *Euphorbia geniculata* L., *Corchorus olitorius* L. and *Portulaca oleracea* L. as annual broad–leaved weeds. *Echinochola colona* L. and *Brachiaria reptans* L. as annual grassy weeds.

Data in Table (1) disclosed that maize hybrids had a significant, highly significant and no significant effect on dry weight of total annual, grassy and broad-leaved weeds in both seasons, respectively.

TC 324 and SC 168 reduced dry weight of grassy weeds by (26.8, 29.3in the first season and 16.3, 16.5% in the second season) and total annual weeds by (15.7, 20.2 in the first season and 11.9, 10.5% in the second season), respectively, as compared to SC131. This may be due to the highly competitive ability of these hybrids which may be due to plant height, vigorous vegetative growth or the greatest leaf area. These results are in line with those obtained by Abouziena *et al.*, (2013); Ismail *et al.*, (2016).

Table 1. Effect of Maize hybrids on dry weight of grassy, broad-leaved, and total annual weeds g/m2 in 2018 and 2019 seasons.

Grassy (g/	y weeds m ²)	Broad weeds	leaved (g/m ²)	Total annual weeds (g/m ²)			
2018	2019	2018	2019	2018	2019		
52.93	56.44	65.53	77.07	118.47	133.71		
63.24	67.60	71.27	81.62	134.51	149.22		
46.29	47.76	67.11	71.38	113.4	119.14		
**	**	NS	NS	*	*		
2.92	5.54	-	-	14.22	8.04		
	Grassy (g/ 2018 52.93 63.24 46.29 ** 2.92	Grassy weeds (g/m²) 2018 2019 52.93 56.44 63.24 67.60 46.29 47.76 *** *** 2.92 5.54	Grassy weeds Broad (g/m²) weeds 2018 2019 2018 52.93 56.44 65.53 63.24 67.60 71.27 46.29 47.76 67.11 ** ** NS 2.92 5.54 -	Grassy weeds Broad leaved (g/m²) weeds (g/m²) 2018 2019 2018 2019 52.93 56.44 65.53 77.07 63.24 67.60 71.27 81.62 46.29 47.76 67.11 71.38 ** ** NS NS 2.92 5.54 - -	Grassy weeds Broad leaved weeds (g/m ²) Total a weeds 2018 2019 2018 2019 2018 52.93 56.44 65.53 77.07 118.47 63.24 67.60 71.27 81.62 134.51 46.29 47.76 67.11 71.38 113.4 *** ** NS NS * 2.92 5.54 - - 14.22		

*, ** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

Effect on maize characters:

Data presented in table (2) show the effect of maize hybrids on plant height, yield and its components. Maize hybrids exhibited highly significant effect on their yield and its components in both seasons. SC 168 Surpassed the other tested hybrids and increased ear lenght (by 5. 49 and 7.36%), ear diameter (by 11.92 and 16.06%), no. rows/ear (by 12.9 and 17.31%) no. grains /ear (by 16.66 and 22.73%), ear weight (by 14.8 and 16.95%), grain weigh /ear (by 14. 27 and 29.33%) and grain yield/fed. by (9.57 and 17.36%) in the first and second season, respectively, as compared with TC 324. Meanwhile, SC131 gave the greatest 100- grain weight of 43.50 and 36.07(g) in the first and second seasons, respectively. Whereas, TC324 outyielded the tallest plants of 271.93 and 280.22 cm in the first and second seasons, respectively. On contrary the lowest values for most previous traits in both seasons were obtained by TC324 hybrid. This may be due to differences in their genetic makeup and their reaction to the environments condition prevailing during it growth. These results agree with those obtained by El-Gizawy and Salem (2010) and Tagour and Mosaad (2017). On the other hand, Cardina (1995) reported that more competitive cultivars are not necessarily higher yielding.

II-h-da	Plant height	Ear	Ear diameter	No. of	No. of grains	Ear weight	Grain weight	100-grain	Grain yield
Hydrids	(cm)	length (cm)	(cm)	rows /ear	/ ear	(g)	/ear(g)	weight (g)	(ardab/fed.)
				2018	season				
SC 168	250.87	20.36	4.32	14.62	576.15	231.00	157.05	30.44	22.09
SC 131	237.07	20.14	3.89	13.40	534.57	212.10	144.90	34.50	20.89
TC 324	271.93	19.30	3.86	12.95	493.89	201.22	137.44	34.29	20.16
F-test	**	**	**	**	**	**	**	**	**
LSD at 0.05	7.96	0.41	0.05	0.12	26.64	8.37	6.97	1.56	0.63
				2019	season				
SC 168	258.07	20.83	4.38	13.89	533.39	243.25	171.32	32.73	22.17
SC 131	243.64	20.63	3.88	12.46	487.13	221.25	154.51	36.07	21.39
TC 324	280.22	19.41	3.76	11.84	434.59	207.99	132.47	32.90	18.89
F-test	**	**	**	**	**	**	**	**	**
LSD at 0.05	2.74	0.38	0.11	0.12	10.05	7.09	13.59	1.03	1.34

Table 2. Effect of Maize hybrids on maize yield and its components in 2018 and 2019 seasons.

*, ** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

2. Effect of weed control treatments on weeds and maize characters.

Effect on weeds characters:

Data in table (3) show the influence of weed control treatments on dry weight of grassy, broad-leaved and total annual weeds g/m² in 2018 and 2019 seasons. Weed control treatments differed highly significantly on dry weight of grassy, broad-leaved and total annual weeds on both seasons. Maister Power 750 cm³/fed. tank mixed Divest 500 cm³/fed., Maister Power 500 cm³/fed. tank mixed Divest 500 cm³/fed., Equip1125 cm³/fed. tank mixed with Divest 500 cm³/fed., Equip 750 cm³/fed. tank mixed with Divest 500 cm³/fed., Equip 750 cm³/fed. tank mixed and Equip at 1125 cm³/fed. alone gave the highest

reduction on grassy, broad-leaved and total annual weed in both seasons without any significant difference between these treatment. These treatments decreased the dry weight of grassy weeds by (92.7, 90.6, 94.6, 91.5, 92.0 and 93.6%), broad-leaved weeds by (97.7, 96.2, 95.3, 93.2, 96.1, and 95.4%) and total annual weeds by (95.8, 94.1, 95.0, 92.6, 94.6 and 91.3%) respectively, in the first season as compared with unweeded (check). Whereas, in the second season the reduction percentages were (95.9, 92.4, 93.5, 92.4, 95.2 and 94.3%) for grassy weeds, (98.0, 97.2, 97.6, 96.3, 96.6 and 95.4%) for broad-leaved weeds and(97.2, 95.5, 96.2, 94.9, 96.1 and 95.0%) for total annual weeds in the second season respectively, as compared to unweeded.

Table 3. Effect of weed control treatments on c	lry weight of gi	rassy, broad-leaved a	and total annual [,]	weeds g/m ²	in 2018
and 2019 seasons.					

Weed control	Rate	Grassy we	eds (g/m ²)	Broad leaved	weeds (g/m ²)	Total annual	weeds (g/m ²)
treatments	cm3/fed	2018	2019	2018	2019	2018	2019
Maister Power	750	21.78	15.56	17.56	19.78	39.34	35.33
Maister Power	500	29.56	27.11	32.78	26.78	62.34	53.89
Maister Power	250	75.33	50.78	70.33	99.11	145.66	149.89
Maister Power + Divest	750 + 500	20.00	13.33	10.33	11.67	30.33	25.00
Maister Power + Divest	500+500	25.67	24.78	17.11	16.33	42.78	41.11
Maister Power + Divest	250 + 500	74.44	44.33	42.11	42.33	116.55	86.67
Equip	1125	17.56	18.56	45.56	26.89	63.12	45.45
Equip	750	25.11	28.67	60.33	36.44	85.44	65.11
Equip	375	59.33	61.44	84.33	119.00	143.67	180.44
Equip + Divest	1125 + 500	15.00	21.00	21.00	13.78	36.00	34.78
Equip + Divest	750 + 500	23.22	24.67	30.56	21.22	53.78	45.89
Equip + Divest	375 + 500	61.33	70.78	51.67	40.33	113.00	111.11
Divest	500	65.11	94.44	55.11	45.55	120.22	140.00
Hand Hoeing twice		25.44	40.11	30.56	50.11	56.00	90.22
Untreated		273.44	324.44	450.22	581.00	723.66	905.44
F-test		**	**	**	**	**	**
LSD at 0.05		13.41	18.28	11.51	25.40	21.6	28.33

*, *** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

No phytotoxic symptoms were observed on maize due to herbicidal treatments. These results may be due to the inhibition effect of weeded control treatments on weed growth and to the susceptibility of these main predominant weeds (*Xanthium strumarium*, *Portulaca oleracea* L *Euphorbia geniculata* and *Echinochola colona*) to Maister power, Equip and Divest herbicides. The effective influence of weed control treatments on weed characters was noticed by Bunting *et al.*, (2005); Abouziena *et al.*, (2008);Tagour and Mosaad (2017) and Mobarak and Eid (2017)

Effect on maize characteristics:

Maize yield and its components had influenced highly significant by weed control treatments in both seasons as shown in Table (4).

Table 4. Effect of weed control treatments on maize yield and its components in 2018 and 2019 seasons.										
Weed	Doto am2	Plant	Ear	Ear	No. of	No. of	Ear	Grain	100-grain	Grain yield
control	Kate Chi5	height	length	diameter	rows/	grains/	weight	weight	weight	(ardab
treatments	/lea	(cm)	(cm)	(cm)	ear	ear	(g)	/ear(g)	(g)	/fed.)
				2018	3 season					
Maister Power	750	260.33	20.95	4.04	13.97	608.36	234.41	159.56	34.49	23.23
Maister Power	500	255.33	20.49	4.18	13.63	561.20	225.06	155.64	33.69	22.66
Maister Power	250	247.33	19.49	4.01	13.27	478.12	200.88	137.04	30.55	18.74
Maister Power + Divest	750 + 500	264.67	21.00	4.61	14.39	641.67	238.76	162.32	36.62	23.63
Maister Power + Divest	500 + 500	261.67	20.74	4.51	14.22	608.12	233.38	159.80	35.76	23.27
Maister Power + Divest	250 + 500	249.33	19.93	3.98	13.88	518.71	212.11	143.44	31.82	21.28
Equip	1125	255.33	20.31	3.99	13.72	533.12	223.71	152.33	33.40	22.18
Equip	750	250.00	20.01	3.78	13.26	498.63	217.23	146.16	32.30	21.28
Equip	375	245.00	19.06	3.53	12.82	435.26	194.69	131.40	30.82	17.97
Equip + Divest	1125 + 500	262.67	21.02	4.43	14.33	613.61	231.24	158.78	35.84	23.12
Equip + Divest	750 + 500	258.33	20.81	4.24	13.71	568.51	225.80	153.89	34.51	22.41
Equip + Divest	375 + 500	252.33	19.66	4.07	13.47	494.97	206.69	142.00	31.47	20.77
Divest	500	242.67	19.23	4.07	13.47	489.28	199.38	137.07	31.08	19.39
Hand Hoeing twice		261.33	21.20	4.30	14.14	607.80	232.02	158.29	33.67	23.05
Untreated		233.00	15.42	2.90	12.58	365.70	146.30	99.24	30.18	12.73
F-test		**	**	**	**	**	**	**	**	**
LSD at 0.05		10.13	1.20	0.27	0.33	54.47	14.43	11.15	2.90	1.64
				2	2019					
Maister Power	750	268.11	21.37	4.12	13.11	561.53	249.21	170.76	35.83	24.23
Maister Power	500	262.80	20.80	4.20	12.72	516.47	235.97	161.36	34.89	22.23
Maister Power	250	254.44	19.38	3.63	12.31	432.44	207.51	139.00	31.57	17.83
Maister Power + Divest	750 + 500	272.44	21.84	4.68	13.61	595.90	254.26	173.44	37.89	25.85
Maister Power + Divest	500 + 500	269.44	21.22	4.59	13.42	561.09	245.66	170.22	36.69	24.58
Maister Power + Divest	250 + 500	256.56	20.17	3.96	13.01	475.36	218.27	153.47	32.90	20.24
Equip	1125	262.78	20.88	4.01	12.46	470.63	233.98	157.50	33.50	20.87
Equip	750	257.33	21.34	3.73	12.29	448.02	227.93	150.33	33.34	19.57
Equip	375	251.89	19.13	3.48	11.78	382.07	196.13	131.78	31.38	16.55
Equip + Divest	1125 + 500	270.44	21.47	4.50	13.45	561.24	245.29	170.40	37.27	24.59
Equip + Divest	750 + 500	265.89	21.19	4.28	12.81	502.72	239.04	164.21	35.04	22.41
Equip + Divest	375 + 500	259.67	19.84	4.08	12.52	443.77	210.68	146.26	32.17	18.83
Divest	500	249.56	19.36	3.72	12.52	438.99	206.22	135.71	32.17	18.04
Hand Hoeing twice		269.00	21.54	4.34	13.33	556.89	247.06	169.36	34.71	23.66
Untreated		239.33	14.83	2.73	11.48	328.46	145.22	97.72	29.13	12.78
F-test		**	**	**	**	**	**	**	**	**
LSD at 0.05		7.85	0.45	0.24	0.27	32.64	13.99	9.52	1.78	1.32
* ** and N.C. indicate stat	intion lles ain mifi	comt at 00	15 and 0	lovele ond in		or of diffore		timely.		

*, ** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

Maister Power 750 cm³/fed. tank mixed Divest 500 cm³/fed, Maister Power 500 cm³/fed. tank mixed Divest 500 cm³/fed., Maister Power 750 cm³/fed. alone, Equip1125 cm³/fed.

tank mixed with Divest 500 cm³/fed., Hand hoeing twice, Maister Power 500 cm³/fed. alone, Equip 750 cm³/fed. tank mixed with Divest 500 cm³/fed. gave the highest increments in

J. of Plant Protection and Pathology, Mansoura Univ., Vol. 12 (11), November, 2021

Maize characteristics. These treatments increased plant height by (13.6, 12.3, 11.7, 12.7, 12.2, 9.6 and 10.9%), maize ear length by (36.2, 34.5, 35.9, 36.3, 37.5, 32.9 and 35.0%), maize ear diameter by (59.0, 55.5, 46.2, 52.8, 48.3, 44.1 and 40.3%), no. rows/ear by (14.3, 13.0, 11.0, 13.9, 12.4, 8.3 and 9.0%), no. of grain/ear by (75.5, 66.3, 66.4, 67.8, 66.2, 53.5 and 55.5%), ear weight by (63.2, 59.5, 60.2, 58.1, 58.6, 53.8, and 54.3%), grain weight/ear by (63.6, 61.0, 60.8, 60.0, 59.5, 56.8 and 55.1%), 100-grain weight by (21.3, 18.5, 14.3, 18.8, 11.6, 11.6 and 14.3%). Whereas, the increment percentages of the grain yield were (85.5, 82.8, 82.5, 81.6, 81.1, 78.0 and 76.0%) in the first season, respectively. Meanwhile, Maister Power 750 cm3/fed. tank mixed Divest 500 cm3/fed., Equip1125 cm3/fed. tank mixed with Divest 500 cm3/fed., Maister Power 500 cm3/fed. tank mixed Divest 500 cm³/fed. and hand hoeing twice gave the best maize yield and its component in the second season. These treatments increased plant height by (16.9, 16.1, 15.6 and 15.5%), maize ear Т

length by (47.3, 44.8, 43.1 and 45.2%), maize ear diameter by (71.4, 64.8, 68.1 and 59.0%), no. rows/ear by (18.6, 17.3, 16.9 and 16.1%), no. of grain/ear by (81.4, 70.9 70.8, and 69.0%), ear weight by (75.1, 68.9, 69.2 and 70.1%), grain weight/ear by (77.5, 74.4, 74.2 and 69.5%), 100-grain weight by (30.1, 27.9, 26.9 and 19.2%). Whereas, the increment percentages of the grain yield were (102.3, 92.4, 92.3 and 85.1%), respectively over the control treatment in the second season. These results are coincided with those reported by Ivanovic *et al.*, (1998); Waligora *et al.*, (2008); Stefanovic *et al.*, (2010); Ali *et al.*, (2011); Sepahvand *et al.*, (2014) and Mobarak and Eid (2017).

3.Effect of interaction between maize hybrids and weed control treatments:

Effect on weeds characters:

Data presented in Table (5) revealed that grassy, broad leaved and total annual weeds differed significantly in 2018 season only.

Table 5. Effect of interaction between maize hybrids and weed control trea	atments on dry weight of grassy,	broad-leaved
and total annual weeds g/m ² in 2018 and 2019 seasons.		

			Grassy	weeds	Broad	leaved	Total annual	
Hybrids	Weed control treatments	Rate cm3/fed	(g/1	m ²)	weeds	(g/m ²)	weeds	(g/m^2)
			2018	2019	2018	2019	2018	2019
	Maister Power	750	20.00	14.33	15.67	18.00	35.67	32.33
	Maister Power	500	23.67	28.33	21.33	24.00	45.00	52.33
	Maister Power	250	95.33	48.33	67.67	101.33	163.00	149.66
	Maister Power + Divest	750 + 500	13.67	10.00	7.00	11.33	20.67	21.33
	Maister Power + Divest	500 + 500	17.33	21.33	14.00	17.00	31.33	38.33
	Maister Power + Divest	250 + 500	90.00	43.00	31.00	48.33	121.00	91.33
	Equip	1125	12.67	16.67	44.67	25.67	57.34	42.34
SC 168	Equip	750	17.00	30.00	58.33	33.33	75.33	63.33
	Equip	375	59.00	55.67	78.00	126.33	137.33	182.00
	Equip + Divest	1125 + 500	10.67	20.00	17.00	14.33	8867	34.33
	Equip + Divest	750 + 500	15.00	24.33	34.00	21.33	49.00	45.66
	Equip + Divest	375 + 500	64.00	67.00	43.67	41.67	107.67	108.67
	Divest	500	63.00	99.00	55.33	48.67	118.33	147.67
	Hand Hoeing twice	200	23.33	45.33	31.33	44.67	54.66	90.00
	Untreated		269.33	326.33	464.00	580.00	733.33	906.33
	Maister Power	750	34 67	23.00	16.00	29.66	50.67	52.66
	Maister Power	500	47.00	34 33	44 33	35.00	91 33	69.33
	Maister Power	250	56.67	61 33	75.67	102 67	132 34	164.00
	Maister Power + Divest	750 ± 500	36.67	23 33	7 33	14 00	44 00	37 33
	Maister Power + Divest	500 + 500	44 67	37 33	15 33	19.33	60.00	56.66
SC 131	Maister Power + Divest	250 + 500	55.00	48 33	51.67	27.00	106.67	75 33
	Fauin	1125	30.67	22 33	38.67	35 33	69.33	57.66
	Fauip	750	43 33	35.00	57.00	44 00	100.33	79.00
	Equip	375	67.67	64.67	73 33	131.67	141.00	196 33
	Equip Fauin + Divest	1125 ± 500	24.67	31.67	23.00	14 67	47.67	46 33
	Equip + Divest	750+ 500	42.00	33.00	23.00	25.00	53.00	58.00
	Equip + Divest Equip + Divest	375 ± 500	64.00	76 33	20.33 56.33	25.00	120.33	108.00
	Divest	500	77 33	115.00	70.00	38 33	147 33	153 33
	Hand Hoeing twice	500	30.67	47 33	35 33	51.67	66.00	99.00
	Untreated		293.67	361.00	476.67	674 33	770 33	985 33
	Maister Power	750	10.67	0 33	21.00	11.67	31.67	21.00
	Maister Power	500	18.00	18.67	21.00	21 33	50.67	40.00
	Maister Power	250	74.00	12.67	52.07 67.67	03 33	1/1 67	136.00
	Maister Power + Divest	250 ± 500	9.67	6.67	16.67	9.67	26.34	16 33
	Maister Power \pm Divest	500 ± 500	15.00	15.67	22.00	12.67	20.34	28.33
	Maister Power \pm Divest	300 ± 500	78 33	41.67	13.67	51.67	122.00	03 33
	Fauip	250 ± 500 1125	0.33	16.67	53 33	10.67	62.66	36.33
	Equip	750	15.00	21.00	55.55 65.67	32.00	02.00 80.67	53.00
TC 324	Equip	750	51.33	64.00	101.67	00.00	153.00	163.00
IC 324	Equip Equip Divest	1125 + 500	0.67	11 22	22.00	12 22	22.67	22.26
	Equip + Divest	1123 ± 500 750 ± 500	9.07	16.67	25.00	12.33	32.07 42.00	23.30
	Equip + Divest	730 ± 500	12.07	60.00	29.33	17.55	42.00	116.67
	Equip + Divest	5/3+300	55.00	69.00	40.00	47.07	05.00	110.07
	Divest Hand Hasing twice	500	33.00	07.33 72 40	40.00	49.07 54.00	93.00 17 22	119.00 91.47
	Lintrooted		22.33	21.01	23.00 410.00	520 C	41.33	01.0/ 02/ 60
			231.33 **	200.00 NC	410.00	338.0	007.33 *	024.0U
	F-test		**	INS	↑ 05 15	INS	÷ 25 70	INS.
	LSD at 0.05		22.2	-	23.15	-	35.72	-

*, ** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

May H. M. Elattar and S. R. Nagib

The lowest weight of grassy weeds of 9.33 g/m² was obtained by TC324 with Equip at 1125 cm3/fed. followed by Equip at 1125 tank mixed with Divest at 500 cm3/fed. and Mister Power at 750 cm³/fed. tank mixed with Divest at 500 cm³/fed. with TC324 (9.67g/m²). Moreover, favorable grassy weeds weight of 6.67g/m² occurred by TC324 with Mister Power at 750 cm³/fed. tank mixed with Divest 500 cm³/fed. followed by. TC324 \times Mister Power at 750 cm³/fed. $(9.33g/m^2)$ with not significant differences in 2019 season. Meanwhile, the lowest broad leaved and total annual weeds of 7.00 and 20.67 g/m² were detected by the application of Mister Power at 750 cm³/fed. tank mixed with Divest at 500 cm3/fed. with SC168 in the 1st season. These results are in harmony with those obtained by Hucl (1998); Rapparini et al., (2001) and Farhadi-Afshar et al., (2009) and Zargar et al., (2017). Meanwhile, Silva et al., (2010) demonstrated that there was no difference in the dry biomass above-ground part of the weeds in the plots of the evaluated cultivars.

Effect on maize characters:

Concerning, the effect of interaction between maize hybrids and weed control treatments on maize yield and its components in 2018 and 2019 seasons. It was concluded from Tables (6 and 7) that ear diameter, no. rows/ear in both seasons and ear length in the second season only were significantly affected by the interaction between maize hybrids and weed control treatments. Maister power at 750 cm³/fed. tank mixed with Divest at 500 cm³/fed. with maize hybrid SC 168 gave the highest values of ear diameter and no. of rows/ear (4.9 and 15.33) respectively in the first season, and ear length and no. of rows (22.97 and 14.73) in the Second season respectively. Whereas, Equip at 1125 cm³/fed. tank mixed with Divest at 500 cm³/fed. with maize hybrid SC 168 gave the best value of ear diameter (5.03) in the second season.

Table 6. Effect of interaction between maize hybrids and weed control treatments on maize yield and its components

									~ .	100	~ .
	Weed	Rate	Plant	Ear	Ear	No. of	No.	Ear	Grain	100-	Grain
Hybrids	control	cm3	height	length	diameter	rows	grains	weight	weight/	grain	yield
	treatments	/fed	(cm)	(cm)	(cm)	/ear	/ear	(g)	ear (g)	weight(g)	(ardab/fed.)
	Maister Power	750	258.00	21.63	4.83	15.10	683.13	248.77	166.33	31.03	24.22
	Maister Power	500	254.00	21.07	4.73	14.73	606.07	244.57	164.00	30.80	23.88
	Maister Power	250	241.00	19.30	3.90	14.60	509.87	215.60	149.33	27.92	18.64
	Maister Power + Divest	750 + 500	264.00	21.23	4.90	15.33	715.90	254.87	173.97	32.79	25.33
	Maister Power + Divest	500 + 500	257.00	21.03	4.83	15.20	648.07	251.33	171.00	31.78	24.90
	Maister Power + Divest	250 + 500	243.00	20.20	4.03	14.40	531.33	229.33	155.33	29.87	22.61
	Equip	1125	251.00	20.20	4.37	14.57	561.47	239.67	163.00	30.80	23.74
SC 168	Equip	750	248.00	20.03	4.03	14.50	533.07	235.00	158.67	30.08	23.10
	Equip	375	242.00	19.80	3.87	14.13	461.90	210.00	141.00	29.73	17.80
	Equip $+$ Divest	1125 + 500	261.00	21.90	4.87	14.80	664.47	251.20	170.67	32.08	24.85
	Equip + Divest	750+500	256.00	21.60	4.70	14.53	617.00	242.67	166.67	31.52	24.27
	Equip + Divest	375 + 500	249.00	20.10	4.63	14.27	539.37	232.83	158.33	30.16	22.31
	Divest	500	245.00	18.90	3.90	14.30	533.50	214.80	146.33	29.25	19.61
	Hand Hoeing twice		256.00	22.10	4.23	14.77	635.77	239.93	164.00	31.96	23.88
	Untreated		238.00	16.37	2.93	14.10	401.37	154.47	107.13	26.93	12.22
	Maister Power	750	245.00	21.03	3.10	13.97	616.67	230.67	160.67	35.08	23.39
	Maister Power	500	241.00	20.57	3.93	13.73	591.60	227.53	156.67	34.40	22.81
	Maister Power	250	234.00	19.63	3.63	12.93	485.70	201.47	134.67	32.01	19.07
	Maister Power + Divest	750 + 500	246.00	21.43	4.70	14.20	639.17	238.20	162.33	38.29	23.63
	Maister Power + Divest	500 + 500	242.00	21.07	4.60	13.97	620.80	230.87	160.73	37.89	23.40
	Maister Power + Divest	250 + 500	236.00	20.17	4.03	13.87	535.80	217.00	147.00	32.84	21.40
	Equip	1125	241.00	20.90	3.83	12.77	519.07	222.47	152.67	36.11	22.23
SC 131	Equip	750	235.00	20.53	3.63	12.67	497.60	220.80	145.33	35.35	21.16
	Equip	375	231.00	19.40	3.43	12.30	425.00	190.07	127.67	31.16	17.84
	Equip + Divest	1125 + 500	244.00	21.03	4.26	14.43	616.23	224.87	156.67	37.54	22.81
	Equip $+$ Divest	750 + 500	238.00	20.97	4.07	13.47	565.73	218.80	150.00	36.32	21.84
	Equip $+$ Divest	375 + 500	233.00	19.73	3.93	13.30	484.60	201.07	139.00	32.43	20.24
	Divest	500	229.00	19.33	3.83	13.13	457.10	183.33	128.87	30.87	18.77
	Hand Hoeing twice		243.00	21.07	4.43	14.16	625.33	234.60	158.33	33.54	23.06
	Untreated		218.00	15.23	2.80	12.13	338.13	139.83	92.93	33.69	11.74
	Maister Power	750	278.00	20.20	4.20	12.83	525.27	223.80	151.67	37.36	22.08
	Maister Power	500	271.00	19.83	3.87	12.43	485.93	203.07	146.27	35.88	21.29
	Maister Power	250	267.00	18.93	4.48	12.27	438.80	185.57	127.13	31.71	18.51
	Maister Power + Divest	750 + 500	284.00	20.33	4.23	13.63	569.93	223.20	150.67	38.77	21.94
	Maister Power + Divest	500 + 500	286.00	20.13	4.10	13.50	555.50	217.93	147.67	37.61	21.50
	Maister Power + Divest	250 + 500	269.00	19.43	3.83	13.37	489.00	190.00	128.00	32.76	19.83
	Fauip	1125	274.00	19.83	3.77	13.83	518.83	209.00	141.33	33.28	20.58
	Equip	750	267.00	1947	3.67	12.60	465.23	195.90	134 47	31.45	19 58
TC 324	Equip	375	262.00	17.97	3.30	12.03	418.87	184.00	125.53	31.58	18.28
10.521	Equip Equip + Divest	1125 ± 500	283.00	20.13	4 17	13.77	560.13	217.67	149.00	37.91	21.70
	Equip + Divest	750+500	281.00	19.87	3.97	13.13	522.80	215.93	145.00	35.69	21.70
	Equip + Divest Equip + Divest	375+500	275.00	19.13	3.63	12.83	460.93	186 17	128.67	31.83	1976
	Divest	500	254.00	19.15	3.50	12.05	400.23	200.00	136.00	33.12	19.80
	Hand Hoeing twice	500	285.00	20.13	4 23	13.50	562 30	200.00	152 53	35.12	22.21
	Untreated		243.00	14 67	2.97	11 50	357.60	144 60	97.67	29.93	14 22
	F-test		NS	NS	**	**	NS	NS	NS	NS	NS
	LSD at 0.05		-	-	0.46	0.55	-	-	-	-	-

*,*** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

4- Correlation analysis:

Data in Table 8 showed that the correlation between studied weed characteristics and maize yield components characteristics - except plant height in both seasons and 100grain weight the first season- were significant in both seasons. Results indicated that grain yield ardab/fed. were positively and highly significantly correlated with maize yield and its components namely ear length (cm), ear diameter (cm), No. of rows/ear, No. of grains/ ear, ear weight (g), grain weight /ear (g) and 100-grain weight (g), while it was negatively and highly significantly correlated with grassy , broad leaved and total annual weeds. These cleared that weed population in the experimental field exhibited severe effects of competition to maize crop. These results are in harmony with those obtained by Mobarak and Eid (2017).

 Table 7. Effect of interaction between maize hybrids and weed control treatments on maize yield and its components in 2019 season.

	Weed	Doto and	Plant	Ear	Ear	No. of	No.	Ear	Grain	100-grain	Grain yield
Hybrids	control	Kate chib	height	length	diameter	rows	grains	weight	weight/	weight	(ardab
	treatments	/leu	(cm)	(cm)	(cm)	/ear	/ear	(g)	ear(g)	(g)	/fed.
	Maister Power	750	265.67	22.17	4.97	14.43	683.00	260.00	190.60	33.38	26.25
	Maister Power	500	261.40	21.47	4.83	14.03	570.30	255.67	182.43	33.06	23.84
	Maister Power	250	247.67	19.33	3.90	13.90	492.93	230.33	159.33	30.56	19.34
	Maister Power + Divest	750 + 500	271.67	22.97	5.03	14.73	680.93	276.33	195.33	35.02	27.78
	Maister Power + Divest	500 + 500	264.67	21.83	4.97	14.57	603.97	265.33	192.33	34.05	25.52
	Maister Power + Divest	250 + 500	249.67	20.47	4.03	13.63	494.17	242.20	166.33	32.51	20.84
	Equip	1125	258.33	21.23	4.43	13.83	517.53	252.67	176.33	33.39	22.31
SC 168	Equip	750	255.00	20.27	4.03	13.73	491.00	249.00	170.33	32.26	21.11
	Equip	375	248.67	20.03	3.87	13.33	424.27	215.40	148.67	31.31	18.26
	Equip $+$ Divest	1125 + 500	268.67	22.57	5.03	14.10	625.00	271.00	193.33	34.56	26.14
	Equip $+$ Divest	750+500	263.33	22.07	4.83	13.77	528.03	261.67	182.97	34.14	23.21
	Equip $+$ Divest	375 + 500	256.33	20.40	4.73	13.47	492.20	237.20	167.33	30.97	20.56
	Divest	500	252.00	18.97	3.90	13.50	498.30	227.00	149.67	31.40	19.63
	Hand Hoeing twice		263.33	22.77	4.30	14.07	582.17	257.00	185.33	34.60	24.65
	Untreated		244.67	15.93	2.77	13.27	362.17	147.93	109.50	29.69	13.07
	Maister Power	750	252.00	21.47	3.20	13.13	577.73	252.33	173.67	38.62	24.99
	Maister Power	500	232.00	20.90	3.93	12.83	541.63	241.67	169.30	37.22	23.62
	Maister Power	250	240.33	19.83	3.60	11.90	474 43	203.67	140.33	33.74	1833
	Maister Power + Divest	750 ± 500	253.00	21.93	477	13 37	593.40	253 33	175.67	40.55	26.69
SC 131	Maister Power + Divest	500 + 500	248.67	21.95	4.67	13.13	57477	244.63	169.00	39 35	25.70
	Maister Power + Divest	250 + 500	242.64	20.47	4.00	13.00	490.13	222.27	156.33	3533	21.10
	Fauin	1125	247.67	21.37	3.83	11.73	468.20	234.13	161.83	36.80	21.10
	Equip	750	241.67	24.17	3 57	11.60	446.20	226.00	153.00	3436	20.62
	Equip	375	23733	19.53	3 33	11.00	371.03	187.67	130.00	32 33	1631
	Equip + Divest	1125 ± 500	251.00	21.43	431	13.67	563.90	234.40	173.20	39.65	25 55
	Equip + Divest	750+500	201.00	21.45	4.07	12.53	515.80	227.80	167.33	37.52	23.55
	Equip + Divest	375+500	23933	19.93	3.93	12.33	432.40	209.73	152.43	35.45	1945
	Divest	500	235 33	19.50	3.83	12.55	411 10	182.00	126.80	32 52	16.86
	Hand Hoeing twice	500	249.67	21.47	4 50	13 37	581 77	251.83	173.40	36.44	24 50
	Untreated		273.67	14.60	2.63	10.93	314.40	147.23	95 33	31.22	24.50 11.71
	Maister Power	750	225.07	20.47	4.20	11.77	/68.87	235.30	1/8/00	35.40	21.45
	Maister Power	500	200.07	20.47	3.83	11.77	400.07	233.30	132 33	34.41	10.23
	Maister Power	250	275.33	18.07	3.05	11.50	370.07	188 53	117 33	30.41	15.20
	Maister Power Divest	750 + 500	275.55	20.63	1.40 1.27	12.73	513.37	233.10	1/0.33	38.12	23.07
	Maister Power + Divest	730 ± 500	292.07	20.03	4.27	12.75	504 53	233.10	149.55	36.67	23.07
	Maister Power + Divest	300 ± 500	275.00	10.57	3.83	12.50	<i>AA</i> 1 77	100.33	147.55	30.87	18 70
	Fauin	250 ± 500	211.55	20.02	3.83 2 77	11.40	496.17	215.12	12/22	20.27	10.79
	Equip	750	202.33	20.05	2.60	11.60	420.17	213.13	104.00	30.32 22.42	16.55
TC 324	Equip	275	213.33	19.00	2.00	10.92	400.87	200.00	127.07	33.42 20.50	10.97
	Equip Equip	373 1125 ± 500	209.07	20.40	3.23	10.65	330.90 404.92	105.55	110.07	27.60	13.09
	Equip + Divest	1123 ± 500	291.07	20.40	4.17	12.07	494.65	250.47	144.07	37.00 22.46	22.08
	Equip + Divest	750+500	209.07	20.10	3.93 257	12.15	404.55	195 10	142.55	20.07	20.45
	Equip + Divest	575+500	283.33	19.20	3.57	11.//	406.70	185.10	119.00	30.07	10.48
	Divest	500	201.55	19.60	5.45	11.93	407.57	209.67	130.6/	32.60	17.65
	Hand Hoeing twice		294.00	20.40	4.23	12.57	200./3	232.33	149.33	33.09	21.82 12.57
	Unireated		249.67	13.9/	2.80	10.23	308.80	140.50	88.55	20.3U	13.57 NG
	F-test		NS	**	<u>ተ</u> ቸ 0.40	**	NS	NS	NS	NS	NS
	LSD at 0.05		-	0.75	0.40	0.45	-	-	-	-	-

*,*** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively

May H. M. Elattar and S. R. Nagib

Table	8.Correlation	analysis betwee	n the studied	traits in 201	8 and 2019 seasons.
		•/			

Traits	Grassy weeds (g/m ²)	Broad leaved weeds (g/m ²)	Total annual weed (g/m ²)	Plant height (cm)	Ear length (cm)	Ear diameter (cm)	No. of rows /ear	No. grains /ear	Ear Weight (g)	Grain weight/ ear (g)	100- grain weight (g)	Grain yield (ardab /fed.)
Grassy weeds (g/m ²) Broad leaved weeds (g/m ²) Total annual weed (g/m ²) Plant height (cm) Ear length (cm) Ear diameter (cm) No. of rows/ear No. grains/ear Ear weight(g) Grain weight(g) Grain weight(g) Grain weight(g) Grain yield (ardab/fed.)	1.00	0.93** 1.00	0.974 ** 0.990 ** 1.00	-0.429** -0.344** -0.382** 1.00	-0.791** -0.816** -0.819** 0.173 * 1.00	-0.574 ** -0.601 ** -0.600 ** 0.234 ** 0.675 ** 1.00	2018 -0.346 *** -0.374 *** -0.369 *** 0.009 ^{NS} 0.550 *** 0.596 *** 1.00	-0.579** -0.584** -0.592** 0.161 ^{NS} 0.740** 0.660** 0.732** 1.00	-0.705** -0.703** -0.715** 0.147 ^{NS} 0.763 ** 0.645 ** 0.650 ** 0.730 ** 1.00	-0.701 ** -0.707 ** -0.716 ** 0.188 * 0.796 ** 0.695 ** 0.680 ** 0.782 ** 0.774 ** 1.00	-0.319** -0.278** -0.299** 0.303** 0.275** 0.086 ^{NS} -0.170* 0.228** 0.162 ^{NS} 0.219* 1.00	-0.757** -0.761** -0.771** 0.249** 0.784** 0.663** 0.548** 0.719** 0.939** 0.754** 0.238** 1.00
Grassy weeds (g/m2) Broad leaved weeds (g/m ²) Total annual weed (g/m ²) Plant height (cm) Ear length (cm) Ear diameter (cm) No. of rows/ear No. grains/ear Ear weight(g) Grain weight(g) Grain weight(g) Grain yield (ardab/fed.)	1.00	0.926**	0.969 ** 0.991 ** 1.00	-0.435*** -0.368** -0.399** 1.00	-0.780 ** -0.794 ** -0.803 ** 0.150 ^{NS} 1.00	-0.592 ** -0.610 ** -0.614 ** 0.227 ** 0.707 ** 1.00	2019 -0.323 ** -0.346 ** -0.344 ** -0.013 ^{NS} 0.557 ** 0.701 ** 1.00	-0.544** -0.555** -0.561** 0.138 * 0.744 ** 0.783 ** 0.809 ** 1.00	-0.589 ** -0.593 ** -0.602 ** 0.016 ^{NS} 0.800 ** 0.787 ** 0.790 ** 0.856 ** 1.00	-0.696 ** -0.687 ** -0.702 ** 0.182 * 0.803 ** 0.783 ** 0.706 ** 0.834 ** 1.00	-0.442** -0.458** -0.460** 0.031 ^{NS} 0.558 ** 0.263 ** 0.263 ** 0.528 ** 0.507 ** 0.484 ** 1.00	-0.635** -0.624** -0.639** 0.160 ^{NS} 0.800** 0.782** 0.703** 0.924** 0.896** 0.849** 0.660**

*,*** and N.S. indicate statistically significant at 0.05 and 0.01 levels and insignificancy of differences, respectively.

CONCLUSION

It concluded that all weed control treatments decreased the dry weight of total annual weeds as compared with the unweeded treatment, SC $168 \times$ Mister Power at 750 cm³/fed. tank mixed with Divest at 500 cm³/fed. gave the lowest dry weight of total annual weeds and greatest yield (ardab/ fed.) under Minia governorate condition.

REFERENCES

- Abana, P. C. and Godwin, O. (2015) Screening of selected herbicides for weed control in maize Zea mays L. J. Environ. and Earth Sci. 5 (2): 53-56.
- Abouziena, H.F., El-Metwally, I.M. and El-Desoki, E.R. (2008) Effect of plant spacing and weed control treatments on maize yield and associated weeds in sandy soils. American-Eurasian J. Agric. & Environ.Sci., 4(1): 9-17.
- Abouziena, H.F., El-Karmany, M.F; Singh, M. and Sharma, S.D. (2007) Effect of nitrogen rates and weed control treatments on maize yield and associated weeds in sandy soils. Weed Technol., (21): 1049-1053.
- Abouziena, H.F.; Ahmed, M.A.; Eldabaa, M.A.T. and Abd El Wahed ,M.S.A. (2013) A comparative study on the productivity of two yellow maize cultivars grown under various weed control management. middle east j. of agric. res., 2(2): 56-67.
- Ali, K.; Munsif, F.; Husain, Z.; Khan, I.; Ahmed, N.; Khan, N. and Shahid, M. (2011) Effect of different weed control methods on weeds and maize grain yield. Pak. J. Weed Sci. Res. 17 (4), 313-321.
- Arnold, R.N.; Smeal, D. and O'Neill, M.K.; (2005) Broadleaf weed control in field corn with postemergence herbicides. crop management, 4(1):1-8.

- Bunting, J.A.; Sprague, C.L. and Riechers, D.E. (2005) Incorporating foramsulfuron into annual weed control systems for corn. Weed Techn 19: 160-167.
- Cardina, J. (1995) Biological weed management. In: Smith, A.E., Editor, Handbook of Weed Management Systems, Marcel Dekker, New York, pp: 286.
- Darkwa, E.O.; Jhonson, B.K.; Nyalemegbe, K.; Yangyuoru, M.; Oti BoatengC, W. T.J.; Terry, P.J. (2001) Weed management on vertisol for small scale farmers in Ghana. Inter.J. of Pest Manag., 47: 299-303.
- El-Gizawy, N.Kh.B. and Salem,H.M. (2010) Influence of nitrogen sources on yield and its components of some maize varieties. World J. Agric. Sci., 6(2): 218-223.
- Farhadi-Afshar, H.R.; Madani, H. M.H. S.; and Najafi, I.(2009) Study of effects of cultivar, weeds and plant density on yield and yield components of sweet corn under Iranian warm environment. Plant Ecophysiol., 3: 103-108.
- Ghanizadeh, H.; Lorzadeh, S.; Ariannia, N. (2014) Effect of weed interference on Zea mays L. Growth analysis. Weed Biology and Management 14, 133–137.
- Gomez, K.A. and Gomez, A.A. (1984): Statistical Procedures for Agricultural Res. John Wiely and Sons. New York, 2nd ed., p.68.
- Hucl, P. (1998) Response to weed control by four spring wheat genotypes differing in competitive ability. Can. J. Plant Sci., 78: 171-173.
- Ismail, A.; Mobarak, O.M.; Soliman, I. (2016) Influence of interand intraspecific competition between maize and common cocklebur (*xanthium strumarium*) weed densities on maize productivity, J. Plant Production, Mansoura Univ., 7(2): 123-134.

J. of Plant Protection and Pathology, Mansoura Univ., Vol. 12 (11), November, 2021

- Ivanovic M.; Jelicic, Z.; Markovic, S.; Dragovic, G. and Martic, M. (1998) Reactions of inbred lines of maize on herbicides from the sulfonilurea group. Zbornik naucnih radova, 4: 87-93.
- Jagadish, S. and Prashant, C.S. (2016) A review on weed management on maize (*Zea mays L.*). Advances in Life Sci. 5 (9):3448-3455.
- James, I.K.; Rehman, A. And Mesotrione, J. H. (2006) A new herbicide for weed control in maize. New Zealand Plant Protection, 59:242-249.
- Mehmeti, A., Demaj, A.; Demelezi, I.; Rudari, H. (2012) Effect of post-emergence herbicides on weeds and yield of maize. pakistan j.of weed sci. Res. 18 (1): 27-37.
- Mobarak, O. M. M. and Eid, S. D. M. (2017) Effect of sprayer nozzle selection on improving weed control by Maister power herbicide and maize crop productivity. J. Plant Production, Mansoura Univ., Vol. 8 (4): 521 – 527.
- MSTAT-C (1989) MSTAT-C Statistical Program Version 2.10. Crop and Soil Sci. Dept., Michigan State University, USA.
- Noor, M.; Sattar, A.; Ashiq, M. and Ahmad, I. (2011) Efficacy of pre and post emergence herbicides to control weeds in Chick Pea (*CicererAretinum* L.). Pak. J. Weed Sci. Res. 17(1):17-24.
- Pannacci, E.; Tei, F. (2014) Effects of mechanical and chemical methods on weed control, weed seed rain and crop yield in maize, sunflower and soyabean. Crop Protection 64, 51–59.
- Rapparini, G.; Compagna, G.and Paci, F., (2001)Control of Abutilon theophrasti in maize. Informatore Agrico. 57 (6): 69–74.
- Richard, N. A, D. Smeal and M. K. O'Neill (2005) Broadleaf Weed Control in Field Corn with Postemergence Herbicides. Crop Management Res. 4 (1) 1-8.

- Sepahvand, P.; Sajedi, N.; Mousavi, S. K. and Ghiasvand, M. (2014) Effect of nitrogen application method and weed control on corn yield and yield components. Pak. J. Boil. Sci. 17 (4): 497-503.
- Shah, W.A.; Khan, M.A.; Khan, N.; Zarkoon, M.A.; Bakht, J. (2003) Effect of weed management at various growth stages on the yield and yield components of wheat (*Triticum aestivum* L.). Pak J Weed Sci. Res., 9(2): 41-48.
- Silva, P.S.L.; Silva,K.M.B. ; Silva,P.I.B. ; Oliveira, V.R. and Ferreira, J.L.B. (2010) Green ear yield and grain yield of maize cultivars in competition with weeds. Planta daninha, 28 no.1.
- Stefanovic, L; Simic, M. and Dragicevic, V. (2010) Studies on maize inbred lines susceptibility to herbicides. Genetika, 42, 155-168.
- Täckholm, V. (1974) Students' Flora of Egypt. Second edition Published by Cairo University, Printed by Cooperative Printing Company Beirut. 887p.
- Tagour, R.M. and Mosaad, I.S. (2017) Effect of the foliar enrichment and herbicides on maize and associated weeds irrigated with drainage water. annals of agri. Sci. 62(2):183-192.
- Waligora, H.; Szulc, P. and Skrzypczak, W. (2008) Effectiveness of chemical weed control in sugar maize cultivation without triazyne. Acta Scientiarum Polonorum, Agric. 7, 111-118.
- Zaremohazabieh, S. and Ghadiri, H. (2011) Effects of rimsulfuron, foramsulfuron and conventional herbicides on weed control and maize yield at three planting dates. J. Biol. Environ. Sci., 5 (14): 47-56.
- Zargar, M.; Astrakhanova, T.; Pakina, E.; Astrakhanov, I.; Rimikhanov, A.; Gyul'magomedova, A.; Ramazanova, Z.and Rebouh, N. (2017) Survey of biological components efficiency on safety and productivity of different tomato cultivars. Res., on Crops. 18: 283-292.

تأثير بعض معاملات مكافحة الحشائش على بعض هجن الذرة الشامية والحشائش المصاحبة مي حسين محمد العطار ¹ وسامي رمسيس نجيب² 1 المعمل المركزي لبحوث الحشائش - مركز البحوث الزراعية- الجيزة- مصر 2 قسم المحاصيل - كلية الزراعة – جامعة المنيا- المنيا- مصر

أقيمت تجربتان حقليتان بالمزرعة البحثية. محطة البحوث الزراعية – ملوى - محلفظة المنيا خلال موسمى 2019/2018 لدراسة تأثير خمسة عشر معاملة مقلومة حشائش (مليستر باور 750سم³رف، 2000س³رف، و250سم³رف مخلوطاً مع دايفست 500سم³رف، ال2000 في محلوطاً مع دايفست 500سم³رف، الكريب 2015سم³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، الكريب 2015سم³رف، 2000س³رف، الكريب 2015سم³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، مخلوطاً مع دايفست 5000س³رف وكذا دايفست 5000س³رف، الكريب 2015س³رف، الكريب 2015س³رف، 2000س³رف وكذا دايفست 5000س³رف، 2000س³رف، 2000س³رف، 2000س³رف، 2000س³رف وكذا دايفست 500⁰⁰⁰⁰رف، الكريب 2015س³رف، 2000س³رف، 2000س³رف وكذا دايفست 500⁰⁰⁰⁰رف، 2000س³رف وكذا دايفست 500⁰⁰⁰⁰⁰رف، 2000¹⁰⁰⁰⁰رف، 2000¹¹ محبين فردى 131 دايفست 500⁰⁰⁰⁰⁰⁰رف، 2000¹¹ محبين فردى 131¹¹ دايفست 500¹¹ معن معامل معايها: أظهرت همان المحمول ومكوناته ماثلاثة هجن من الذرة شامية (هجين فردى 138 مجين فردى 131¹¹ مورين ألكن 2000) وكانت أهم النتائج المتحصل عليها: أظهرت هجرن هرد محصول الحبوب ومكوناته مايثانه ماعد الموق المحبين المودى 131¹¹ مورين ألكن 2000 محمول الحبوب ومكوناته ماتلاثة هجن منايف وراكلية في كال الموسمين أكمان قدر الحمات معامل محمول الحبوب ومكوناته مايثان ماعد الحياة النجيلية والكاية في كال الموسمين. كذلك أظهرت النتائج المتحصل عليها: أظهرت الحثائ احصول الحبوب ومكوناته في كال الموسمين. كذلك أظهرت التعابية وعريضة المورين الأوراق والكلية في كال الموسمين. كذلك أظهرت التعابية وعريضة الوراق والكلية في كال الموسمين. كذلك أظهرت القام الحبيلة والمولين المورات المورات الوراق والكلية في كال الموسمين. كذلك أظهرت معاملات الحشائش احدثات خفضا محصول الحبوب ومكوناته في كال الموسمين. كذلك أظهرت معاملات الحشائش ناتيرا" على محصول الرة الشامية ومكوناته في كال الموسمين. كذلك أظهرت معاملات الحشائش ناتيرا" على محصول الرة الشامية ومكوناته في كال الموسمين. كذلغ ماليران الحول أخلوط الكوز وعد صوف الكوز وعد كالمون أخلول كان الكوز وعد صوف الكوز وعن الكور وعن الكوز وعد صوف الكوز وعد صوف الكوز وعد صوف الكوز وعلمان معامي ألكوز معنويا الكوز