ALLEVIATION OF THE SALINITY EFFECTS ON THE GROWTH AND DEVELOPMENT OF *Populus nigra* BY EXOGENOUS APPLICATION OF SILICON AND GLYCINE BETAINE

(Received: 25.11.2020)

By

Mona A. Amin and E. N. Al-Atrash

Timber Trees and Forestry Department, Horticulture Research Institute Agriculture Research Center, Giza, Egypt

ABSTRACT

Populus nigra plants were subjected to four soil salinity levels (0. 0,3.0, 5.0 and 7.0 dSm⁻¹) in a pot experiment with two types of nutrients foliar applications (silicon at 100 and 200 mg/l and glycine betaine at 200 and 400 mg/l). Salinity treatments reduced all growth characters. On the other hand, sugars, proline, Na and Cl contents increased by increasing salinity levels, while chlorophylls, N, P and K diminished. Foliar application of silicon or glycine betaine enhanced all the studied growth characters, as well as the organic (sugars, proline and chlorophylls) and inorganic components (N,P and K), while Na and Cl decreased. The combination of Si (200 mg/l) + GB (400 mg /l), gave the best results, alleviating the adverse salinity effects on the growth and development of *Populus nigra*.

Key words: Populus nigra, salinity, glycinebetain.

1. INTRODUCTION

Black poplar (*Populus nigra* L) is a pioneer deciduous tree species, widely distributed across Europe, Asia and North Africa. It is often used as an ornamental tree, with much desirable wood quality, relatively fire resistant and shock proof, and it has a soft fine texture. Traditionally, it is used for clogs, carts, furniture and flooring near open fireplaces (Zhao *et al.*, 2019), for pulp and paper production, along with fast growth rate, which makes it a suitable bioenergy tree (Zhang *et al.*, 2017). Extracts from the tree have been shown to have antioxidant and anti-inflammatory effects (Yer *et al.*, 2018).

Salinity is a major abiotic stress that affects plant growth and productivity (Parida and Das 2004). Salt stress constitutes an agricultural and environmental problem worldwide, and is expected to cause serious salinization problems for more than 50% of all arable lands until 2050 (Ehlting *et al.*, 2007). On the other hand, increasing human population, rapid economic growth and the shortage of fresh water have become a fundamental and chronic problem for sustainable agriculture development in arid region (Jiang *et al.*, 2012). So, irrigation with saline water has become inevitable in arid and semi-arid regions (Letey and Feng, 2007).

Silicon (Si) is the second most prevalent element after oxygen in the soil.

According to more recent definition of the essentiality of elements proposed by Epstein and Bloom (2005), silicon should be considered an essential element for higher plants because silicon-deprived plants tend to grow abnormally , whereas silicon supplemented plants grow normally (Agarie et al., 1992). Regardless of its essentiality in higher plants, Si has been reported to be beneficial in mitigating both biotic and abotic stresses (Bockhaven et al., 2013). Silicon reduces the accumulation of toxic ions by decreasing transpiration due to its deposition as silica in leaves (Matoh et al., 1986). Gong et al. (2006) reported a significant decrease in the uptake of Na⁺ ion in a saline soil due to the deposition of silicon in plant roots. Exogenously applied Si proved to be beneficial for enhancing salt tolerance in plants by adjusting the levels of compatible solutes such as increasing soluble sugars and increasing proline content in the salt stressed and decreasing the synthesis of phenolic compounds (Hashemi et al., 2010).

Glycine Betaine (GB) is a quaternary amine plays a highly beneficial role in plants exposed to various stress conditions such as high level of salts and low temperature. Many plant species naturally accumulate GB and proline as major organic osmolytes when subjected to different abiotic stress, where these compounds are thought to play adaptive roles in mediating osmotic adjustment and protecting subcellular structures in stressed plants. However, not all plants accumulate GB or proline in sufficient amounts to help averting adverse effects. Thus, an exogenous application of these osmolytes to plants growing under stress conditions may enhance their tolerance to abiotic stress (Kanu *et al.*, 2017). Exogenous foliar application of GB has been suggested as an approach to induce stress tolerance in crops with poor or no solute accumulating ability (Ashraf and Foolad, 2007).

The aim of this investigation is to alleviate the salinity harmful effects on the growth and development of *Populus nigra* seedlings by exogenous application of silicon and glycine betaine

2. MATERIALS AND METHODS

The work was carried out at the experimental area of Timber Trees and Forestry Dep., Hort. Res. Inst., A.R.C. Giza, Egypt, during two successive seasons of 2018/2019 and 2019/2020 to study the effects of salinity, silicon and glycine betaine on *Populus nigra* seedlings grown under sandy loamy soil conditions. Seedlings (one year old) with an average height of 25-30 cm, stem diameter at base of 0.3 cm, were used. The seedlings were obtained from the nursery of Forestry Department, Horticultural Research Institute. The seedlings were transplanted individually in plastic pots of (30 cm height and 25 cm diameter), filled with 12 kg mixture of sand and clay (2:1,v:v).

The chemical and physical analysis of the used soil mixture are shown in Table (1) Chemical analysis of the soil samples was performed according to the method of Black, (1982). Seedlings were planted on February 1^{st} in both seasons (2018/2019 and 2019/2020). The soil mixture was subjected to three salinity levels (3.0, 5.0 and 7.0 dsm⁻¹) which were obtained by adding a mixture of (sodium chloride, calcium chloride and magnesium sulphate at the ratio of 2:2:1 by weight, respectively, besides the

Sand (%)

control (tap water).

2.1. Preparation of the salt solution

A stock solution with concentration of (100 dSm⁻¹) was prepared as follows:

25.6 g of NaCl, 25.6 g of CaCl₂ and 12.8 g of MgSO₄ were dissolved in one liter of tap water to prepare the solution. The following volumes were used to prepare the solutions in the next Table:

Concentration (dS m ⁻¹)	Volume from stock(ml)	Final volume (ml)
$3 (dS m^{-1})$	30ml	1000ml
$5 (dS m^{-1})$	50ml	1000 ml
$7 (dS m^{-1})$	70ml	1000ml

Three salt concentrations $(3,5 \text{ and } 7\text{dSm}^{-1})$ whereas:

 $(1 \text{ dS m}^{-1}) = 640 \text{ppm}$, as well as the control (Tap water).

Foliar application of two substances were used in this experiment (silicon and glycine betaine) individually, and as a mixture (Sigma Chemicals, USA), with three concentrations levels of (0.0, 100 and 200 mg/l) calcium silicate (CaO₄Si), and (0.0, 200 and 400 mg/l) of Glycine betaine (trimethly glycine (C₅H₁₁NO₂).

For each salinity level, the pots were divided to nine groups according to foliar application of Si and GB treatments.

Foliar applications were sprayed twice per month starting after 30 days from transplanting and the saline solution (the volume of water added to plants was 3.450 l /pot according to 100% field capacity determined in used soil) was used three time weekly in the summer and twice a week in the winter, and the pots leached with tap water up to field capacity once each month to avoid salt accumulation in root zone.

Hence, the experiment included three levels of salinity as well as control in which the plants irrigated with tap water (control) and nine levels

Texture class

Table(1): Physical and chemical analysis of the used soil.

	87.0			7.8		5.2	ly loamy			
	EC									
рН 1:2.5	E.C dSm ⁻¹	Solul	ole catio	ns (me	eq/l)	Soluble anions (meq/l)				
7.40	0.87	Ca ⁺⁺	Mg^{++}	Na ⁺	\mathbf{K}^+	CO ⁻ ₃	HCO ⁻ 3	Cl	SO ⁻ 4	
7.40	0.87	2.20	1.45	1.73	2.96	-	2.45	3.40	2.49	

Clay(%)

Silt(%)

of foliar application of Si and GB, making 36 treaments with three replicates for each treatment as follows:

- 1- Tap water(control)
- 2-Spraying with 100 mg/l Si (Si₁)
- 3- Spraying with 200mg/l Si (Si₂)
- 4- Spraying with 200mg/l GB (GB₁)
- 5- Spraying with400mg/l GB (GB₂)
- 6- Spraying with 100mg/l Si+ 200mg/l GB (Si₁₊GB₁)
- 7- Spraying with 100mg/lSi + .400m g/l GB $(Si_{1+}GB_2)$
- 8- Spraying with 200mg/l Si +200mg/l GB (Si_2+GB_1)
- 9- Spraying with200mg /l Si +400mg/l GB $(Si_{2+}GB_2)$

The following data were recorded at the end of September of both seasons.

- Seedling height (cm)

- -Root length (cm)
- Stem diameter (cm).
- -Number of leaves /seedling

-Fresh and dry weights of shoots and roots (g/ seedling).

2.2. Chemical analysis

- Total chlorophylls (mg/g fresh weight of leaves) were extracted with dimethyl formamide solution according to Mornai (1982).

- Total sugars were determined in shoots using the phenol sulphuric acid reagent as the method described by Dubois *et al.* (1956)

- Free proline concentration in shoots was measured colorimetrically using ninhydrin reagent according to Bates *et al.* (1973).

Nutritional elements determination:

The wet digestion of 0.5 g of dry plant material (shoots) with sulphuric and perchloric acid was used as described by Piper (1947).

- a) Nitrogen concentration was detrmined by Nessler method according to the Official Methods of Analysis A.O.A.C. (1990).
- b) Phosphorus concentration was estimated colorimetrically using the chlorostannous reduced molybdophosphoric blue colour method as described by King (1951).
- c) Sodium and potassium concentrations were determined using the flame photometer apparatus CORNINGM410 as described by

Chapman and Pratt (1961).

e) Chloride concentration was detrmined by titration method with silver nitrate according to Brown and Jackson (1955).

2.3. Statistical analysis

The layout of the experiment was split plot design, as the main plots were salinity levels and subplots were the foliar applications of Si and GB ,so the experiment included 36 treatments, each treatment had three replicates. The obtained data were statistically analyzed according to Duncan multiple range test 5% (1955) and Snederor and Cochran (1980).

3. RESULTS AND DISCUSSIONS

3.1. Alleviation of salinity effects on the growth parameters of *Populus nigra* seedlings by exogenous application of silicon and glycine betaine

3.1.1. Seedling height

Data presented in Table (2) indicated that increasing salinity levels significantly decreased seedling height in descending order (98.90, 91.37 and 86.39 cm) with the treatments 3.0, 5.0 and 7.0 dSm⁻¹ ,respectively, in the first season compared to the control (132.4 cm).

Regarding foliar application of Si and GB, the data illustrated that all treatments significantly increased the seedling height as compared to control, moreover increasing the concentration of both Si and/or GB significantly increased seedling height except for the treatment of $Si_{1+}GB_1$ and $Si_{2+}GB_1$.

The interaction between salinity level of irrigation water and foliar application of Si and/or GB, showed that in the first season, plants irrigated with the lowest level of salinity (3 dSm⁻¹) and sprayed with Si₂₊GB₂ resulted in the tallest seedlings (125.0cm), whereas control recorded (120.0 cm), and this increased seedling height by 4.2%, whereas shortest seedlings were recorded in the plants irrigated with high level of salinity (7 dSm⁻¹) without exogenous application (72.0cm), but the highest value under the same salinity level was found with Si₂+GB₂ treatment (96.67 cm). Similar results were obtained in the second season.

Charactere		Seedlings height (cm) Salinity levels (dSm ⁻¹)												
Salinity levels	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean				
Treatments		Fi	rst season	2018/20	Second season 2019/2020									
Control	120.7e	88.00no	79.67s	72.00t*	90.09H	125.0j	101.7m	87.33p	66.00u*	95.01H				
Si 1	123.0de	89.00m-o	83.00qr	80.67rs	93.92G	128.3i	115.3k	92.330	69.33t	101.32G				
Si 2	125.30d	91.67j-l	85.00pq	82.33r	96.08F	135.7f	123.7j	95.33n	73.00s	106.93F				
GB ₁	132.3c	94.00ij	90.67k-m	85.33pq	100.58E	143.7e	130.70hi	111.71	76.00r	115.53D				
GB ₂	133.3c	96.00hi	92.33j-1	87.00op	102.16D	147.0d	136.7f	117.7k	53.67v	113.77E				
Si 1+GB 1	137.3b	100.70g	96.0hi	90.171-n	106.04C	150.7c	143.3e	124.0j	82.33q	125.08C				
Si 1+GB 2	140.7a	103.7f	97.33h	93.00jk	108.68B	155.0b	146.7d	132.7gh	86.67p	130.27B				
Si 2+GB 1	137.0b	102.0fg	95.67hi	90.331-n	106.25C	152.0c	141.0e	123.3j	80.67q	124.25C				
Si 2+GB 2	142.3a	125.0d	102.7fg	96.67h	116.67A	162.0a	150.3c	134.7fg	90.670	134.42A				
**Mean	132.4A	98.90B	91.37C	86.39D		144.38A	132.16B	113.23C	75.37D					

 Table (2): Alleviation of salinity effects on seedling height (cm)of *Populus nigra* seedlings by exogenous application of silicon and glycine betaine during 2018/2019 and 2019/2020.

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

*Mean values in the same row or column within the interaction followed by the same small letter are not significant at 5%.

3.1.2. Stem diameter

As shown in Table (3) the data indicated that increased salinization levels significantly decreased stem diameter in a descending order (1.29, 1.18 and 1.04 cm) with the treatments of 3.0,5.0 and 7.0 dSm⁻¹, the respectively in the first season compared to control (1.36 cm).

Regarding foliar application of Si and GB the data illustrated that all treatments significantly increased stem diameter as compared to control (neither salinized nor sprayed plants). On the other hand, increasing concentration of both Si and/or GB significantly increased stem diameter..

Also, the data about the interaction between salinity level and foliar application of Si and/or GB, in the first season showed that, the plants irrigated with the lowest level of salinity (3 dSm^{-1}) and sprayed with Si₂+GB ₂ recorded the thickest stem diameter (1.74 cm) compared to control (neither salinized nor sprayed) which giving 83% increment, recorded (0.95 cm) the lowest value of stem diameter whereas exhibited in the plants irrigated with high level of salinity (7 dSm⁻¹) without any exogenous application of Si or GB (0.74 cm) but the highest value under the same salinity level was recorded with Si_2+GB_2 (1.30 cm). Similar results were

obtained in the second season except with Si_1 + GB_2 and Si_2 + GB_1 which showed no significant difference.

3.1.3. Root length

Data in Table (4) indicated that increasing salinization levels significantly decreased root length giving 55.22, 52.19 and 47.78 cm with the treatments of 3.0, 5.0 and 7.0 dSm⁻¹ salinity level respectively in the first season compared to control (non salinized 59.59 cm). The foliar application of Si and GB treatments significantly increased the root length as compared to control (neither salinized nor sprayed). On the other hand, increasing the concentration of both Si and/or GB significantly increased root length.

Concerning the interaction effects, it was found that the plants irrigated with salinity at 3 dSm⁻¹ and sprayed with Si₂ +GB ₂ recorded the longest roots (66.67 cm) compared to the control (46.0 cm) and this increased root length by 45%, whereas shortest roots, exhibited in the plants irrigated with salinity at 7 dSm⁻¹ and did not receive any exogenous application of Si or GB (35.0 cm) but the longest roots under the same salinity level were obtained with Si₂+GB₂ (57.0 cm). Similar results were obtained in the second season, except for the treatments of Si₁ +GB₁ and Si₂+GB₁.

Charactere					Stem o	diameter	r (cm)						
				-	Salinity	y levels (dSm ⁻¹)		-				
Salinity levels	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	Control	3 dSm ⁻¹	5 dSm ⁻¹	¹ 7 dSm ⁻¹	***Mean			
Treatments		First season 2018/2019 Second season 2019/2020											
Control	0.95q	0.86s	0.81t	0.74v*	0.84I	1.22q	0.91s	0.81t	0.66v*	0.90H			
Si 1	1.120	1.09p	0.91r	0.79u	0.98H	1.250	1.21p	0.83r	0.69u	1.00G			
Si 2	1.18n	1.140	0.97q	0.81t	1.02G	1.29n	1.230	0.86q	0.72t	1.03F			
GB ₁	1.27j	1.20m	1.12o	0.95q	1.14F	1.31j	1.26lm	0.910	0.75q	1.06E			
GB ₂	1.44f	1.25k	1.25k	1.17n	1.28E	1.34f	1.30k	0.94k	0.79n	1.09D			
Si 1+GB 1	1.45ef	1.45ef	1.31i	1.19m	1.35C	1.37f	1.32f	1.33i	0.82m	1.21B			
Si ₁₊ GB ₂	1.48d	1.46e	1.34h	1.23k	1.38B	1.43d	1.37e	1.09f	0.87k	1.19BC			
Si ₂₊ GB ₁	1.45ef	1.40g	1.30i	1.211	1.34D	1.38ef	1.34g	1.09i	0.881	1.17C			
Si ₂₊ GB ₂	1.91a	1.74b	1.59c	1.30i	1.63A	1.64a	1.43b	1.22c	0.93i	1.30A			
**Mean	1.36A	1.29B	1.18C	1.04D		1.36A	1.26B	1.01C	0.79D				

Table (3): Alleviation of salinity effects on Stem diameter (cm) of Populus nigra seedlings by exogenous
application of silicon and glycine betaine during 2018/2019 and 2019/2020.

 $Si_{l}(Silicon 100 mg/l), S_{2}(Silicon 200 mg/l), GB_{1}(Glycin betian\ 200 mg/l), GB_{2}(Glycin betian\ 400 mg/l).$

values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

*Mean values in the same row or olumn within the interaction followed by the same small

Table (4): Alleviation of salinity effects on Root length (cm) of Populus nigra seedlings by exogeno	us application of
silicon and glycine betaine during 2018/2019 and 2019/2020.	

Charactere				2012 4114		t length (cm)			
						y levels (· · ·			
Salinity levels	Control	$3 dSm^{-1}$	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean
Treatments		Fi	rst seaso	Second	season 20	19/2020				
Control	46.00qr	43.00st	40.00u	35.00v*	41.00I	60.33g	44.00mn	35.00op	27.67q*	41.75H
Si 1	51.00l-n	46.00qr	45.33qr	41.67tu	46.00H	65.33f	47.33kl	42.00n	34.00p	47.17G
Si 2	53.00i-l	50.33m-o	46.67q	44.00rs	48.50G	67.00d-f	51.00ij	44.33mn	37.000	49.83F
GB ₁	55.67f-h	52.00j-m	48.67op	47.33pq	50.92F	69.00de	55.33h	47.67kl	42.3n	53.58E
GB ₂	60.33e	55.00g-i	53.33i-k	50.33m-o	54.5E	73.00c	60.33g	52.33i	45.33lm	57.75D
Si 1+GB 1	66.00bc	60.33e	56.00f-h	51.33k-n	58.42C	75.33bc	65.67f	56.00h	49.33jk	61.58C
Si ₁₊ GB ₂	67.67b	66.33bc	59.67e	54.00h-j	61.92B	75.67b	69.00de	60.00g	56.67h	65.34B
Si ₂₊ GB ₁	65.00cd	57.33f	56.00f-h	49.33no	56.92D	75.33bc	66.67ef	56.33h	47.00kl	61.33C
Si ₂₊ GB ₂	71.67a	66.67bc	64.00d	57.00fg	64.84A	85.67a	77.00b	69.33d	60.33g	73.08A
**Mean	59.59A	55.22B	52.19C	47.78D		71.85A	59.59B	51.44C	44.41D	

 $Si_1(Silicon 100 mg/l), S_2(Silicon 200 mg/l), GB_1(Glycin betian \ 200 mg/l), GB_2(Glycin betian \ 400 mg/l), S_2(Silicon 200 mg/l), S$

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

3.1.4.Number of leaves/seedling

Data presented in Table (5) indicated that there were significant decreases in the number of leaves in a descending order (58.70, 49.30 and sprayed with Si_2+GB_2 (55.67leaves/plant). Similar results obtained in the second season except with Si_1+GB_1 and Si_2+GB_1 which showed no significant differences.

Table (5): Alleviation of salinity effects on number of leaves/plant of Populus nigra seedlings by exogenous
application of silicon and glycine betaine during 2018/2019 and 2019/2020.

	1	No. of leaves/plant											
Chanastana							· ·						
Charactere	-	Salinity levels (dSm ⁻¹)											
Salinity levels	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	Control	$3 \mathrm{dSm}^{-1}$	5 dSm ⁻¹	7 dSm ⁻¹	***Mean			
Treatments		Fir	st seasoi	n 2018/2	019		Second	l season 20	19/2020				
Control	35.330	25.33r	22.00s	16.00t	24.67I	50.33kl	34.330	27.00pq	20.67r	33.08H			
Si 1	38.67n	32.33pq	60.67q	20.33s	30.50H	55.33hi	42.33m	33.670	24.67q	39.00G			
Si ₂	44.00m	40.00n	34.00op	21.67s	34.92G	60.33g	48.001	38.00n	29.00p	43.83F			
GB ₁	75.33f	52.671	43.67m	24.67r	49.09F	65.00f	57.00hi	44.00m	33.000	49.75E			
GB ₂	82.00e	62.00ij	56.67k	27.00r	56.92E	69.00d	62.00g	48.67kl	38.67n	54.59D			
Si 1+GB 1	76.67d	66.33h	60.00j	31.67pq	61.17D	72.67c	67.00d-f	51.33h	43.00m	58.50C			
Si 1+GB 2	92.00b	82.67e	64.33hi	43.67m	70.67B	80.33b	73.00c	57.33h	47.671	64.58B			
Si ₂₊ GB ₁	87.33cd	77.33f	60.00j	40.67n	66.33C	75.00c	65.67ef	55.00hi	44.00m	59.92C			
Si 2+GB 2	95.00a	89.67bc	72.33g	55.67k	78.17A	87.00a	78.33b	67.67de	54.00ij	72.00A			
**Mean	70.70A	58.70B	49.30C	31.26D		68.33A	58.63B	47.07C	37.19D				

 $Si_1(Silicon 100 mg/l), S_2(Silicon 200 mg/l), GB_1(Glycin betian \ 200 mg/l), GB_2(Glycin betian \ 400 mg/l), S_2(Silicon 200 mg/l), S$

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability. **Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

*Mean values in the same row or column within the interaction followed by the same small letter are not significant at 5%.

31.26 leaves/plant) with the treatments of 3.0,5.0 and 7.0 dSm^{-1} salinity level, respectively, in the first season compared to the control (70.70 leaves/plant).

Regarding foliar application of Si and GB data illustrated that all treatments significantly increased the number of leaves as compared to control (non salinized). On the other hand, increasing concentration of both Si and/or GB significantly increased the number of leaves.

Regarding the interaction effect between salinity level and foliar application of Si and/or GB, the obtained data showed that the plants irrigated with the lowest level of salinity $(3dSm^{-1})$ and sprayed with Si₂+GB₂ formed the the number of leaves highest (89.67 leaves/plant) compared to control (35.33 leaves/plant) and this increased number of leaves by 154%, whereas the least number of leaves was exhibited in the plants irrigated with high level of salinity (7 dSm⁻¹) and did not receive any exogenous application of Si or GB (16.00 leaves/plant), but the highest value under the same salinity level was recorded in plants

3.1.5. Fresh and dry weights of shoots

Data presented in Tables (6 and 7) indicated that increased salinization levels significantly decreased fresh and dry weights of shoots in descending order giving (141.2,131.1 and 111.6 g/plant) and (49.50, 43.28 and 35.91 g/plant) with the treatments of (3.0, 5.0 and 7.0 dSm⁻¹ salinity level),respectively, in the first season compared to the control non salinized 149.1 and 53.13 g/plant, respectively.

Regarding foliar application of Si and GB, it was found that all treatments significantly increased fresh and dry weights of shoots as compared to control (neither salinized nor sprayed). On the other hand, increasing concentration of both Si and/or GB significantly increased fresh and dry weights of shoots except with Si₁+GB₁, Si₂+GB₁ and Si₁+GB₂ which showed no significant differences in the dry weight.

As for the interaction, the data showed that the plants irrigated with the lowest level of salinity (3 dSm⁻¹) and sprayed with Si_2+GB_2 recorded the highest value of fresh and dry

Charactere			Fresh weights of shoots (g/plant) Salinity levels (dSm ⁻¹)								
Salinity levels	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	
Treatments		Fi	irst seaso	<u>n 2018/2</u>)19	Second season 2019/2020					
Control	126.7kl	118.3no	92.67q	82.00s*	104.9I	141.0kl	125.70	118.0p	71.33v*	114.0I	
Si 1	131.3j	121.7mn	115.0op	86.67r	113.7H	145.7j	135.0mn	126.70	76.00u	120.9H	
Si ₂	134.0ij	131.7j	121.7mn	92.33q	119.9G	150.7hi	140.3kl	132.0n	82.67t	126.4G	
GB ₁	143.7g	137.0hi	133.0ij	111.0p	131.2F	158.0fg	143.3jk	138.0lm	85.33st	131.2F	
GB ₂	151.3de	141.7g	137.0hi	120.0mr	137.5E	162.7de	147.3ij	141.3kl	89.00s	135.1E	
Si 1+GB 1	156.0c	148.7ef	141.0gh	124.0lm	142.4D	168.0c	151.7h	146.0j	94.00r	139.9D	
Si ₁₊ GB ₂	165.0b	155.0cd	145.3fg	130.3jk	148.9B	172.0b	161.3ef	150.7hi	96.67r	145.2B	
Si ₂₊ GB ₁	162.3b	151.7с-е	142.0g	126.01	145.5C	166.7c	157.0g	150.3hi	94.67r	142.2C	
Si 2+GB 2	171.3a	165.0b	152.0с-е	132.3j	155.2A	182.7a	166.0cd	158.3fg	111.0q	154.5A	
**Mean	149.1A	141.2B	131.1C	111.6D		160.8A	147.5B	140.1C	88.96D		

 Table (6): Alleviation of salinity effects on fresh weights of shoots (g/plant)of Populus nigra seedlings by exogenous application of silicon and glycine betaine during 2018/2019 and 2019/2020.

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

*Mean values in the same row or column within the interaction followed by the same small letter are not significant at 5%.

			Dry weights of shoots (g/plant)										
Charactere			Salinity levels (dSm ⁻¹)										
Salinity levels	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean	Control 3	dSm ⁻¹ 5	dSm ⁻¹	7 dSm ⁻¹	***Mean			
Treatments		Fi	rst seaso	n 2018/2	019		Second s	season 20	19/2020				
Control	46.33f-h	42.53j-1	31.930	27.00p*	36.95I	43.60kl	38.07o	35.60p	$20.79v^*$	34.52H			
Si 1	47.73f	44.57g-j	35.63n	28.33p	39.04H	48.53e-h	41.20l-n	39.07no	22.31uv	37.78G			
Si 2	48.17f	46.57f-h	40.20lm	27.93p	40.72G	46.27h-j	43.43kl	40.73mn	24.17tu	38.65G			
GB ₁	51.53de	47.23fg	43.57i-k	31.670	43.50F	48.67e-h	45.23jk	42.27lm	25.67st	40.46F			
GB ₂	53.67cd	47.23fg	45.63f-i	38.43m	46.24E	50.54с-е	46.73h-j	43.47kl	26.35r-t	41.77E			
Si ₁₊ GB ₁	55.67bc	51.89de	46.70fg	41.30kl	48.89CD	52.30bc	47.83f-i	45.80i-k	28.37qr	43.58D			
Si 1+GB 2	57.89b	55.64bc	48.00f	42.07j-1	50.90B	53.71ab	50.33с-е	47.00h-j	29.21q	45.06BC			
Si 2+GB 1	56.87b	53.87cd	47.00fg	42.57j-l	50.08BC	51.90b-d	49.67d-g	47.53g-j	27.73q-s	44.21CD			
Si 2+GB 2	60.33a	56.01bc	50.90e	43.93h-k	52.79A	55.23a	51.50b-d	50.03c-f	33.63p	47.60A			
**Mean	53.13A	49.50B	43.28C	35.91D		50.08A	46.00B	43.50C	26.47D				

 Table (7): Alleviation of salinity effects on dry weights of shoots (g/plant) of Populus nigra seedlings by exogenous application of silicon and glycine betaine. during 2018/2019 and 2019/2020.

Si₁(Silicon100mg/l),S₂(Silicon200mg/l),GB₁(Glycinbetian 200mg/l),GB₂(Glycinbetian 400mg/l)

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

weights of shoots (165.0 and 56.01 g/plant) compared to the control (126.7 and 46.33 g/plant), which increased the fresh and dry weights of shoots by 30 % and 21%, respectively, whereas the lowest value was obtained in the plants irrigated with high level of salinity (7 dSm⁻¹) without exogenous application of Si and GB (82.0 and 27.0 g/plant) but the highest values under the same salinity level was recorded in plants sprayed with Si₂+GB₂ (132.3 and 43. 93 g/plant). Similar results were obtained in the second season.

3.1.6. Fresh and dry weights of roots

Data presented in Tables (8 and 9) indicated that increased salinity levels in irrigation water significantly decreased fresh and dry weights of roots in descending order (57.07,51.70 and 48.26 g/plant) and (16.31, 14.88 and 11.75 g/plant) with the treatments of (3.0, 5.0 and 7.0 dSm^{-1/}) compared to the control (62.29 and 17.40 g /plant).

With regard to the effect of Si and GB, the data illustrated that all treatments significantly increased fresh and dry weights of roots as compared to control (neither salinized nor sprayed). On the other hand, increasing concentration of both Si and/or GB significantly increased fresh and dry weights of roots except with Si₁+GB₁ and Si₂+ GB₁, which showed no significant difference .

The interaction showed that the plants irrigated with the lowest level of salinity (3 d Sm⁻¹) and sprayed with Si₂+GB ₂ recorded the highest value of fresh and dry weights of roots (70.33 and 20.43 g/plant) compared to the control (46.33 and12.47 g/plant) which increased 52 % and 39% over the control, respectively. Whereas, the lowest value of fresh and dry weights of roots exhibited in the plants irrigated with high level of salinity (7dSm⁻¹) and did not receive any exogenous application (28.67 and 5.63 g/plant) but the highest value under the same salinity level was obtained with Si₂+GB₂ (61.00 and 16.27 g/plant). Similar results were obtained in the second season .

Finally, the obtained results showed that salinity deteriorated all growth parameters of *Populus nigra* seedlings and this deterioration increased with increasing the salinity level of irrigation. This inhibitory effect of salinity may be due to a number of physiological processes such as a decrease in meristematic activity and/ or cell enlargement (Sakr *et al.*, 2007) and also may be attributed to high osmotic pressure of soil solution which restricted the absorption of water by plant root and /or to the toxic effects of certain ions present in soil solution (Nour ElDin *et al.*, 1984).

				F	resh weig	hts of ro	ots (g/pla	ant)				
Charactere		Salinity levels (dSm ⁻¹)										
Salinity levels												
Treatments	Control	$3 \mathrm{dSm}^{-1}$	$5 \mathrm{dSm}^{-1}$	7 dSm ⁻¹	***Mean	Control	3 dSm ⁻¹	$5 \mathrm{dSm}^{-1}$	7 dSm^{-1}	***Mean		
		Fii	rst seaso	n 2018/2	019		Second	season 2	019/2020			
Control	46.331	40.33m	33.00n	28.67o*	37.08H	62.00kl	49.33q	40.33st	25.33w*	44.25H		
Si 1	51.67k	46.671	41.00m	34.00n	43.34G	65.33h-j	52.671m	46.00r	29.33v	48.33G		
Si 2	55.33ij	50.33k	43.00m	40.33m	47.25F	67.33gh	57.00n	51.33pq	32.00uv	51.92F		
GB ₁	60.33cd	55.33ij	50.33k	43.67m	52.42E	72.33e	60.67lm	55.33no	34.00u	55.58E		
GB ₂	63.00ef	60.33f-h	55.33ij	52.00jk	57.67D	77.33e	64.00i-k	58.33mn	38.00t	59.42D		
Si 1+GB 1	67.33cd	63.00ef	59.33f-h	57.67g-i	61.83C	81.33c	66.67g-i	61.33kl	41.00s	62.58C		
Si 1+GB 2	71.33b	65.33de	61.67f	59.67f-h	64.50B	86.00b	71.67ef	69.00fg	44.67r	67.84B		
Si ₂₊ GB ₁	69.00bc	62.00ef	59.67f-h	57.33hi	62.00C	79.00cd	71.00ef	63.33j-l	41.67s	63.75C		
Si ₂₊ GB ₂	76.33a	70.33bc	62.00ef	61.00fg	67.42A	92.67a	80.67c	71.33ef	57.33n	75.50A		
**Mean	62.29A	57.07B	51.70C	48.26D		75.92A	63.74B	57.34C	38.15D			

 Table (8): Alleviation of salinity effects on Fresh weights of roots(g/plant)of Populus nigra seedlings by exogenous application of silicon and glycine betaine. during 2018/2019 and 2019/2020.

Si₁(Silicon100mg/l),S₂(Silicon200mg/l),GB₁(Glycinbetian 200mg/l),GB₂(Glycinbetian 400mg/l)

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

	Dry weights of roots (g/plant)									
Charactere	Salinity levels (dSm ⁻¹)									
Salinity levels										
	Control	$3 \mathrm{dSm}^{-1}$	5 dSm ⁻¹	7 dSm ⁻¹ *	**Mean	Control.	$3 \mathrm{dSm}^{-1}$	5 dSm ⁻¹	7 dSm ⁻¹	***Mean
Treatments		First season 2018/2019			Second season 2019/2020					
Control	12.47k-m	10.47no	8.33p	5.63q*	9.23H	16.67i-l	14.10no	9.47s	4.90v*	11.29H
Si 1	13.89i-1	12.78j-m	11.67mn	8.08p	11.61G	17.72i-k	15.87lm	11.29qr	6.11u	12.75G
Si 2	15.43f-i	14.08h-k	12.33lm	9.17op	12.75F	19.21h	16.63j-l	13.10op	7.43t	14.09F
GB ₁	17.10d-f	15.78f-h	14.08h-k	10.63no	14.40E	21.47ef	17.93ij	13.500	7.93t	15.21E
GB ₂	18.23cd	17.77с-е	15.73f-h	12.60k-m	16.08D	22.65de	18.01i	15.20mn	9.67s	16.38D
Si 1+GB 1	18.21cd	18.33cd	16.87d-f	14.17h-k	16.90C	24.03c	19.73gh	16.44k-m	10.87r	17.77C
Si 1+GB 2	20.33b	19.11bc	18.19cd	14.87g-i	18.13B	25.60b	20.87fg	17.23i-k	12.23pq	18.98B
Si 2+GB 1	18.10cd	18.00cd	17.57с-е	14.37h-j	17.01C	23.63cd	20.55fg	17.20i-k	11.60qr	18.25C
Si 2+GB 2	22.87a	20.43b	19.13bc	16.27e-g	19.68A	28.23a	23.58cd	20.04gh	15.43lm	21.82A
**Mean	17.40A	16.31B	14.88C	11.75D		22.13A	18.59B	14.83C	9.57D	

 Table (9): Alleviation of salinity effects on dry weights of roots(g/plant)of Populus nigra seedlings by exogenous application of silicon and glycine betaine during 2018/2019 and 2019/2020..

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%.

*Mean values in the same row or column within the interaction followed by the same small letter are not significant at 5%.

Also, the results revealed that exogenous foliar application of Si and/or GB could alleviate the harmful effects of salinity on all growth parameters of the plant, which may be due to that, Si have been associated with an increase in antioxidant defense abilities and enhanced plant tolerance to abiotic stress (Liang et al., 2006 and Gong et al., 2005). Exogenous application of GB to plants before ,during or after stress exposure have been shown to enhance plant growth and final crop vield under stress conditions (Kanu et al., 2017). The exact mechanism of the effect of these osmoregulators may be due to osmotic protection (Arteca, 1996) or promotion of the uptake of essential macronutrients which then facilitated normal growth and development (Foyer and Spencer 1986).

3.2. Alleviation of salinity effects on chemical composition of *Populus nigra* seedlings by exogenous application of silicon and glycine betaine

3.2.1. Total chlorophylls

Data presented in Table (10) indicated that increased salinization levels significantly decreased total chlorophylls in a descending order (0.75, 0.71 and 0.64 mg/g F.W.), the treatments were (3.0, 5.0 and 7.0 dSm⁻¹ salinity levels), respectively, compared to the control (0.80 mg/g F.W).

Regarding foliar application of Si and GB, the obtained data indicated that all treatments significantly increased total chlorophylls as compared control. but increasing to concentration of both Si and/or GB significantly increased it. Also, the data of the interaction between salinity level and foliar application of Si and/or GB showed that the plants irrigated with the lowest level of salinity (3 dSm⁻¹) and sprayed with Si₂+ GB ₂ recorded the highest value of total chlorophylls (0.82 mg/g F.W) compared to control (0.72 mg/g F.W), whereas the least value was recorded in the plants irrigated with high level of salinity (7 dSm^{-1}) only (0.53 mg/g F.W), while the highest value under the same salinity level was obtained with spraying with $Si_2 + GB_2$ (0.69 mg/g F.W.).

3.2.2. Total sugars

There were significant increases in total sugars mg/g F.W. with increased salinization levels in an ascending order (5.25, 6.52 and 6.96 mg/g F.W.) with (3.0, 5.0 and 7.0 dSm⁻¹ salinity levels), respectively, compared to control (4.67 mg/g F.W.) as indicated in Table (10).

As regard foliar application of Si and GB data illustrated that all treatments significantly increased total sugars mg/g F.W as compared to control. On the other hand, increasing concentration of both Si and/or GB significantly increased it.

Fable (10): Alleviation of salinity effectson Total chlorophylls (mg/g F.w.), Total sugar (mg/g F.w.)and
Proline(mg/g D.w) in shoots of Populus nigra by exogenous application of silicon and glycine
betaine during 2019 /2020.

	Total chlorophylls (mg/g F.w)							
Character	Salinity levels (dSm ⁻¹)							
Salinity levels Treatments	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean			
Control	0.72k	0.60p	0.55q	0.53r*	0.60H			
Si 1	0.76gh	0.73jk	0.681	0.60p	0.69G			
Si ₂	0.78f	0.74ij	0.691	0.630	0.71F			
GB ₁	0.79ef	0.76gh	0.681	0.65n	0.72E			
GB ₂	0.81cd	0.78f	0.73jk	0.67lm	0.75D			
Si 1+GB 1	0.83b	0.78f	0.75hi	0.67lm	0.76C			
Si 1+GB 2	0.85a	0.80de	0.77fg	0.681	0.78B			
$Si_{2+}GB_1$	0.81cd	0.79ef	0.75hi	0.66mn	0.75D			
Si 2+GB 2	0.86a	0.82bc	0.79ef	0.691	0.79A			
**Mean	0.80A	0.75B	0.71C	0.64D				
	Total sugars (mg/g F.w)							
Control	3.40r	4.00 p	5.50i-k	6.00h	4.73H			
Si ₁	3.80q	4.50no	5.9oh	6.40g	5.15G			
Si ₂	4.10p	4.70n	6.20g	6.70ef	5.42F			
GB ₁	4.40o	4.90m	6.40g	6.90de	5.65E			
GB ₂	4.70n	5.201	6.70ef	7.10b-d	5.92D			
Si 1+GB 1	5.201	5.40j-1	6.90de	7.20bc	6.17C			
Si 1+GB 2	5.50i-k	5.70i	7.0cd	7.30b	6.37C			
$Si_{2+}GB_1$	5.30kl	6.30g	6.90de	7.20bc	6.52B			
Si 2+GB 2	5.60ij	6. 60f	7.20bc	7.90a	6.82A			
Mean	4.67D	5.25C	6.52B	6.96A				
		P	roline(mg/gD.w)					
Control	2.20k	2.40j	2.50i	2.90de	2.50F			
Si 1	2.40j	2.70h	2.75gh	3.20c	2.76E			
Si ₂	2.44ij	2.75gh	2.80fg	3.30b	2.82D			
GB ₁	2.45ij	2.77f-h	2.82e-g	3.30b	2.84D			
GB ₂	2.47ij	2.79fg	2.85d-f	3.40a	2.88C			
Si 1+GB 1	2.49i	2.80fg	2.89de	3.44a	2.91BC			
Si 1+GB 2	2.52i	2.82e-g	2.90de	3.47a	2.93B			
Si ₂₊ GB ₁	2.50i	2.80fg	2.89de	3.42a	2.90BC			
Si 2+GB 2	2.70h	2.84d-f	2.92d	3.45a	2.98A			
Mean	2.46D	2.74C	2.81B	3.32A				

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%

Also, data of the interaction between salinity level and foliar application of Si and/or GB, showed that the plants irrigated with the highest level of salinity (7 dSm⁻¹) and sprayed with Si₂+GB ₂ increased significantly it (7.90 mg/g F.W) compared to the control (3.40 mg/g F.W), whereas the other spray treatments under the highest salinity level had no significant effect, irrespective to the obvious non significant results of the other salinity treatments.

3.2.3.Proline content(mg/gD.W)

As shown in Table (10), increasing salinization levels significantly increased proline content in an ascending order (2.74, 2.81 and 3.32 mg/g D.W) with the 3.0, 5.0 and 7.0 dSm⁻¹ salinity levels, respectively, compared to the control (2.46 mg/gD.W).

The foliar application of Si and GB significantly increased the proline content as compared to control. Also, increasing the concentration of both Si and/or GB significantly increased it.

The interaction between salinity level and foliar application of Si and/or GB, showed that the highest level of salinity (7 dSm^{-1}) with Si₁+ GB ₂ significantly increased proline content (3.47 mg/gD.W) without significant differences between it and other foliar applications treatments.

These results could be ascribed to that biosynthesis of chlorophylls is generally inhibited by the depressive effect of salt stress on the absorption of some ions which are involved in the chloroplast formation, such as Mg, Fe which could be expected as a reason for chlorophyll suppression in leaves and/ or an increase of growth inhibitors ,such as ethylene or abscisic acid production which enhances which occurred senescence under stress conditions (El-Bagoury et al., 1999) on equisetifolia L.. In fact, Na⁺ Casuarina accumulation affects photosynthesis components such as enzymes, chlorophylls and carotonids (Davenport et al., 2005). The highest content of total chlorophyll was obtained by spraying Si or GB either alone or in combination which may be due to improve photosynthesis activity, enhanced K/Na selectively ratio, increased enzyme activity and increased concentration of soluble substances in the xylem.

The beneficial effects of Si on photosynthetic pigments have observed in *Spartina densiflora* (Mateos *et al.*, 2013), which may be partly attributed to a Si mediated decrease in Na+ uptake and increase in K+ uptake and enhanced antioxidant defense, so it can be concluded that Si could alleviate the oxidative damage in plants under salt stress Yongxing and Haijun (2014). In this respect Ahmed et al. (2000) reported that the accumulation of non toxic substances such as sucrose, proline and organic acids are considered to be a protective adaptation and that the survival of plants under salinity conditions depends upon the regulation of metabolic processes and quantitive ratio between the protective and the toxic intermediates. Also, Yin et al. (2013) found that Si could significantly increase the level of sugar in sorghum under salt stress and could alleviate salt- induced osmotic stress. Proline is considered as a cytoplasm protective osmolyte necessary for adaptation to stress and the increased porline concentration could be a good parameter for salt tolerance plant (Ibrahim, 2008).

3.2.4. N,P and K.

Data presented in Table (11) indicated that all salinization levels significantly decreased N,P and K % in a descending order giving (3.60, 3.40 and 3.10 as for N%), (0.38, 0.35 and 0. 31 for P%) and (3.55, 2.99 and 2.51 for K%) with treatment of (3.0, 5.0 and 7.0 dSm⁻¹), respectively, as compared tocontrol (3.94, 0.43 and 3.83 % for N,P and K respectively.

As for foliar application of Si and GB, the data illustrated that all treatments significantly increased N, P and K % as compared to control (neither salinized nor sprayed). On the other hand, increasing concentration of both Si and/or GB significantly increased N,P and K % and Si₂+GB₂ recorded the highest effective value, whereas means of other treatments showed no significant difference between them.

Also, the data about the interaction between salinity level and foliar application of Si and/or GB, showed that the plants irrigated with the lowest level of salinity (3 dSm⁻¹) and sprayed with Si₂+GB₂ recorded the highest value of N,P and K % (3.78, 0.46 and 3.93%) compared to the control (neither salinized nor sprayed) which recorded (3.60, 0.32 and 3.30 %), whereas the lowest value of N, P and K% exhibited in the plants irrigated with high level of salinity (7 dSm⁻¹) and did not receive any exogenous application (2.70, 0.28 and 2.00 %) but the highest value under the same salinity level was on spraying with Si₂+ GB₂ (3.34, 0.34 and 2.92 %).

	(N%)							
Character	Salinity levels (dSm ⁻¹)							
Salinity levels								
Treatment	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***Mean			
Control	3.60gh	3.301-n	3.10pq	2.70s*	3.18F			
Si 1	3.80de	3.40j-1	3.20n-p	2.90 r	3.33 E			
Si ₂	3.88cd	3.50h-j	3.301-n	3.00qr	3.42D			
GB ₁	3.92bc	3.60gh	3.40j-1	3.10pq	3.51 C			
GB ₂	3.97bc	3.62fg	3.43i-k	3.17op	3.55 C			
Si 1+GB 1	4. 02ab	3.72ef	3.50h-j	3.20n-p	3.61 B			
Si 1GB 2	4.12a	3.78de	3.57gh	3.27m-o	3.69A			
$Si_{2+}GB_1$	4.08a	3.72ef	3.51g-i	3.21no	3.63B			
Si ₂₊ GB ₂	4.10a	3.78de	3.60gh	3.34 k-m	3.70A			
**Mean	3.94A	3.60B	3.40C	3.10 D				
			(P%)					
Control	0.32kl	0.29mn	0.28no	0.280	0.29G			
Si ₁	0.33g-j	0.32kl	0.30 m	0.280	0.31F			
Si ₂	0.34gh	0.34g-i	0.311	0.29mn	0.32E			
GB ₁	0.46c	0.35fg	0.33h-j	0.32kl	0.36D			
GB ₂	0.47b	0.36f	0.34g-i	0.32j-1	0.37C			
Si 1+GB 1	0.48b	0.45c	0.38e	0.33i-k	0.41B			
Si 1+GB 2	0.48b	0.45c	0.39de	0.33i-k	0.41B			
$Si_{2+}GB_1$	0.48b	0.45c	0.38e	0.33i-k	0.41B			
Si ₂₊ GB ₂	0.49a	0.46c	0.39d	0.34gh	0.42A			
**Mean	0.43A	0.38B	0.35C	0.31D				
	(K %)							
Control	3.30i	3.00k	2.30p	2.00r	2.65H			
Si ₁	3.50h	3.20j	2.500	2.20q	2.85G			
Si ₂	3.60g	3.30i	2.70m	2.30p	2.98F			
GB ₁	3.70f	3.50h	2.901	2.500	3.15E			
GB ₂	3.90cd	3.70f	3.20j	2.60n	3.35D			
Si 1+GB 1	3.98bc	3. 74ef	3.26ij	2.67mn	3.41C			
Si 1+GB 2	4.00b	3.82de	3.32i	2.70m	3.46B			
Si ₂₊ GB ₁	3.92bc	3.78ef	3.29i	2.7 0m	3.42 BC			
Si ₂₊ GB ₂	4.60a	3.93bc	3.42h	2.921	3.72A			
**Mean	3.83A	3.55B	2.99C	2.51D				
G' (G'1' 100 /) G (G'1'	000 /l) CD (Cl	· 1 · · · 000	(1) CD (C1 · 1 · ·	100 /1)				

Table (11): Alleviation of salinity effects on N, P and K% in shoots of *Populus nigra* by exogenous application of silicon and glycine betaine during and2019/2020.

***Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%

*Mean values in the same row or column within the interaction followed by the same small letter are not significant at 5%.

3.2.5. Na and Cl %

The data in Table (12) indicated that there were significant increase in Na and Cl % in a ascending order (0.19, 0.24 and 0.29 Na %) and (0.28, 0.30 and 0.35 Cl %) with the treatments of 3.0,5.0 and 7.0 dSm⁻¹ salinity level, respectively, compared to the control (0.11Na % and 0.16 Cl %).

As for foliar application of Si and GB data illustrated that all treatments significantly

decreased Na and Cl % as compared to the Control (neither salinized nor sprayed). On the other hand, increasing concentration of both Si and/or GB significantly decreased Na and Cl % and the lowest value obtained with $Si_{2+}GB_2$ wherease other combinations of Si and GB regard Na% showed no significant difference between their effects, while as regard Cl % other combinations of Si $_1+GB_1$ and Si $_1+GB_2$ showed no significant difference between their effects.

application	of shicon and a	giyeme betame	auring 2019/202	0.				
Character	Salinity levels (dSm ⁻¹)							
Salinity levels	Control	3 dSm ⁻¹	5 dSm ⁻¹	7 dSm ⁻¹	***			
Treatments	Control				***Mean			
Control	0.14i-k	0.33c	0.39b	0.54a*	0.35A			
Si 1	0.13j-1	0.24e	0.32c	0.39b	0.27B			
Si ₂	0. 12kl	0.22f	0.28d	0.38b	0.25 C			
GB ₁	0.12kl	0.19g	0.24e	0.32c	0.22D			
GB ₂	0.11lm	0.15hi	0.21f	0.28d	0.19 E			
Si 1+GB 1	0.11lm	0.14ij	0.23ef	0.24e	0.18 E			
Si 1+GB 2	0.10m	0.14i-k	0.16hi	0.17h	0.14F			
$Si_{2+}GB_1$	0. 10m	0.14i-k	0.15hi	0.17h	0.14F			
Si ₂₊ GB ₂	0.06n	0.13j-l	0.14i-k	0.15hi	0.12G%			
**Mean	0.11D	0.19C	0.24B	0.29A				
	Cl %							
Control	0.26lm	0.32ef	0.42c	0.56a	0.39A			
Si 1	0.20n	0. 32e-g	0.34e	0.46b	0.33B			
Si ₂	0.16 qr	0.31f-h	0.33e	0.38d	0.29C			
GB ₁	0.14rs	0.29h-j	0.32e-g	0.33e	0.27D			
GB ₂	0.13st	0.29 i-k	0.30 – ј	0.32e-g	0.26E			
Si 1+GB 1	0.13st	0.28jk	0.29h-j	0.30g-i	0.25EF			
Si 1+GB 2	0.13st	0.27kl	0.28i-k	0.30 h-j	0.25F			
$Si_{2+}GB_1$	0.13st	0.25m	0.25m	0.29h-j	0.23G			
Si ₂₊ GB ₂	0.12t	0.17pq	0.19 no	0.19op	0.17H			
**Mean	0.16D	0.28C	0.30B	0.35A				

Table (12): Alleviation of salinity effects on Na and Cl % in shoots of *Populus nigra* by exogenous application of silicon and glycine betaine during 2019/2020.

**Means values in the same column within each spraying substances followed by the same capital letters are not significant al level 5% probability.

**Means values in the same row within each irrigated with different levels of salinity followed by same capital letters are not significant at level of 5%

*Mean values in the same row or column within the interaction followed by the same small letter are not significant at 5%.

The interaction was found that irrigating with the lowest level of salinity (3 dSm^{-1}) with $\text{Si}_2 + \text{GB}_2$ treatment recorded the lowest value of Na and Cl % (0.13 Na and 0.17 Cl %) compared to the control (0.14 Na and 0. 26 Cl%), whereas the highest value of Na and Cl % exhibited in the plants irrigated with high level of salinity (7 dSm⁻¹) and did not receive any exogenous application (0.54 Na % and 0.56Cl %) but the lowest value under the same salinity level on spraying with Si₂+ GB₂ was (0.15 Na and 0. 19 Cl%).

Generally, it can be mentioned that N,P and K concentrations decreased significantly corresponding to the increase in salinity levels, and this was with an agreement with Ahmed *et al.*, 2000) who suggested that , salinity might be implicated indirectly in decreasing nitrogen concentration of plant due to the role played by

chloride ions, and several detrimental effects of salinity stress on growth characters might be partially due to a decrease in nitrogen concentration. The reduction of P % in plant by increasing salinity level might be explained as that P is vital element which is involved metabolic processes, but in salt stressed plants more metabolic activities and respiration processes are performed requiring more energy supply to be achieved consequent more P is consumed (Haniyat et al., 1992). In the same direction, K concentration in plants subjected to salinity stress exhibited a significant gradual decline by increasing salinity level, That may be due to the Na+ ions that can substitute K+ ions partially in plant tissue, hence the more concentrated salinity treatment, the more Na+ substitution to consequently K+ ions decrease in plant tissue. (Ashraf and O' leary, 1996).

However there was a general tendency to increase Na and Cl, with increasing salt concentration. It was found that accumulation of Na⁺ and Cl⁻ in the leaves caused damage of seedling which, at last, they died. This indicated that, the ability of some species tolerant to salinity seems to depend on its ability for chloride exclusion. Thus, it could be stated that, salinity appears to affect growth and plant tissue due to either toxic effects of Na+ and/or Cl⁻ accumulation or to the high osmotic potential of the soil solution, (Wang and Han, 2007).

The exogenous application of Si or GB decreased the Na+ and Cl⁻ accumulation in the shoots, this was proposed to be the key mechanism of Si salt tolerance in plants (Liang and Ding, 2002 and Shi et al., 2013). So, it is noticeable worth that Populus nigra plants irrigated with low level of salinity(3 dSm-1) and sprayed with $Si_2 + GB_2$ resulted in an increase in all growth parameters and improving the chemistry of the plants than those irrigated with control (neither salinized nor sprayed). At high salinity (7 dSm⁻¹) spraying the plants with Si_{2+} GB₂ showed similar effects than those irrigated with saline water without any exogenous application. So, it can be concluded that spraying the Populus nigra plants with Si and/or GB counteracted the injurious effects resulting from salinity stress of irrigation.

Conclusion

It could be concluded that, high levels of salinity in irrigation water had a depressive effect on all parameters of growth, also had an effect on chemical composition of Populus nigra. On the other hand, these injuries due to salinity could be avoided by foliar application of silicon or glycine betaine individually or in combination as, they have an ameliorating effect on all morphological and physiological characters. Also, it prevented degradation of chlorophyll, enhanced accumulation of sugars and proline concentration, they improved N, P, K and decreased Na and Cl levels ,so the best growth was recorded with a mixture of Si 200 mg/l and GB 400 mg/l. Moreover, further researches are needed to investigate the effects of Si and GB foliar application on overcoming the harmful effects of salinity under field conditions, where the problem is more complex.

4. REFERENCES.

A.O.A.C. (1990). Association of Official Agriculture Chemists. Official Methods of Analysis, 15th ed., Washington, D.C., U.S.A.

- Agarie S., Agata W., Kubota F. and Kaufman P.B. (1992). Physiological roles of silicon in photosynthesis and dry matter production in rice plants. Japan. J. Crop Sci., 61:200–206.
- Ahmed A.H., Mandour M.S., Ghallab A.M. and Diab J.A. (2000). Effect of nitrogen, potassium and foliar micronutrients fertilization on the the growth, yield and chemical composition of some sorghum cultivars growing under salin and sandy soil conditions. X Int'l Colloq. for the Optimization of Plant Nutrition. Plant Nutrition for the Next Millennuim Nut rients, Yield, Quality and the Enviroment. April 8-13, Cairo- Egypt.
- Arteca R.N.(1996). Plant growth substances, principles and application. Chapman and Hall, New Yprk, USA.
- Ashraf M. and Foolad M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59: 206–216
- Ashraf M. and O leary J.W. (1996). Response of some newly developed salt-tolerant genotypes of spring wheat to salt stress: I-Yield components and ion distribution. J., Agron. Crop Sci., 176 (2): 91-101.
- Bates L., Waldren S. and Teare I.D. (1973). Rapid determination of free proline for water-stress studied. Plant and Soil, 39: 205-207.
- Black C.A. (1892). Methods of Soil Analysis. Part 2. American Society of Agronomy Agronomy. Inc, (Pub.), Madison, Wisconsin, USA.
- Bockhaven V.J., Vleesschauwer D.E. and Höfte D. M. (2013). Towards establishing broad-spectrum disease resistance in plants: Silicon leads the way. J. Exp., Bot., 64:1281–1293.
- Brown J.G. and Jackson R.K. (1955). Anote on the potentiometric determination of chloride. Proc. Amer. Soc. Hort. Sc., 65:187.
- Chapman H.D. and Pratt P.P. (1961). Methods of Analysis for Soil, Plant and Water. Univ. Calif. Division of Agric. Sci., CA., USA.
- Davenport R., James R., Zakrisson A., Plogander M., Tester M. and Munns R. (2005). Control of sodium transport in

durum wheat. Plant Physiol., 137: 807-818.

- Dubois M., Smith F., Gilles K., Hammilton A. and Robers P.A. (1956). Colorimetric method to determination of sugars and related substances. Anal. Chem., 28 (3): 350-356.
- Duncan D.B. (1955). Multiple rangeand Multiple F, test. Biometrics,11:24.
- Ehlting B., Dluzniewska P., Dietrich H., Selle A., Teuber M., Hänsch R., Nehls U., Polle A., Schnitzler J.P., Rennenberg H. and Gessler A. (2007). Interaction of nitrogen nutrition and salinity in grey poplar (*Populus tremula* \times *alba*). Plant Cell Environ., 30: 796–811.
- EL-Bagoury H.A., Hossni Y.A, El-Tantawy A.
 M., Shehata R. and Asmaael I. D. (1999). Effect of saline water irrigation on growth and chemical composition of *Casuarina eguisetifolia* L. seedlings. Egypt. J. Hort., 26: 47-57.
- Epstein E. and Bloom A. J. (2005).In: Mineral Nutrition of Plants: Principles and Perspectives, 2nd Edn.(Massachusetts): Sinaur Associates 400 P, ill., outhor and Subjected indexes. ISBN: 0-87893-172-174. Sinauer, Sunderland (pub.).
- Foyer C. and Spencer C. (1986). The relationship between phosphate status and photosynthesis in leaves. Effects on intracellular orthophosphate distribution, .photosynthesis and assimilate partitioning. Planta, 167(3) : 369-375.
- Gong H. J., Chen K. M., Chen G. C., Wang S. M. and Zhang C. L. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169:313–321.
- Gong H. J., Randall D. P. and Flowers T. J. (2006). Silicon Deposition in the root reduces sodium uptake in rice (*Oryza* sativa L.) seedlings by reducing bypass flow. Plant Cell Environ., 29: 1970–1979.
- Haniyat M., El-Nimr K., Khalil M., Shafica N. and Nasr M. (1992). Growth, physiological and chemical composition of datura plants in saline soils. Egypt. J. Agric. Res., 70 (4): 997-1009.
- Hashemi A., Abodolzadeh H. and Sadeghipour R. (2010).Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, *Brassica napus* L. plants. Soil Sci. Plant Nutr., 56: 244–25

- Ibrahim I. S. (2008). Response of soybean roots to salinity and some mineral nutrients in vitro. J. Boil. Chem. Environ. Sci., 3 (4): 1-20.
- Jiang J., Huo Z. and Feng S. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Res., 137: 78–88.
- Kanu M., Sidhu M., Champak K., and Purnendu
 B. (2017). Exogenous prolin and glycine betaine in plant under stress tolerance.Inr. j. Curr. Microbio.App.Sci.,6 (9): 901-913.
- King E.J.(1951). Micro-Analysis in Medical Biochemistry. 2nd Ed. Churchil.J. and A. churchhill, London, UK.
- Letey J. and Feng G. L. (2007). Dynamic versus steady-state approaches to evaluate 26- irrigation management of salin water. Agric.Water Manag., 91:1.10.
- Liang Y. H., Hua G., Zhu J., Zhang C. and Cheng R. (2006). Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol., 172: 63-72.
- Liang Y.C. and Ding R.X. (2002). Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci. China Ser. C., 45: 298–308.
- Mateos E., Andrades M. and Davy A.J. (2013). Silicon alleviates deleterious effects of high salinity on the halaophytic grass *Spartina densiflora*. Plant Physiol. Biochem., 63:115-121.
- Matoh T., Kairusmee P. and Takahashi E. (1986). Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr., 32: 295-304.
- Mornai R.(1982).Formula for determination of chlorophyllus pigments extracted with N.N dimethyl fomamide.Plant Physiol.,69:1371-1381.
- Nour-El Din A., Hegaz M., Abd-El -Gawad M. and Salem M.O.M. (1984). Effect of gibberellic acid application on som growth characters of wheat under wadi condition.Egypt.j.Agron.,91-2:17-28.
- Parida A.K. and Das A.B.(2004). Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove *Bruguiera parviflora* grown under hydroponic culture. J. of Plant Physiol., 161: 921–928.

- Piper G.S. (1947). Soil and Plant Analysis. Interscience (Pup.), Inc. New York. 368p.
- Sakr M.T., El-Emery M.E. Fouda R.A. and Mowafy M.A. (2007). Role of some antioxidants in alleviating soil salinity stress. J. Agric. Sci. Mansoura Univ., 32: 9751–9763
- Shi Y., Wang Y.C. Flowers T.J. and Gong H. J. (2013). Silicon decreases chloride transport in rice (*Oryza sativa L.*) in saline conditions. J Plant Physiol., 170:847–853.
- Snedecor G. W. and Cochran G.W. (1980). Statistical Methods, 7th ed. Iowa State University Press, (pub.) Ames, Iowa, USA.
- Wang X.S .and Han J.G. (2007). Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil. Sci. Plant Nutr., 53:278–285.
- Yer E.N., Baloglu M.C.and Ayan S. (2018). Identification and expression profiling of all family member genes under salinity stress in different poplar clones. Gene., 678: 324–336.
- Yin L. N., Wang S.W. li J.Y. Tanaka K .and Oka M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses

in the seedling of *Sorghum bicolor*. Acta physiol. Plant. 35 (11), 3099-3107.

- Yongxing Z. and Haijun G. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron.Sustain. Dev., 34:455-472.
- Zhang H.L., Yao J. and Ma X.Y.(2017). *Populus euphratica* J3 mediates root K⁺/Na⁺ homeostasis by activating plasma membrane H⁺-ATPase in transgenic Arabidopsis under NaCl salinity .Plant Cell Tiss Organ Cult., 131:75–88.
- Zhang H.L., Yao J. and Ma X.Y.(2017). Populus euphratica J3 mediates root K^+/Na^+ homeostasis by activating plasma membrane H⁺-ATPase in Arabidopsis under transgenic NaCl salinity . Plant Cell Tiss Organ Cult., 131:75-88.
- Zhao K., Zhang X.M. Cheng Z.H. Yao W.J., Li R. H., Jiang T.B. and Zhou B.R. (2019). Comprehensive analysis of the three-amino-acid-loop-extension gene family and its tissue-differential expression in response to salt stress in poplar. Plant Physiol. Biochem.,136:. 1– 12.

تحسين تأثير الملوحة على نمو شتلات الحور الأسود Populus nigra بإستخدام الرش بالسيليكون والجلسين بيتايين

منى أحمد أمين - عصام الدين نجيب الأطرش

قسم بحوث الأشجار الخشبية – معهد بحوث البساتين – مركز البحوث الزراعية – الجيزة

ملخص

عرضت شتلات الحو الأسود Populus nigra إلى ثلاث مستويات مختلفة من الملوحة 3.0, 5.0 and 7.0 dSm⁻¹ بالإضافة إلى الكنترول.

. تم رش أوراق النباتات بتركيزين من سليكات البوتاسيوم (100 ، و200 ملليجرام /لتر) ومن الجلسين بيتايين (200 و400 مليجرام /لتر) بالإضافة إلى الكنترول لكل معاملة وكانت أهم النتائج المتحصل عليها كالآتي:-

- 1- أدى معاملات الملوحة إلى تقايل كل صفات النمو المدروسة. كذلك قلة محتوى النبات من الكلورفيل والنتروجين والفوسفور وكذلك البوتاسيوم، بينما أدت زيادة مستويات الملوحة إلى زيادة محتوى النباتات من الصوديوم والكلوريد والسكريات و البرولين.
- 2- أدى إُسْتَخدام الرَّش بنوعيه إلى تحسين كل صفات النمو المدروسة وكذلك زيادة كل من النتروجين و الفوسفور والبوتاسيوم و أيضا زيادة كل من الكلور فيل والسكريات والبرولين، بينما أدى الرش إلى قلة محتويات النباتات من الصوديوم وكذلك الكلوريد.
- 3- كان أفضل النتائج المتحصل عليها عند إستخدام معاملات الرش السابقة مركبة من السيليكون والجليسين بالتركيزات الأعلى لكل منهما (200 مليجرام / لتر سليكات البوتاسيوم + 400 ملليجرام /لتر جليسين بيتايين، للتخفيف من الأثار الضارة للملوحة).

المجلة العلمية لكلية الزراعة - جامعة القاهرة - المجلد (71) العدد الرابع (أكتوبر 2020): 341- 356.