
Personal non-commercial use only. PUJ copyright © 2021. All rights reserved                                                             DOI: 10.21608/puj.2021.95583.1132

229

INTRODUCTION
The phlebotamine insect vector deposits 

metacyclic promastigotes during its blood meal that 
initiate the infection. The earliest sign of cutaneous 
leishmaniasis (CL) is a small erythema that proceeds 
into a papule and then into a nodule that gradually 
ulcerates in two weeks to six months, producing the 
distinctive lesion of localized CL (LCL)[1]. Once in the 
skin, the parasites interrelate with the extra-cellular 
matrix of connective tissue and basement membrane 
proteins, until the establishment of infection within 
phagolysosomes of the macrophages[2]. Currently 
available drugs for treatment of this dermal 
disease have restricted therapeutic effects, due to 
their frequent adverse reactions, drug resistance, 
or the parasite-host immune relationship. This 
drug resistance was found to be provoked by the 
virulence of the parasite and the immune aspects in 
the host[3,4]. Recently, substantial efforts have been 
made to modernize drug delivery systems to boost 
the bioavailability and pharmacokinetic profiles of 
conventional drugs[4,5]. In addition, phototherapy has 
been regarded as an updated therapeutic modality 
in leishmaniasis[5]. The current review discusses 
the therapeutic modalities as regards: I) the drug 
resistance; II) Leishmania virulence; III) The ability of 
Leishmania amastigotes to cause immunomodulation 
and immune-evasion and thus the severity of the 
disease; IV) New therapeutic modalities.

[I] Resistance to current medical therapeutics
1. Antimonial drugs

Since the 1950s, pentavalent antimony (SbV), 
sodium antimonate gluconate (SSG) or meglumine 

antimonate have been widely used to treat all 
clinical forms of leishmaniasis[6], as replacement for 
the Tartar emetics that were extremely effective in 
treating leishmaniasis but were abandoned due to 
their toxicity[7].

Dose and route of administration: Parenteral 
administration for at least three weeks (20-30 d, 20 mg 
SbV/kg/d)[5]. SbV drugs are rapidly absorbed into the 
blood, with a half-life of 2 h and an average terminal 
half-life of 76 h when administered intravenously[8]. 
In endemic areas intralesional treatment is 
recommended due to its standard systemic efficiency, 
fewer side effects and lower economical costs[9].

Mechanism of action: Despite the long use of 
antimony, its mode of action is still poorly understood. 
Several studies have shown that SbV drugs which are 
biologically inactive pro-drugs become reduced to a 
toxic and active form of trivalent antimonials (SbIII) 
against Leishmania[10]; either in the cell of the host and/
or the parasite[11] (Figure 1). The molecular targets of 
the drug involve the tryptophane redox system[12] that 
maintains the cytosolic redox homeostasis and the 
zinc finger motifs[13]. The later molecules bind to the 
surface glycoprotein in the parasite and are directly 
convoluted in its DNA replication. Additionally, it 
suppresses the purine transporters in Leishmania[14].

However, in visceral leishmaniasis (VL), 
the efficiency of antimonials deteriorates in 
immunocompromised patients[15] accentuating the 
essential role of immune competency. In the same 
context, SbV was found to be dependent on the 
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subsets of CD4+ and CD8+ T cells, and their cytokines 
profiles[16] as well as the triggered production of 
reactive oxygen species (ROS) and nitric oxide (NO) in 
mouse macrophages[17]. Interestingly, co-treatment of 
infected macrophages with exogenous IFN-γ and TNF-α 
can considerably destroy the parasites and lead to SbV 
accumulation[16]. It is also organ-dependent, being more 
efficient in the liver than the spleen or bone marrow[18] 
due to the pharmacokinetic profile of the drug[19].

Side effects and drug resistance: Injection pain and 
systemic side effects have been recorded[20]. Sodium 
antimony gluconate despite being described with 
minor side effects at the therapeutic doses[6], has 
cumulative effects such as acute interstitial nephritis 
and cardiotoxicity during or after a long course of drug 
administration[20,21]. Dangerous cardiotoxicity features 
occur in 50% of the patients and include a concave 
ST segment, corrected QT interval prolongation 
followed by multiple ventricular ectopic foci, then 
ventricular tachycardia, torsade de pointes, ventricular 
fibrillation[15] and diminution in the height of T waves 
and T-wave inversion[22]. This was attributed to the high 
affinity for sulfhydryl groups that affect the calcium 
channels[23].

In accordance, it has been found to prolong the 
action potential of ventricular myocytes in guinea pigs 
at therapeutic doses with developed QT prolongation 
and life-threatening arrhythmias[24]. Higher doses 
of SbV were found to be associated with increased 
pancreatitis[25] especially in AIDS patients[26]. In New 
World CL, elevation of pancreatic and liver enzymes 
was also observed in a study at the dose of 20 mg/
kg/d for 20 d[27]. In Brazil, a higher frequency of skin 
reactions was observed in some patients with CL 
treated with meglumine antimoniate, due to the greater 

concentrations of total and trivalent antimony, lead, 
cadmium, arsenic and lower values of osmolarity and 
pH[28]. These effects can lead to cessation of treatment 
before attaining curative levels[29].

Additionally, the emergence of parasite resistance 
against SbIII was recorded in some areas suffering from 
VL e.g., India[30-32]. Drug resistance was suggested to be 
related to parasite proteins involved in the drug efflux 
e.g., aquaglyceroporin-1[33] and Leishmania adenosine 
triphosphate (ATP)-binding cassette-G2 (LABCG2)[34]. 
L. mexicana is less sensitive to SbV than L. braziliensis 
while L. major amastigotes in mouse macrophages 
were found to be less sensitive to SSG than L. donovani 
amastigotes[35]. Nevertheless, it has been considered 
as the first line treatment due to deficiency of vaccines 
and limited therapies[36]. 

2. Pentamidine
Dose and route of administration: The intramuscular 
dose of pentamidine is 4 mg/kg, and the peak plasma 
concentration is about 0.5 mg/l, reached within 1 h; 
and continues to be identified in the plasma for 6-8 w 
after administration, due to wide tissue binding of the 
drug[37]. 

Mechanism of action: It causes inhibition of the active 
transport system and mitochondrial topoisomerase II, 
which ultimately destroys the parasite[38]. 

Side effects and drug resistance: Tubular 
nephrotoxicity due to renal accumulation of the drug[39]. 
In addition, it is believed that direct cytotoxic effect on 
pancreatic islet cells can cause hypoglycemia (through 
initial insulin release), followed by hyperglycemia 
(through cell lysis and insulin consumption)[40]. Other 
adverse reactions include hypotension, and abnormal 

Fig. 1. Paradigm showing the actions of the SbIII on parasite-derived molecular targets: (1) TR system. (2) Zinc finger print protein. 
(3) Synergistic action with adenine and deoxynucleoside complexes. IFN-γ: Interferon-γ; TR: Trypanotione reductase; Gp63: 
Glycoprotein 63; ROS: Reactive oxygen species. Illustrated by E. Elsaftawy.
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hypoglycemic or hyperglycemic reactions, leukopenia, 
abnormal liver function, hypocalcemia, and local 
irritation at the intramuscular injection site in up to 
45% of recipients, which hinders continuity of the 
treatment[41]. However, among AIDS patients, the 
incidence of adverse reactions caused by pentamidine 
are lower than with the trimethoprim compound (45% 
and 65%, respectively).

Relapses[42] and opportunistic respiratory tract 
infections[43] were recorded in a small number of 
patients. However, the reduced efficacy of the drug 
has been recorded and attributed to possible drug 
resistance[44]. In the same context, in in vitro studies, 
parasites have been found to develop drug resistance 
by gradually increasing the drug concentrations[45]. 
In 2003, pentamidine resistance protein-1 (1807 
amino acids) that belongs to P-glycoprotein/MRP ABC 
transporters was reported. However, the same study 
reported that verapamil can reverse its action[46]. In L. 
mexicana, resistance to pentamidine involved the efflux 
of the drug from the mitochondrion of the parasite[47].

3. Miltefosine
Dose and route of administration: The reported dose 
for miltefosine in post Kala Azar dermal leishmaniasis 
(PKDL) is 100–150 mg/d for 60 or 90 d orally. While 
in New World CL, it is administrated for 20–28 d orally 
with the same doses. In L. panamensis in Colombia, L. 
braziliensis in Brazil and Bolivia, and L. guyanensis in 
Brazil, miltefosine (2.5–3.3 mg/kg/d) is administrated 
orally for 28–42 d[48]. Miltefosine is the first oral drug 
with obvious curative effect on both types of diseases; 
visceral and cutaneous with curative rate > 90%[49]. In 
L. amazonensis, animals treated with miltefosine (20–
50 mg/kg/d) revealed a substantial dose-dependent 
reduction in lesion size; moreover, in mice that 
received higher doses, the lesions disappeared after 
treatment[50].

Mechanism of action: Pinto-Martinez et al.[51] 
reported two mechanisms of action for miltefosine 

in L. donovani, both related to disruption of parasite 
Ca2+ homeostasis by (1) stimulation of the plasma 
membrane Ca2+ channels, and (2) rapid alkalization 
of acidocalcisomes (Figure 2). In addition, the 
treatment of macrophages with miltefosine increases 
the phagocytosis, NO production by infected and 
non-infected macrophages[52], and the expression of 
macrophages' IFN-γ and IL-12 by enhancing CD40 and 
inducing Th1 responses[53]. In addition, it is assumed 
that the drug disrupts lipid metabolism, causes 
mitochondrial dysfunction, and induces apoptosis of 
the parasite[54]. 

Side effects and drug resistance: Long-term side 
effects include gastric manifestations, dizziness, 
motion sickness, and headache. Despite the minimal 
side effects, it possesses genotype dependent drug 
sensitivity[55]. For example, L. donovani is the most 
vulnerable species to miltefosine rendering it the 
only oral drug used to treat VL[55,56]. The emergence 
of miltefosine resistance is speculated to be due to 
the inactivation of the aminophospholipid miltefosine 
transporter (MT) which is crucial for the drug 
action or the overexpression of ABC transporter; 
P-glycoprotein[57]. However, miltefosine resistance was 
reported only in one strain and the reduction in drug 
efficacy was described in India in 2012[58] and Nepal in 
2016[59]; but investigations of drug susceptibility did not 
link relapse with increased resistance to the drug[60,61]. 
However, in 2017 Srivastava et al.[62] identified isolates 
with enhanced resistance to miltefosine indicating that 
if the drug use is not controlled its efficacy might be 
compromised. 

Interestingly, Eberhardt et al.[63] proved that MT-
deficient parasites have severely lost the ability to 
invade their host cells, reproduce, and to produce 
the typical pattern of VL infection in BALB/c mice. A 
condition that could not be restored even with immune 
suppression. Hendrickx et al.[64] reported that MT gene 
is harbored on chromosome 13.

Fig. 2. Paradigm showing the actions 
of miltefosine. (1-2) Disruption of 
parasite calcium (Ca+) homeostasis 
and lipid metabolism. (3-4) Apoptosis 
and mitochondrial dysfunction. (5-8) 
Enhanced immune response. Illustrated 
by E. Elsaftawy.
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4. Amphotericin B (AMB)
Dose and route of administration: Although there are 
regional differences in drug susceptibility, a total dose of 
20 mg/kg is effective for patients with normal immune 
function. Despite the high cost, toxicity, and undetermined 
dosing regimen, liposomal AMB is an accepted alternative 
for the management of cutaneous leishmaniasis[65]. 
However, the majority of clinical trials were directed to 
optimize treatment for the HIV-VL subgroups[66]. 

Mechanism of action: As with the binding of AmBisome 
(amphotecrine B liposomes) to fungal cells, also in 
Leishmania it is released from the liposome[67], traverses 
through the cell wall, and binds to ergosterol in the target 
cell membrane[68], forming pores that leak ions to induce 
metabolic shock, and cell death[69]. Release of AmB from 
the liposome occurs most efficiently at normal body 
temperature[70], with higher binding affinity to fungal and 
parasitic ergosterol compared to cholesterol[71]. 

Side effects and drug resistance: Johnson et al.[72] 
reported the good tolerance to intravenous amphotericin 
B. However, they recommended novel amphotericin B 
preparations for minor emergence of AmB intolerance. 
The major adverse effect is nephrotoxicity[73] and 
resistance to AmB was clinically identified in 2012. 
Drug resistance was related mainly to alterations in ABC 
transporter, membrane composition, ROS clearance, and 
upregulation of thiol metabolism pathways[74]. Mutation 
in the 14 α demethylase enzyme was reported as a marker 
of AmB resistance due to changes in sterol metabolism[75]. 

5. Paromomycin 
Dose and route of administration: Paromomycin (PR) is 
a low-cost antibiotic with broad-spectrum activity against 
intestinal bacteria and parasites[76]. Its preparations are 
administered either topically or parenterally to treat CL 
at a dose of 15 mg/kg (11 mg base) for 21 d[77]. Topical PR 
preparations are the most commonly used for Old World 
and New World CL[78]. 

Mechanism of action: The main objective is to inhibit 
the production of proteins through disrupting the small 
subunit A decoding site of the cytoplasmic ribosome[79]. 
PR also affects the lipid bilayer of the parasite, the 

respiratory chain, the basic mitochondrial activity, and 
lipid metabolism[80] (Figure 3). 

Side effects and resistance: Nephrotoxicity, vestibule, 
and cochlea malfunction are the most related side 
effects[74]. Induction of resistance to PR performed 
experimentally on Leishmania promastigote and 
amastigote forms[81] suggested its association with 
lipidomic and metabolomic strain-specific changes[82]. 

[II] Virulence factors of Leishmania

The molecules and cellular structures that lead 
several reproductive, nutritive, and locomotive vital 
processes to maintain the life of the parasite are called 
virulence factors (Figure 4). Notably, the association 
between these virulence factors and drug resistance 
have been suggested[83]. In addition, targeting of these 
virulence factors can aid in identification of new 
specific drugs with less side effects[7,84].

1. Lipophosphoglycan (LPG): LPG is one of the most 
abundant heterogeneous cell surface glycoconjugate 
molecules, present mainly in the promastigote 
stage and is strongly down-regulated or absent in 
amastigotes[85]. These molecules are characteristic 
virulence factors in the variable species during the 
life cycle of the parasite[86]. It seems to be involved 
also in the selective competency of their sand 
fly vectors[87]. In addition, LPG activates toll like 
receptors (TLRs) 1 and 2 in the cells of the innate 
immunity[88]. The variations in the structure of 
surface LPG is mandatory for the tissue tropism of 
different Leishmania spp.[86].

Notably, LPG plays a key role in the resistance 
of the parasite. In L. infantum, they are agonists 
to the TLR2/TLR4 and trigger the assembly of 
prostaglandin E2 and heme-oxygenase[89,90]. Other 
effects of LPG include activation of complement 
classical pathway, phagocytosis of promastigotes, 
stimulation of modulatory immune cells, modulation 
of the macrophages and the impairment of 
nuclear factor kappa of activated B cells (NF-κB) 
translocation in the monocytes and thus reduce 

Fig. 3. Paradigm for the mode of drugs action. (A) Paromomycin disrupts protein production fat metabolism, and respiratory chain 
in the mitochondria. (B) Amphotericin binds to ergosterol in the target cell membrane forming pores, causes immune modulation, 
and is not related to the immune status of the host. Illustrated by E. Elsaftawy.
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the production of IL-12[91-93]. Liu et al.[94] reported 
that LPG can modulate the dendritic cells and 
hence the inhibition of antigen presentation and 
earlier production of IL-4. Interestingly, studies that 
manipulated mutants of L. major deficient in LPG1 
gene showed the vital role of LPG in the survival of 
the parasite in Phlebotomus duboscqi vectors but not 
in P. argentipes or P. perniciosus[87]. 

2. Glycoinositolphospholipids (GIPLs): These 
molecules play a significant inhibitory role in the 
survival of L. major in macrophages by inhibiting the 
inducible nitric oxide synthase (iNOS) and protein 
kinase C[95,96]. This factor seems to need various 
studies on the detailed spectrum of its action. 

3. Proteophosphoglycans (PPGs): The function of 
membrane PPGs is not fully understood. However, 
they were found to trigger infection in an insulin like 
growth factor dependent pattern[97]. Interestingly, 
the parasite secretes mucin-like gel called 
promastigote secretory gel (PSG), composed mainly 
of PPGs localized in the mouth part and mid gut of 
sand fly vectors. These molecules aid the parasite to 
adapt to their vectors and enhance the regurgitation 
of metacyclic promastigotes during blood meal as a 
result of blocking the stomach valve, anterior mid gut, 
and mouth part of the vector[98]. More importantly, 
PSGs in association with the saliva of the sand fly 
influence the action of macrophages, recruitment 
of the neutrophils at the site of infection, increase 
the arginase enzyme activity, immune suppression 
and the survival of the parasite in the hostile 
environment with establishment of the infection[99].

4. 11 kDa Kinetoplastid Membrane Protein (KMP-
11): This hydrophobic protein is involved in the 
motility of the parasite and its attachment to the 
mammalian host cells[86]. Additionally, it stimulates 
the expression of IL-10 in cases of CL and MCL and 
inhibits the fusion of phagosomes and lysosomes 
in the macrophages[100,101]. However, it has been 
speculated in the construction of vaccines[102]. 

5. Acid Phosphatases (ACPs): These enzymes 
participate by stimulating the humoral immunity 
responses and facilitating attainment of nutrients 
from host cells. They also encourage the adaptation 
of the parasite in acidic media through inhibition of 
respiratory burst restraining the assembly of the 
oxidative products in neutrophils[103].

6. Proteinases: In addition to their intracellular 
degeneration of proteins, these enzymes are also 
involved in creating favorable conditions for the 
survival and growth mechanisms of amastigotes in 
macrophages. Host proteases, such as threonine, 
aspartyl, cysteine, and matrix metalloproteinases, 
can disrupt the host's immune response[104]. 
However, the activities of cysteine proteinases (CP) 
on hosts differ according to the infecting species. In 
this regard, CP triggered the Th2 profile in BALB/c 
mice infected with L. mexicana, in addition to their 
role in the induction of lesions, the production 
of IL-4 and IL-5, and the inhibition of IL-12 and 
NO production by cleaving the STAT-1 and AP-1 
transcription factors. Meanwhile, in L. chagasi and L. 
major, CP targeted the Th1 profile and enhanced the 
expression of its associated cytokines[105,106], and in 

Fig. 4. The virulence factors in Leishmania spp. showing (A) membrane proteins; (B) transmembrane proteins. (1) Lipophosphoglycan; 
(2) Glycoinositolphospholipids; (3) Proteophosphoglycan; (4) 11-kDa kinetoplastid membrane protein; (5) Acid phosphatase; 
(6) Proteinases; (7) Nucleotidase; (8) Heat shock proteins; (9) Transporters. DC: Dentritic cell; IL-10: Interleukin-10; IL-12: 
Interleukin-12; iNOS: inducible nitric oxide synthase; IR: immune response; NOS: nitric oxide synthase; ROS: Reactive oxygen species; 
Illustrated by E. Elsaftawy.
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L. amazonensis, the production of CP was associated 
with cleavage of MHC class II gene, the stimulation 
of Th1 or Th2-related cytokines; as well as the CD8+ 
T lymphocyte[107].

Matrix metalloprotease-9 is another protease 
enzyme that delays the re-epithelization of chronic 
wounds through the stimulation of TNF-α and 
pro-inflammatory cytokines[108]. Furthermore, 
glycoprotein 63 (Gp63) is one of the main 
glycoproteins of the surface antigen protease that 
participates in parasite-host interaction and parasite 
virulence through binding to macrophages[109]. 
Additionally, a previous report documented the 
protective effect of Gp63 on liposome-encapsulated 
proteins during phagolysosome degradation in L. 
mexicana infections[110]. Another study revealed that 
Gp63 plays a key role in the activation and regulation 
of the major tyrosine phosphatase proteins involved 
in the JAK2/STAT1a pathway. Subsequently, this 
affects the IFN-γ mediated signal transduction and 
regulates the production of NO[111]. 

7. Nucleotidases: These are extracellular enzymes 
participating in the hydrolysis of tri- and/or 
diphosphate nucleotides into monophosphate 
products. Subsequently, they are hydrolyzed 
into adenosine and play an important role in the 
purinergic signal transduction. In addition, they can 
modulate the host's immune system, to maintain 
infection[112].

8. Heat shock proteins (HSPs): Are exosomes that 
play an important role in the folding, assembly, 
intracellular localization, secretion, regulation, 
stabilization, degradation of other proteins and 
survival at high temperatures[113]. In addition, it is 
related to drug tolerance[114]. HSPs contribute in 
immune-modulation of the innate and adaptive 
immunity by promoting the production of IL-10[115].

9. Transporters: Leishmania spp. express many 
membrane transporters for parasites’ nourishment. 
These include pentose-phosphate pathway and 
purine salvage. These molecules are also mandatory 
for beta-oxidation of fatty acids, biosynthesis of 
pyrimidines, and ether-lipids[116]. Transporters 
are not only for nourishment, but also for several 
functions such as PgpA related to ABC transporters 
involved in drug resistance against arsenic, 
antimonite, and AmB[74,117].

[III] Parasitic burden and influence of immunity 
After infection, Leishmania parasites are instantly 

engulfed by immune neutrophils, dendritic cells (DC), 
and monocytes recruited at the site of infection[118]. 
Neutrophils play diverse roles in the process of infection 
because they can destroy the parasites. However, they 
can also function as supplementary carriers for the 

parasites[119]. For example, the extracellular neutrophil 
trap (ENT) was shown to eradicate the promastigotes 
of L. amazonensis[120] (Figure 5A). On the other hand, 
the phagocytosis of apoptotic neutrophils infected 
by L. major hinders stimulation of macrophages and 
DCs, leading to the persistence of parasites[121] (Figure 
5B). Although neutrophils are literally defined as the 
foremost cells enrolled after Leishmania infection, 
new evidence proposes that a cluster of inflammatory 
lymphocyte antigen 6 complex, locus C (Ly6C+) 
monocytes are the first cells to migrate into the 
inflamed tissue. It was revealed that these monocytes 
can eradicate most of parasites through prompt release 
of ROS during phagocytosis (respiratory burst)[122]. 
However, other researchers have shown that Ly6C+ 
monocytes contribute to the pathogenesis of disease 
by functioning as a reservoir for the propagation and 
cell-to-cell spread of the parasite[123]. In the later stages 
of infection, macrophages become the hosts for the 
Leishmania parasites[119]. 

Despite the extreme significance of innate immunity, 
activation of cell-mediated adaptive immune responses 
is vital for prompt resolution of the disease and 
development of long-term immunity. Although mixed 
responses of Th1 and Th2 have been monitored during 
active infections, the strong immune properties of Th1 
are chiefly responsible for clinical cure[124].

Notably, IL-12 promotes the Th1 response and 
provokes the production of IFN-γ; hence it is the 
key cytokine in the immune response[125]. Cases 
with acquired immunity to localized LCL were also 
shown to have increased levels of IFN-γ and TNF-α 
cytokines[126]. This in turn triggers a respiratory burst 
in the macrophage[127] composed mainly of ROS and 
NO[50] that eliminates the Leishmania parasites[128] in 
both mice and humans[129]. 

Nevertheless, the extensive stimulation of CD8+ 
cytotoxic T lymphocytes is closely related to severity of 
the disease, and progression of mucosal leishmaniasis, 
in which parasites spread to the nasopharyngeal 
mucosa causing disfigurement[118]. In this context, 
previous studies reported that early in L. braziliensis 
infection there are low serum levels of IFN-γ and 
high levels of IL-10 that typically reverse as the 
infection progresses[125,130]. The early Th2 response 
allows the parasite infection to persist by producing 
its characteristic cytokines; IL-4, IL-10, and IL-13[118]. 
Studies have shown that both IL-10 and IL-4 are related 
to the proliferation of parasites and worsening of the 
disease. IL-4 hampers IFN-γ production and Th1 cell 
differentiation, while IL-10 inhibits IFN-γ induced 
macrophage activation[125]. This reaction is associated 
with diffuse CL and accompanied with high antibody 
titers[131]. These findings indicate that the keynote for 
complete resolution in LCL pathology is the balance 
between anti-inflammatory and pro-inflammatory 
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cytokines. For example, studies have shown an increase 
in the levels of both IL-10 and IFN-γ in the PBMC- LCL 
patients[125] (Figure 5).

[IV] New therapeutic modalities 
(A) Drug delivery systems

A wide range of engineering technologies are 
concerned with formulations, manufacturing 
procedures, and storage systems to approach the target 
site efficiently and achieve the desired therapeutic 
effect[132]. In leishmaniasis, there are a number of 
controlled release delivery systems.

1. Metallocomplexes system: The discovery of a 
platinum compound (cisplatin) by Rosenberg in the 
1960s was a milestone in the history of metal-based 
compounds used in the treatment of cancer[132]. 
In 2021, two studies[133,134] evaluated the effect of 
cobalt (Co) (II) complex on the promastigotes of L. 
amazonensis, and recorded several changes including 
the formation of autophagic vacuoles adjacent to 
the flagellar pocket. However, the lack of a clear 
distinction between therapeutic and toxic doses 
presents a challenge[135,136]. It was observed that 
AmB loaded on biogenic silver (Ag) nanoparticles 
(AgBIO) caused suppression in the parasitemia at 
300-fold lower concentrations than the conventional 
treatment[135]. The ruthenium polypyridyl complex 
was speculated to reduce the numbers of infected 
cells in vitro, minimize the lesion size in the footpad 
of the hamster, and almost eradicated the parasites 

in vivo[136]. This complex was found to affect the 
parasite's biological activities, showing a high 
proportion of parasite fission forms, motility loss, 
and abundant vacuolization in the promastigotes 
of L. mexicana. In addition to growth inhibition, 
a leishmanistatic activity related to complexes-
DNA parasite interactions was suggested[137,138]. 
Tetradentate Schiff base ligand combined with Co (II), 
Ni (II), and Zn (II), had higher leishmanicidal activity 
than the conventional treatments[139]. Similarly, the 
anti-leishmanial activity of [Au (dppz) 2] Cl3[140] and 
Cu (II) dimethoxy bipyridine[141] was reported. This 
signified the potential affinity between the metallo 
complexes and their targets on the molecular level.

2. Liposomal system: Sousa-Batista et al.[142] 

demonstrated the AmB-loaded on poly lactide-
co-glycolide acid micro particles as a safe single-
dosed remedy with low toxicity against L. major 
strain[142]. On the other hand, buparvaquone is a 
veterinary medication, whose formulation on the 
nanostructured lipid carriers showed high efficacy 

in an in vitro study[143].

3. Nano-emulsions: These proved to be an efficient 
delivery system for the lipophilic natural compounds. 
through the skin against Leishmania parasites[144]. 
Formulation of nano-emulsions comprising 
synthetic chalcone showed stable leishmanicidal 
activity in in vitro studies[145]. Propylene glycol is 
an emulsifier with lipophilic properties. Lanza et 

Fig. 5. Paradigm for immune response against CL. [I] Innate immunity: (A) Role of neutrophils in the killing of Leishmania parasites. 
(B) Phagocytosis of apoptotic neutrophils that inhibits activation of macrophages. [II] Adaptive immunity and the possible immune 
scenarios. CCL-3: CC chemokine ligand-3; CCR-2: CC-chemokine receptor-2; DCs: Dendritic cells; Granzymes: Serine protease 
enzymes; IFN-γ: Interferon-γ; MP: macrophage; NETosis: Neutrophil extracellular traps; NO: Nitric oxide; PAF: Platelet activating 
factor; PGE-2: Prostaglandin E2; ROS: Reactive oxygen species; TGF-β: Transforming growth factor–β; Th0: Naive T cell. Illustrated 
by E. Elsaftawy.
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al.[146] demonstrated a model for its use with the SbV 
complexes to form stabilized nano-assemblies in 
water against L. amazonensis.

4. Chitosan scaffolds/dressings: Chitosan based 
scaffolds have attracted attention, in the field of 
drug delivery for better tissue regeneration and 
wound healing. Chitosan matrix impregnated with 
nano-metallic components has wide potentiality 
due to its antimicrobial effects. Construction of 
wound dressing impregnated with chitosan-based 
nano-scaffolds showed positive impact on wound 
regeneration in Leishmania infections[147]. Studies 
revealed the immense effect of zinc oxide (ZnO) 
nanoparticles as incorporating metals in the chitosan 
dressings. Cu was found to increase the production 
of ROS. Also, acids like Zn++, Ag+, Au+, Cu+ and Cu++ can 
form covalent bonds with thiols groups or proteins 
comprising a sulphur group[148].

(B) Laser efficacy as recent medical therapeutic 
modality: 
The word “LASER” is an abbreviation for “Light 
Amplification by Stimulated Emission of Radiation.” The 
intended indications for lasers to treat diseases vary 
with laser wavelength. Lasers produce light energy in 
the form of a beam of photons released from the laser 
medium, which usually gives the laser its name and 
defines its exact wavelength (Figure 6). For visible light 
lasers and some near-infrared lasers, the chief target 
chromophores are oxy- and deoxyhemoglobin and 
melanin. Current medical lasers produce wavelengths 
ranging from the ultraviolet to the mid-infrared 

portions of the light spectrum. The penetration depth 
increases with the increasing wavelength; however, 
the maximum penetration depth is 5378 μm. Recently, 
lasers were suggested as a successful treatment tool 
for viral and bacterial infections in soft tissues[149]. 
Interestingly, combination of medical treatment and 
laser therapy demonstrated the best results in bacterial 
infections. Since Leishmania amastigotes reside in the 
epidermal (85%) and dermal (100%) layers of skin 
biopsies, laser has been considered an important 
therapeutic issue[150].

1. Neodymium-Doped Yttrium Aluminum Garnet 
(Nd:YAG ) laser: Its wavelength is 1064 nm, with the 
highest penetration depth among the different types 
of lasers, and hemoglobin is its main chromophore. 
ND: YAG lasers influence the viability of L. donovani 
and L. major promastigotes in culture media[151]. 
Goldberg and Metzler[152] demonstrated the safety 
of Q-switched Nd:YAG laser treatment for cosmetic 
resurfacing of solar-damaged skin and improvement 
of skin texture, elasticity, and appearance. 
Additionally, Cannarozzo et al.[153] determined its 
efficacy in the removal of a cosmetic tattoo despite 
being in proximity to sensitive areas. The efficacy 
of Nd:YAG laser versus intralesional meglumine 
antimoniate showed a significant reduction in the 
formed scars[154]. Nd:YAG laser is also suggested 
to be more effective than CO2 laser for the cure of 
leishmaniasis being of minor side effects. Activation 
of the immune system and inflammatory reaction 
in addition to the cytokine changes are the other 
passive mechanisms of Nd:YAG laser[155]. Al-Muslet 

Fig. 6. A paradigm for different lasers. (A) 
Laser apparatus. (B) Spectrum of laser 
light. (C) Penetrative power of different 
lasers through the epidermis and dermis 
where the parasite resides. Illustrated by E. 
Elsaftawy.
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and Khaled[156] confirmed the excellent response 
with minimal side effects in CL patients treated with 
low-level laser therapy. 

2. CO2 Laser: CO2 laser showed clinical healing nearly 
similar to the normal appearance[157], but differed 
according to the concentration of the CO2-injected 
NaCl[158]. Artzi et al.[159] determined the potent effect 
of topical sodium stibo-gluconate following CO2 
laser. Continuous CO2 laser for wounds improves 
the healing speed with no recurrence during follow-
up[160]. A similar conclusion was deduced[161], and 
Nieva et al.[162] recommended this method as a 
promising new prospective treatment for CL. In 
2006, Asilian et al.[163] showed the efficacy of CO2 
laser for lupoid leishmaniasis, the chronic form with 
papules and nodules at the borders of a previous 
leishmaniasis scar, which is more common with 
L. tropica infection. Basnett et al.[164] reported that 
fractional CO2 laser plus topical paromomycin are 
useful for resistant cases of CL. CO2 laser showed 
higher efficacy than glucantime alone or combined 
with topical trichloroacetic acid (50%)[165]. In case of 
Leishmania scars, fractional CO2 laser is more potent 
than ablative CO2 laser[166].

3. Other new lasers and light sources 
• Argon laser: Zhong et al.[167] approved its high 

efficacy in L. tropica lesion within 6 sessions at 
intervals of 4-5 d.

• Diode laser: It has been introduced as an alternative 
treatment for CL with potent cure rates[168]. 

• Pulsed dye laser (PDL): It is recommended for the 
treatment of erythematous papules and nodules 
of leishmaniasis, and the more superficial lesions 
respond better to the PDL therapy. However, the 
larger, deeper, and more indurated lesions require 
more treatment sessions[169].

CONCLUDING REMARKS                                       

1. Current medical anti-leishmanial therapies include 
antimonials (SSG), pentamidine, miltefosine, 
amphotericin B (AmB), and paromomycin (PR). 
The existing medications face multiple challenges; 
1) generation of several side effects, 2) emergence 
of drug-resistance, 3) targeting of a limited range of 
virulence factors; and 4) host immune status. 

2. Side effects include interstitial nephritis and 
cardiotoxicity (SSG), nephrotoxicity and cytotoxicity 
of pancreatic islet cells (Pentamidine), nephrotoxicity 
(AmB) and nephrotoxicity and ototoxicity (PR). 
However, miltefosine was recorded with minimal 
side effects. 

3. Regarding drug resistance, SSG shows drug 
resistance in a species-related manner. Pentamidine 
resistance was documented to ABC transporters or 
drug extrusion from the parasite's mitochondrion. 

Miltefosine resistance was selectively identified 
in some isolates thus compromising its efficacy. 
Resistance to PR is related to lipidomic and 
metabolomic alterations. However, several 
mechanisms were suggested for AmB resistance 
such as ABC transporters, membrane composition, 
ROS clearance, upregulation of thiol metabolism 
pathways, and mutation in the 14α-demethylase 
enzyme.

4. Although Leishmania spp. possess several virulence 
factors, the current medications target few of them. 
Besides, drug efficiency is deteriorating in the 
immunocompromised patients.

5. Raised disputes initiated the search for new 
therapeutic modalities including drug delivery 
systems and laser therapy. Metallocomplexes, 
liposomes, nano-emulsion and chitosan scaffolds/
dressings are the most common delivery systems 
reported in several studies with AmB. 

6. Clinical studies showed the high efficiency of 
Nd:YAG laser in comparison to other lasers and 
medical therapies through the triggering of immune 
responses. Moreover, combination of topical 
sodium stibogluconate and continuous CO2 lasers 
are reported with improved healing speed. The 
fractional CO2 laser is more effective than ablative 
CO2.
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