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ABSTRACT    

Parkinson's disease, a neurodegenerative disease, is caused by dopaminergic neurons death and accompanied by 

rigidity, and postural instability, as well as bradykinesia. The cause of these neurons’ death is still unclear. Since the 

dopaminergic neurons couldn’t regenerate, therefore Parkinson's disease couldn’t be cured. Thus, over the past 

decades, significant effort has been made to explore the etiology of Parkinson's disease development and 

ascertainment. This review aimed to highlight the progress that has been made in understanding Parkinson’s disease 

pathophysiology. The role of oxidative stress, neuroinflammation, and apoptosis in the development of PD has been 

discussed. It has been noticed that oxidative stress, inflammation, and apoptosis are working together to develop 

Parkinson's disease, and each of these factors affects each other. Additionally, the experimental models and their 

drawbacks have been emphasized. Additionally, the mechanism of inducing Parkinson’s disease (i.e., inducing 

neuroinflammation and oxidative stress) by neurotoxin has been highlighted. 
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1. Introduction 

Parkinson's disease (PD) is second to 

Alzheimer’s disease as the most prevalent 

neurodegenerative disorder throughout the world 

[1]. Paralysis agitans was first medically 

described as a neurological syndrome by J. 

Parkinson in the 19
th
 century in the book ''Essay 

on the Shaking Palsy'' and renamed PD by Jean-

Martin Charcot [2, 3]. 

Clinically, PD is characterized by motor 

dysfunction, i.e., rest tremors, bradykinesia, 

postural instability, and rigidity. Also, psychiatric 

symptoms are involved, including depression and 

anxiety, as well as autonomic dysfunction 

manifestoes, i.e., constipation and hypotension. 

Besides, it is characterized by paresthesia, 

olfactory dysfunction, and sleep disorders [4]. A 

review of incidence studies reported that the PD 

incidence rises with age to a peak occurring in 

the seventh decade of life and it continues to rise 

after this age in some studies [5]. 

Pathologically, PD is associated with Lewy 

bodies (LBs), dopaminergic neuronal 

cytoplasmic inclusions. These are the hallmarks 

of PD, as they are not detectable in healthy 

individuals. In 1997, LBs were reported to 

contain aggregates of α-synuclein (α-Syn) [6]. 

In this review, the pathogenesis of PD, and 
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neurotoxin models will be discussed. 

2. The pathophysiology of PD 

Pathologically, PD is characterized by 

hallmarked dopaminergic neurons lost in the 

substantia nigra and the appearance of LBs that 

are primarily comprised of fibrillar α-Syn [7]. 

Genetically, studies on familial PD have 

identified mutations in single genes in monogenic 

PD. In particular, mutations, which give rise to 

PD, are located in the α-Syn-encoded genes, 

dardarin, vacuolar protein sorting-associated 

protein 35, parkin ligase, deglycase DJ1, and acid 

β-glucosidase [8]. 

 Despite mutations in these genes being 

infrequent and only exist in less than a tenth of 

all PD cases [9], they have discovered key 

processes and molecular players in the etiology 

of PD. This can be clarified by the gene (SNCA), 

which is linked to PD at a neuropathological and 

genetic level. Additionally, LBs and α-Syn are 

recognized in familial- and idiopathic- PD. 

Besides the mutations in SNCA and copy number 

variations present in monogenic PD [10], 

common SNCA mutations are linked to an 

increased risk of idiopathic PD [11].  

Because there is no monogenic inheritance 

pattern in most PD patients (90%), the disease is 

considered idiopathic. Sporadic PD has a 

multiple-factorial etiology; environmental and 

genetic factors work together to determine an 

individual's liability to disease [12, 13]. 

2.1. The role of oxidative stress in PD 

Mounting evidence has pointed that oxidative 

damage and mitochondrial dysfunction result in a 

cascade of events and eventually contribute to 

dopaminergic neurons degeneration [14]. This 

notion was supported by the assessment of the 

postmortem brain sections, in which elevated 

levels of 4-hydroxy-2-nominal, a lipid 

peroxidation by-product [15], carbonyl 

modifications of soluble proteins [16], and 

oxidation products of DNA, i.e., 8-hydroxy-

deoxyguanosine and RNA, i.e., 8-hydroxy-

guanosine [17, 18] have been detected.  

In the presence of oxygen, metals, or 

enzymes, such as tyrosinase, dopamine (DA) are 

oxidized and form free radicals and quinones 

[19]. Dopamine quinones form a monochrome, a 

cyclic highly reactive, and cause the production 

of superoxide and reduction in cellular NADPH. 

A monochrome can also induce 

neuroinflammation by neuroinflammation, as it is 

the precursor of neuromelanin [19]. 

Postmortem tissues from the brain of PD 

patients have shown depletion in the amount of 

glutathione (GSH) in substantia nigra compacta 

compared to the controls [20]. Glutathione is 

generated in the cytoplasm but it is transported to 

the mitochondria to work as an anti-oxidant [21]. 

Since apoptosis is induced by oxidative stress, 

the mitochondrial GSH is considered a crucial 

marker of oxidative stress assessment. Also, 

mounting observations indicated that complex-I 

dysfunction causes higher production of ROS and 

subsequently a reduction in GSH. This reduction 

can result from a decreased synthesis of GSH by 

the suppressing of glutathione reductase, or rising 

glutathione disulfide level [22, 23]. Oppositely, 

reduced GSH level leads to complex-I activity 

impairment, and overall mitochondrial function 

[24]. 

Iron is pivotal for most human cells. Indeed, 

it is a cofactor for important proteins to maintain 

the normal neurons function, like tyrosine 

hydroxylase, an important enzyme for the 

synthesis of neurotransmitters [25]. Iron can 

contribute to ROS generation by the reaction of 

ferric/ferrous with superoxide anion radical, and 

hydrogen peroxide, producing the hydroxyl 

radicals, which trigger neurotoxicity with DA 

oxidation [26].  
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2.2. The role of inflammation in PD 

pathogenesis 

The inflammatory process, which is a 

protective mechanism against any infection, 

damage, or injury, is mediated by several 

immune cells, i.e., microglia, neutrophils, and 

macrophages [27, 28]. Unlike other cells, 

damaged neurons can’t regenerate [29]. The 

acute inflammatory response assists to fight the 

toxins, infectious agents, phagocytose cellular 

debris, and repair the affected tissues [30]. 

However, for a prolonged duration, the 

inflammatory response could be destructive, i.e., 

it prevents repairing of tissue, and regeneration. 

Thus, chronic inflammation magnifies the 

neurodegeneration progression [30].  

The implication of neuroinflammation in PD 

pathology is based on quite a lot of research of 

evidence suggesting that neuro-inflammatory 

processes could possess a causal role in PD 

development [31]. Also, inflammation is 

suspected to be a melting point for genetic and 

also environmental factors that provoke PD 

pathogenesis [7]. 

Microglia constitute about a tenth of all glia 

and are usually resting in the adult brain playing 

beneficial housekeeping roles, as removal of 

toxic substances, synaptic remodeling, neuronal 

repair, and synaptic pruning [32]. Environmental 

challenges, morphological changes, intracellular 

molecules, and surface antigens could provoke 

microglial activation [33]. α-Syn and soluble 

molecules liberated from dying neurons could 

also activate the microglia [33]. In the activation 

state, the microglia up-regulate many receptors 

implicated in inflammation, and could also 

generate potential neurotoxins, i.e., superoxide 

anions [34]. 

Similar to microglia, the astrocytes possess 

primarily neuroprotective effects, associated with 

GSH release and scavenging of excitotoxic 

agents, like glutamate and calcium [35, 36]. 

Recent studies have linked astrogliosis with the 

development of PD [37]. The astrocytes and 

endothelial cells together with pericytes form the 

blood-brain barrier (BBB), which isolates the 

CNS from the peripheral circulation [38]. The 

breakdown of BBB and increase in its 

permeability result in secondary leukocytes 

movement within the brain parenchyma, reactive 

gliosis, and damaged neurons [39]. Thus, the 

immune cells invade the parenchyma of the brain 

and eventually induce degeneration of neurons 

[39]. 

 The postmortem analyses showed 

accumulation of pro-inflammatory cytokines, i.e., 

TNF-α, and IL-6, in cerebrospinal fluid and 

brains of PD patients, which confirms 

progressing neuroinflammation [40, 41]. The 

serum IL-6, Normal T cell Expressed and 

Secreted (RANTES), and the chemokine ligand 5 

(CCL5) are considerably increased in PD patients 

[42, 43]. The intensity of the disease is correlated 

with serum RANTES levels [42]. 

A high nitric oxide synthase level has been 

observed in PD patients [44] indicating that 

cytokines-stimulated toxicity and inflammation-

stimulated oxidative stress could be implicated in 

the neurodegeneration, and disease ascertainment 

[45].  

2.3. The role of apoptosis in PD 

pathogenesis 

Apoptosis starts with specific 

internal/external signals and plays a substantial 

role in aging, neoplasm, and neurological 

disorders [46]. Based on the postmortem 

recognition of fragmentation of DNA, and 

apoptotic chromatin alterations in dopaminergic 

neurological cells of PD suffer, it is evident that 

apoptosis is the primary mechanism of neurons 

demise in PD [47]. 

Additionally, the implication of apoptosis in 
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PD etiology has been confirmed in postmortem, 

in vivo, and in vitro studies that revealed 

increased apoptosis markers in Substantia nigra 

compacta [48-51]. Despite the extrinsic apoptotic 

pathway could be implicated in PD, the intrinsic 

dopaminergic neurons apoptosis pathway is still 

believed to be the predominant [52]. 

Several inherited forms of PD develop 

because of genes (LRRK2, PINK1, and DJ-1) 

mutations related to mitochondrial function [53]. 

Although these mutations are uncommon within 

the PD patients, they provide some supporting 

evidence to the susceptibility of mitochondria 

damage-mediated apoptosis, and to these relevant 

processes in idiopathic PD [53]. 

Parkin possesses many roles that could be 

relevant in PD pathogenesis, as it can induce 

mitochondrial- biogenesis, genes transcription, 

and DNA replication [54]. Furthermore, Parkin 

performs as an E3 ubiquitin-protein ligase 

involved in the degradation by the ubiquitin-

proteasome system, i.e., the glycosylated form of 

α-Syn [55]. The impairment in Parkin activity is 

believed to increase protein aggregates causing 

PD [55].  

Additionally, mutations in leucine-rich repeat 

kinase 2 (LRRK2) have been considered as the 

main cause of hereditary PD [56] and can lead to 

defective dynamic/morphology of mitochondria, 

and exaggerate generation of ROS [57]. These 

mutations are also proposed to cause neuronal 

demise by apoptosis caused by mitochondrial 

malfunction. Cell death could be experimentally 

triggered by the up-regulation of mutant LRRK2 

with apoptosis being inhibited by caspase 

inhibitors [58].  

Additionally, DNA removals have been 

previously reported in dopaminergic neuronal 

cells in both elderly and PD suffers, possibly 

heightening their vulnerability to apoptosis [59]. 

The anticipatory mechanisms of DNA removals 

are unidentified with the possibility of oxidative 

stress involvement [60]. Depletion and deletion 

in mitochondrial DNA lead to a decrease in the 

performance and integrity of mitochondria, 

consequently exaggerating the release of 

cytochrome c and apoptosis [61]. Furthermore, a 

rare type of inherited PD could develop because 

of variation in POLG, a gene that is involved in 

the expression of many genes encoded in 

mitochondrial DNA [62]. 

3. Neurotoxin-based model of PD 

Epidemiological studies have affirmed that 

prolonged exposure to rural chemicals, i.e., 

paraquat and rotenone elevate the risk of PD 

development [63]. Dopamine structural analogs, 

like MPTP, and 6-hydroxydopamine (6-OHDA), 

have been reported to selectively damage 

dopaminergic neurons and induce parkinsonism. 

3.1. The 6-hydroxydopamine model of PD 

6-Hydroxydopamine is the first neurotoxin 

used to induce PD because it could induce 

mitochondrial dysfunction of dopaminergic 

neurons [64]. Since 6-OHDA cannot cross BBB, 

it has to be injected intra-cerebrally. 6-

Hydroxydopamine is transferred into the neurons 

by the DA transporter and then suppresses the 

activity of mitochondrial respiratory chain 

complex-I [65, 66]. In mitochondrial, 6-OHDA 

can also suppress the complex-IV activity and 

reduce membrane potential [67].  

Once inside the neurons, 6-OHDA produces 

H2O2, and superoxide from its metabolic 

degradation or oxidation. ROS cause protein- and 

DNA oxidation, and lipid peroxidation, and 

eventually lead to oxidative stress and 

mitochondrial impairment [68, 69]. 6-

Hydroxydopamine could increase glutamate, and 

lower the striatal glutamine, resulting in an 

imbalance between excitatory and inhibitory 

brain processes, causing long-term irregularities 

in activities of the glutamate system and 
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GABAergic system [70]. 

The severity of symptoms induced depends 

on the injection site, as 6-OHDA administration 

into the striatum induces relatively mild 

symptoms with a slow progression; while, the 

direct 6-OHDA administration into the medial 

forebrain and SN, induces severe symptoms with 

fast and significant severe dopaminergic cell 

death [71]. However, the 6-OHDA-based model 

lacks Lewy pathology [72]. 

3.2. 1-Methyl-4-Phenyl-1, 2, 3, 6-

Tetrahydropyridine (MPTP) model of PD 

The PD model induced by MPTP is an 

experimental model based on the systemic 

treatment of MPTP, which has a high toxically 

affinity to dopaminergic neurons [73]. Langston 

et al. have described parkinsonism in a group of 

drug abusers mediated by intravenous injection 

of MPTP with an illegal neurotoxin-containing 

drug [74, 75]. 

After crossing the BBB, MPTP is converted 

by MAO-B into 1-methyl-4-phenylpyridinium 

ion (MPP
+
), its active form, and then carried by 

the DA transporter inside the dopaminergic 

neurons, where it suppresses the mitochondrial 

complex-I activity [76]. It has been re-assessed 

following MPTP treatment through the intranasal 

route, resulting in depletion of striatal DA, 

accompanied by PD symptoms [77]. 

The main limitation of the MPTP-based 

model is that it lacks Lewy pathology. Therefore, 

myriads of studies have attempted to solve the 

missing of this crucial neuropathological PD 

hallmark by changing treatment regimens. It has 

been induced of ubiquitin and α-Syn formation 

by a 30-day administration of MPTP via osmotic 

minipumps [78]; while Shimoji et al. has not 

succeeded to detect LBs in mice treated with 

different regimens of MPTP treatment without 

using osmotic minipumps [79]. 

Additionally, the dopaminergic nigrostriatal 

deficits resulting from acute or sub-acute 

administration of MPTP are reversible, however, 

the chronic coadministration of MPTP and 

probenecid has been demonstrated to overcome 

this limitation [80]. 

3.3. The paraquat model of PD 

Paraquat is an herbicide that has been got 

great interest due to its chemical structural 

similarity to MPP
+ 

[81]. Paraquat has been used 

to induce the PD model as it can penetrate the 

BBB by the neutral amino acid transporter since 

the L-valine treatment significantly reduced the 

paraquat penetration of BBB [82]. Paraquat 

impairs the redox recycling of GSH and 

thioredoxin inducing oxidative stress [83]. 

However, paraquat administration causes 

acute toxicity in many organs, particularly lung 

tissues; thus, it may affect motor performance 

and cause a high mortality rate [84]. 

Additionally, the use of the paraquat model in 

examining neuroprotective therapies is limited 

due to the lack of paraquat-induced striatal DA 

depletion [85].  

3.4. The rotenone model of PD 

Rotenone is an isoflavone found in the roots 

and stems of the Lonchocarpus and Derris, and 

due to its high lipophilicity, it can cross BBB 

[86]. As soon as ROT is in the dopaminergic 

neurons, it inhibits the complex-I activity, 

resulting in an elevation in ROS production and 

mitochondrial dysfunction [87] 

Lipid and also glutamine metabolism 

alterations by rotenone play a pivotal 

compensatory role in PD modeling [88]. ROT 

has become of high interest following the seminal 

paper by the Greenamyre group in 2000, it was 

continuously IV infused into the back of Lewis 

rats at a concentration of 3 mg/kg/day [89]. 

Rotenone induces α-Syn accumulation and 

aggregation replicating the neuropathological 

hallmark of LBs seen in PD [51]; another reason 
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for the ROT-based model of PD to outweigh 

other neurotoxin-based models and qualify this 

model to closely simulate human PD.  

The main limitations of the ROT-based 

model are low reproducibility in the animals, i.e., 

they develop varied dopaminergic lesions, size 

and location of lesions, and mortality [90]. These 

limitations have been overcome to some extent 

by using different routes of ROT administration 

[86]. 

Conclusion 

Significant advances in understanding the 

pathogenesis of PD have been concluded from 

the epidemiological findings, experimental 

methods, and pathological manifestations. 

Signaling pathways have been detected, 

accompanied by mitochondrial homeostasis 

impairments, and protein accumulation, and are 

likely to be involved in PD etiology. 

Additionally, a substantial advance has been 

made in PD modeling. However, each model has 

advantages and limitations. Further research is 

needed to develop the currently used models or 

new models to recapitulate the human PD. 
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