Egypt. Acad. J. Biolog. Sci., 12(2):101-110(2020)

Egyptian Academic Journal of Biological Sciences G. Microbiology

> ISSN: 2090-0872 https://eajbsg.journals.ekb.eg/

Effective Use of Cinnamon Essential Oil Encapsulated in β-cyclodextrin Citrate as an Antimicrobial for Food Packaging

Ghada E. Dawwam

Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt. E.Mail: <u>ghada.ibrahem@fsc.bu.edu.eg</u>

ARTICLE INFO

Article History Received: 26/10/2020 Accepted:23/12//2020

Keywords:

Essential oils (EOs)- *Salmonella* sp.- antimicrobial activity- cinnamon oil- β-cyclodextrin citrate

Essential oils are natural plant extracts that contain bioactive compounds with antioxidant and antimicrobial properties. This study examined the antibacterial activity of different essential oils; Marjoram (Origanum majorana), Nigella sativa, Olive (Olea europaea), Moringa (Moringa oleifera) and cinnamon (Cinnamomum verum) against a number of Salmonella strains isolated from different food items (vegetables and meats). Salmonella strains were resistant to at least three antibiotics, which indicates that they are multidrug-resistant. Results revealed that cinnamon essential oil treatment exhibited a greater effect on the pathogenic bacteria than other essential oils used in the study giving inhibition zone $(32\pm0.20 - 38\pm0.04)$ mm). To reduce the volatility and hydrophobicity of cinnamon oil, it was encapsulated into β -cyclodextrin citrate and tested in the encapsulated form and the free form. The encapsulated form provided a controlled release of essential oil while maintaining this oil's antimicrobial effectiveness for a period lasted for one month. Thus, the encapsulated form is recommended to be used as a preservative or to incorporate into food packaging as an antimicrobial agent.

INTRODUCTION

Various food items as meat, vegetables, fish, fruits, and bread are exposed to contamination with pathogenic organisms, which leads to serious damage to human health (Berjia *et al.*, 2014; Ölmez, 2016). Examples of pathogenic microorganisms are *Salmonella spp., Escherichia coli, Listeria monocytogenes, Staphylococcus aureus,* and *Campylobacter jejuni* (EFSA and ECDC, 2017).

The genus *Salmonella*, belonging to the family Enterobacteriaceae, is one of the most dangerous organisms that cause food contamination and lead to serious infections for organisms that threaten their life. In addition, *Salmonella* is also common and infects more than one host (Vivek *et al.*, 2012).

To ensure food safety, the growth of pathogenic microorganisms must be prevented through a set of chemicals, physical and physiological processes that ensure the validity of these foods during the preservation process (Nerin *et al.*, 2017).

Citation: Egypt. Acad. J. Biolog. Sci. (G.Microbiolog) Vol.12 (2) pp.101-110 (2020)

ABSTRACT

Essential oils (Eos) are classified as GRAS (Generally Recognized as Safe) by the US Food and Drug Administration because they are natural plant sources and have antimicrobial and antioxidant properties (Manso *et al.*, 2011; Wrona *et al.*, 2015). Despite the multiple benefits of essential oils, several obstacles are facing their use as food preservatives as they (1) volatile (2) having hydrophobic nature make them react with fats in foods (4), (3) they are often added in high concentrations to have an antimicrobial effect, and this leads to negative sensory changes (Emiroglu *et al.*, 2010).

To overcome these problems, essential oils can be encapsulated to protect their biological, functional properties, control their release (Vergis *et al.*, 2015), and prolong shelf life during storage (Vemmer and Patel, 2013; Martins *et al.*, 2014).

There are several factors through which the encapsulating material is selected, as it must be non-toxic, bioactive, and inexpensive (Dalmoro *et al.*, 2012).

Cinnamon oil is one of the important essential oils that is preferred to be used because of its strong effect against a group of pathogenic organisms during the preservation process (Manso *et al.*, 2014). Several studies include cinnamon oil packaging such as cyclodextrins that are non-toxic and some of them are used as novel food or food additives (Munhuweyi *et al.*, 2018). *Bacillus macerans* transform starch into cyclic oligosaccharides, which are known as cyclodextrins. CDs α -, β and γ - are commercially generated from CDs (Chen & Liu, 2016).

The homogenous, crystalline, and nonhygroscopic nature of these CDs distinguishes them. The common types (α -, β - and γ -CDs) are composed of six to eight (α -1,4)-linked -D-glucopyranose units. The ability of CDs to form inclusion complexes with a variety of small molecules via molecular complexation is their most prominent property. CDs can form such complexes in solutions (Cusola *et al.*, 2013). Because guest molecules are briefly housed within the host cavity, inclusion in CDs has a significant impact on their physicochemical properties (Zhou *et al.*, 2009).

 β -cyclodextrin, with 7 sugar units, has been the most commercially appealing (more than 95 percent consumed) due to its simple synthesis, availability, and price (Ji et al., 2010). It contains a polar cavity that allows it to house the most crucial molecules and allows for easy crystallization recovery (Wang et al., 2011), its production is economically viable (Szente and Szejtli 2004), non-toxic because it is not absorbed by the gastrointestinal system or lipophilic biological membranes (Liang et al., 2012). Other characters distinguish β -CD, as its cavity of it is hydrophobic while the external hydrophilic. section is Like other polysaccharides, β -CD is stable in alkali solutions and is sensitive to acid hydrolysis (Voncina & Vivo, 2013).

Taking all these into consideration, this work is aimed at testing several essential oils as antimicrobial agents against a number of multidrug-resistant *Salmonella* sp. Then the most promising essential oil was chosen for being encapsulated into β - cyclodextrin citrate for developing an antimicrobial active food packaging.

MATERIALS AND METHODS Essential Oils (EOs):

Five essential oils were used in this experiment: Marjoram (Origanum majorana), Nigella sativa, Olive (Olea europaea), Moringa (Moringa oleifera) and cinnamon (Cinnamomum verum). All EOs were purchased by the producer (National Research Center, Dokki, Egypt), and maintained at 4°C in dark glass vials until their employment.

Collection of Microbial Pathogens:

Different *Salmonella* sp. were isolated from different food items (vegetables and fruits). Three strains of *S. typhinurius* and one strain of *S. enteritidis* were isolated from vegetables. In addition, two strains of *S. typhimurium*, one strain of *S. Kentucky*, and another strain of *S. Anatum* were isolated from meat products. These strains were obtained from Animal Health Research Institute, Dept. of Serology, Dokki branch and Dept. of Microbiology, Zagazig branch, Egypt.

Antibiotic Susceptibility Profiling:

Disc diffusion assay was applied for investigating the susceptibility of Salmonella strains to different broad-spectrum antibiotics (Hudzicki, 2009). Single colonies from the strains under study were inoculated into the nutrient broth and incubated for 24 h at 37 °C. After that, the cultures were spread on the surface of nutrient agar using sterile swabs. Then antibiotic discs were distributed onto the surface. Nine broad-spectrum antibiotics (Amoxicillin (AMC 20 µg), Ceftazidime (CAZ 30 µg), Ceftriaxone (CRO 30 µg), Ciprofloxacin (CIP 5 µg), Amikacin (AK 30 µg), Cefotaxime (CTX 30 µg), Ampicillin (AMP 10 µg), Gentamycin (CN 30 µg) and Nitrofurantoin (F 300 µg) were applied. Inhibition zones (mm) for different antibiotics were measured after incubating plates at 37°C for 24 h. The results we obtained were interpreted according to the Clinical & Laboratory Standards Institute (CLSI, 2011) guidelines.

Agar Well Diffusion Test:

Antibacterial Activity of Essential Oils:

The antibacterial activity of the five different essential oils was tested against eight Salmonella sp. that were isolated from different food items using the agar-diffusion approach. Bacteria were inoculated in a nutrient broth medium at 37°C for 24 h. Then bacteria (1.5 $X10^8$ cfu) were swabbed on the plates. nutrient agar 100µL of 5% dimethylsulphoxide (DMSO) was added to (100µL) of each oil extract to solubilize it. EOs were deposited in wells (diameter 7 mm) formed in the agar plates, and those plates were cultured at 37°C for 24 h. Then, the ranges of the inhibition zones were measured. All samples were measured in triplicates.

Fabrication of β -cyclodextrin Citrate:

 β -cyclodextrin citrate was prepared by sedimentary reaction between β - cyclodextrin (Acros Organic, USA) and citric acid as previously was reported by Abeer *et al.* (2019). In brief, 2.00 g β -CD was added to 2.03 g of citric acid dissolved in 12 mL deionized water. The reaction mixture was refluxed at 100°C for 4 h after which excess of isopropanol was added to precipitate β cyclodextrin citrate.

Antibacterial Activity of Cinnamon Oil Encapsulated In β-Cyclodextrin Citrate:

0.5 g of β -cyclodextrin citrate was mixed with 10 ml cinnamon oil. Cinnamon oil was tested alone and in the encapsulated form against tested *Salmonella* sp. using the agar diffusion approach as mentioned before. This experiment lasted for one month.

RESULTS AND DISCUSSION Salmonella Strains Showed Multidrug Resistance:

Data shown in Table 1 distinguish the efficacy of different antibiotics against Salmonella strains. All Salmonella sp. were resistant to different antibiotics as Amoxicillin and Ampicillin (100%),Nitrofurantoin and Ciprofloxacin (75%), Cefuroxime. and Gentamicin (62.5%),Ceftriaxone and Ceftazidime (37.5%),Amikacin (12.5%). On the other hand, Salmonella strains were sensitive to Amikacin (87.5%), Cefuroxime (37.5%), Gentamicin (37.5%), Ciprofloxacin (25%), Nitrofurantoin (25%), and Ceftriaxone (12.5%). Many studies have reported similar results as Zhao et al. (2008) who mentioned that all Salmonella isolates were susceptible to ceftriaxone and ciprofloxacin and exhibited streptomycin resistance to (37.8%), sulfamethoxazole-trimethoprim (27.7%), and gentamicin (25.7%). Also, Al-Sultan et al., (2012) found that susceptibility of Salmonella isolates to gentamicin, ciprofloxacin, and chloramphenicol was 95%, 90%, and 80% respectively and a high level of resistance was observed against amoxicillin-clavulanic acid (100%) and erythromycin (80%).

Antibiotic	Conc. (µg/ disc)	Resistant (R)		Intermediate (I)		Susceptible (S)	
		No. *	%#	No. *	%#	No. *	%#
Amoxicillin	20	8	100	0	0	0	0
Ceftriaxone	30	3	37.5	4	50	1	12.5
Ceftazidime	30	3	37.5	5	62.5	0	0
Nitrofurantoin	300	6	75	0	0	2	25
Ciprofloxacin	5	6	75	0	0	2	25
Cefuroxime	30	5	62.5	0	0	3	37.5
Amikacin	30	1	12.5	0	0	7	87.5
Ampicillin	10	8	100	0	0	0	0
Gentamicin	10	5	62.5	0	0	3	37.5

Table 1. Susceptibility differences of *Salmonella* sp. isolates against different antibiotics.

Expressed as percent in reference to all Salmonella sp. isolates per each antibiotic studied.

* Denotes for number of Salmonella sp. isolates.

Essential Oils Had Antibacterial Activity against MDR bacteria:

Data in Table (2) demonstrates the activity of different essential oils against tested *Salmonella* sp. Cinnamon oil showed the highest antibacterial activity against all tested strains $(32\pm0.20 - 38\pm0.04 \text{ mm})$. That is because cinnamon oil contains cinnamaldehyde as bioactive material with antibacterial effect (Abdelwahab *et al.*, 2014), this material penetrates bacterial membranes causing their lysis (Vani and Lakshmi, 2014). Also, Marjoram and Nigella sativa essential

oils gave remarkable activity. As Marjoram oil gave ($21\pm0.0.08$ - 28 ± 0.23 mm), while Nigella sativa oil gave (20 ± 0.04 - 23 ± 0 mm). On the other hand, no antibacterial effect was detected when adding olive or moringa oils except for olive oil that showed an inhibition zone (18 ± 0.12 mm) against *S. enteritidis* M6. This negative effect of essential oils can be due to the outer membrane that acts as an insulator against these oils in Gram-negative bacteria from Gram-positive bacteria (Ismail *et al.*, 2017).

	Essential oils							
Samples	Marjoram	Nigella sativa	Olive	Moringa	Cinnamon			
	M SD	M SD	M SD	M SD	M SD			
S. typhinurius M1	28±0.23	0.0±0	0.0±0	0.0±0	38±0.04			
S. typhinurius M5	23±0.18	23±0	0.0±0	0.0±0	33±0.16			
S. typhinurius M7	22±0.20	20±0.09	0.0±0	0.0±0	38±0.16			
S. enteritidis M6	24±0.18	20±0	18±0.12	$0.0{\pm}0$	33±0.21			
S. typhimurium S1	21±0.08	0.0±0	0.0±0	0.0±0	35±0.32			
S. typhimurium S2	26±0.16	20±0.08	0.0±0	0.0±0	34±0.20			
S. Kentucky S3	23±0.08	20±0.04	0.0±0	$0.0{\pm}0$	33±0.18			
S. Anatum S4	0.0±0	22±0.20	0.0±0	0.0±0	32±0.20			

Table 2. The growth inhibition zones (expressed in mm) obtained testing the selected Salmonella strains against the assayed EOs.

Legend—M: mean expressed in mm; SD: standard deviation.

EOs exert antimicrobial effects by degrading cell walls, penetrating cell membranes and damaging cells, damaging membrane proteins, leakage of cell contents, cytoplasmic coagulation as shown in Fig. 1B. (Burt, S., 2004). Several studies have investigated the antimicrobial activity for different essential oils. In this regard, (Teixeira *et al.*, 2013) found that at least four pathogenic organisms among the seven studied organisms were affected by using 17 types of essential oils. Also, (Pesavento *et al.*, 2015) revealed that

essential oils of thymol, rosemary, and oregano inhibited the growth of *Listeria monocytogenes* and *Staphylococcus aureus*.

Characterization of Fabricated βcyclodextrin Citrate:

The poor solubility of β -cyclodextrin in water at room temperature can be overcome via an esterification process with citric acid, in presence of sodium hypophosphite as a catalyst. The primary hydroxyl groups of β cyclodextrin are more accessible for esterification than a secondary one. The fabricated β -cyclodextrin citrate exhibited better solubility. Figure 2A. denotes the probable esterification reaction products of β cyclodextrin with citric acid. ESEM in Figure 2C. reveals the surface morphology structure of fabricated β -cyclodextrin citrate.

The FT-IR spectra for β -cyclodextrin and β cyclodextrin citrate are shown in figure 2B. Similar absorption bands characteristic of polysaccharides are observed in the two spectra. Though, a new peak had appeared at 1731cm⁻¹ in β -cyclodextrin citrate spectrum due to C=O vibration consistent to ester group formed between the primary hydroxyl groups of β -cyclodextrin and carboxyl groups from citric acid. Moreover, the band at 890 cm⁻¹ the distinctive band of α -(1,4) was glucopyranose in β-cyclodextrin citrate (Yuan et al., 2013).

The very poor solubility of β -CD in water, which does not allow the direct dissolution for film casting procedure, can be improved through chemical modification of the external hydrophilic groups at 2, 3, and 6 positions (Kang, *et al.*, 2015).

Antibacterial Activity of Cinnamon Oil Encapsulated in β-cyclodextrin Citrate:

A quantitative evaluation of

antimicrobial activity has been carried out on cinnamon oil free form and cinnamon oil/β-CD citrate against different Salmonella sp. as mentioned in Table 3 & Fig. 3. Cinnamon oil encapsulated in β -CD citrate had a promising antibacterial effect that lasted for a longer time with a slower rate of release. As the inhibition zone in the case of the free oil form was fixed and, in some cases, decreased. On the other hand, the encapsulated form caused an increased inhibition zone of all treatments. This can be attributed to the long path where the essential oil has to pass through, and the intense contact between the oil and the hydrophobic cavity of β -CD (Chen & Liu, 2016). In this regard, (Fathi et al., 2012) found that diffusion is the mechanism used in a core release, in which the active compound is released slowly by permeating the coating's wall without compromising its physical integrity, or through a release trigger, which involves a change in pH, mechanical stress, temperature, enzymatic activity, time, or osmotic force, among other triggers, that promotes capsule breakdown and releases the active compound instantly.

Our results are in accordance with, Babaoglu *et al.* (2017) who encapsulated clove essential oil in hydroxypropyl-betacyclodextrin using the kneading method. He found that the inclusion complex had greater stability and the antioxidant properties increased due to the encapsulation process. Also, (Hill *et al.*, 2013) encapsulated different oils like cinnamon bark extract, eugenol, clove bud extract in β -cyclodextrin. They found effective antimicrobial activity against *Salmonella enterica* serovar Typhimurium LT2 and *Listeria innocua*. **Table 3.** Effect of different forms of cinnamon oil (free and encapsulated) on inhibition zones of *Salmonella* strains.

	Inhibition zone diameter (mm)						
	Α	fter 2 days	After 28 days				
<i>Salmonella</i> Sp.	Cinnamon oil extract	Cinnamon oil extract encapsulated into β- cyclodextrin citrate	Cinnamon oil extract	Cinnamon oil extract encapsulated into β- cyclodextrin citrate			
S. typhinurius M1	30	24	30	30			
S. typhinurius M5	32	28	32	31			
S. typhinurius M7	28	24	28	27			
S. enteritidis M6	28	24	28	29			
S. typhimurium S1	30	26	29	28			
S. typhimurium S2	29	28	29	29			
S. Kentucky S3	32	30	30	32			
S. Anatum S4	31	29	32	32			

Fig. 1. Antibacterial activity of *Salmonella* strains against the assayed EOs.

- A- Different essential oils used in the study.
- B- Antibacterial activity mechanisms in the bacterial cell.
- C- Effect of different essential oils.

1 – Cinnamon essential oil 2- Moringa oil 3- Marjoram oil 4- Nigella sativa oil 5- Olive oil

Fig. 2. Different characteristics of Fabricated β-cyclodextrin citrate

- A- Schematic representation of esterification reaction of β-CD with citric acid
- B- FTIR spectra of β CD and β CD_{Cit}
- C- SEM of βCD_{Cit}

Fig. 3. Agar diffusion test of 1- Cinnamon oil free form & 2- cinnamon oil encapsulated into β-cyclodextrin citrate against several *Salmonella* strains.

A- S. typhinurius M5
B- C- S. enteritidis M6
B- S. typhimurium S1

Conclusion:

Essential oils proved to have antimicrobial activity against a number of multi-drug resistant *Salmonella* sp. Cinnamon oil was the most promising of these oils for affecting multidrug-resistant strains. For circumventing the different limitations in essential oils as lipophilic, immiscible with water, sensitive towards the chemical modification under the effect of some external factors such as temperature, light, presence of oxygen. β -cyclodextrin was evaluated as an encapsulation strategy to promote the controlled release of cinnamon oil while also maintaining its antimicrobial activity. Besides cyclodextrins are virtually non-toxic and Chen, G. and Liu, B. (2016). Cellulose sulfatesome of them are already approved as food additives or as novel foods.

REFERENCES

- Abdelwahab, S. I.; Mariod, A. A.; Taha, M. M. E.; Zaman, F. Q.; Abdelmageed, A. H. A.; Khamis, S.; Sivasothy, Y. and Clinical and Laboratory Standards Institute (2014). Awang, K. Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. Chemistry. http://dx.doi.org/10.1016/ j.arabjc.2014.02.001.
- Abeer, M. Adel; Atef, A. Ibrahim; Amira, M. El-Shafei and Mona, T. Al-Shemy (2019). Inclusion complex of clove oil chitosan/\beta-cyclodextrin with citrate/oxidized biocomposite active food for packaging. Food Packaging and Shelf Life, 20.
- Al-Sultan, I. I. A.; Jasbir, S. and Fazlina, F. (2012). Antibiotic sensitivity of pathogenic bacteria isolated from beef samples obtained from Kota Bharu and its surrounding Journal of Advanced Medical *Research*, 2, 8–11.
- Babaoglu, H. C.; Bayrak, A.; Ozdemir, N.; Ozgun, N. (2017). Encapsulation of clove essential oil in hydroxypropyl controlled release, and antioxidant activity. Journal of Food Processing Preservation, 41(5), and 1-8, Forthcoming. DOI: 10.1111/ jfpp. 13202.
- Berjia, F. L.; Poulsen, M.; Nauta, M. (2014). Burden of diseases different red associated to meat practices. Food cooking and Chemical Toxicology, 66, 237-244. https://doi.org/10.1016/j.fct.2014.01. 045.
- (2004). Essential Burt. S. oils: their antibacterial properties and potential

applications foods--a in review. International Journal of Food Microbiology, 94, 223-53.

- film based with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocolloids, 55, 100-107.
 - [CLSI]. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. Vol. 31. 2011.
- (Lauraceae). Arabian Journal of Cusola, O.; Tabary, N.; Belgacem, M. N. and (2013). Cyclodextrin Bras. J. functionalization of several cellulosic substrates for prolonged release of agents. Journal antibacterial ofapplied polymer science, 129, 604-613..
 - nanocellulose Dalmoro, A.; Barba, A. A.; Lamberti, G. and D'Amore, M. (2012). Intensifying the microencapsulation process: Ultrasonic atomization as an innovative European approach. Journal of *Pharmaceutics* and Biopharmaceutics, 80(3), 471-477. DOI: 10.1016/j.ejpb.2012.01.006.
 - provinces. Dong, C.; Qian, L. Y.; Zhao, G. L.; He, B. H.; and Xiao, H. N. (2014). Preparation of antimicrobial cellulose fibers by grafting β -cyclodextrin and inclusion with antibiotics. Materials Letters, 124, 181-183.
- beta-cyclodextrin for characterization, Emiroglu, Z. K.; Yemis, G. P.; Skun, B. K. and Candogan, K. (2010). Antimicrobial activity edible films of soy incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86, 283-288. DOI: 10.1016/j.meatsci.2010.04.016.
 - estimates European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 15,

e05077. https://doi.org/10.2903/ j. efsa. 2017.5077.

- Fathi, M.; Mozafari, M. R.; Mohebbi, M. Manso, S., Nerin, C., Gomez-Lus, R., 2011. (2012). Nanoencapsulation of food ingredients using lipid-based delivery systems. Trends in Food Science & Technology, 23(1), 13-27. DOI: 10.1016/j.tifs.2011.08.003.
- Hill, L. E.; Gomes, C.; Taylor, T. M. (2013). Characterization of beta-cyclodextrin complexes inclusion containing eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51(1), 86-93. DOI: 10.1016/j.lwt.2012.11.011.
- J. (2009). Kirby-Bauer disk Hudzicki. diffusion susceptibility test protocol. Washington, DC. [Online.] http://www. microbelibrary. org/ component/resource/laboratorytest/31 89-kirby-bauer-disk-diffusionsusceptibility-test protocol.
- Ismail, M.; Kemegne, G. A.; Njayou, F. N.; Mbacham, Penlap. V.: Kamdem, S.L.S. (2017). Chemical composition, antibiotic promotion and in vivo toxicity of *Piper nigrum* and Syzygium aromaticum essential oil. African Journal of Biochemistry Research, 11, 58-71.
 - Ji, J. G.; Hao, S. L.; Dong, J.; Zhang, J. F.; Li, Chitosan/Cyclodextrin/Trisodium Citrate Nanoparticles for the Poor-Water Drug Carrier Material. Advanced Materials Research, 152- Ölmez, 153.
- Kang, Y.; Choi, Y. K.; Kim, H. J.; Song, Y. and Kim, H. (2015). Preparation of anticellulose bacterial fiber via electrospinning and crosslinking with β-cyclodextrin. Fashion and Textiles, 2, 1-10.
- Liang, H.; Yuan, Q.; Vriesekoop, F.; Lv, F. Pesavento, G.; Calonico, C.; Bilia, A. R.; (2012). Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food

Chemistry, 135(3), 1020- 1027. DOI: 10.1016/j.foodchem.2012.05.054.

- Antifungal activity of the essential oil cinnamon of (Cinnamomum zeylanicum), oregano (Origanum vulgare) and Lauramide Argine Ethyl Ester (LAE) against the mold Aspergillus flavus CECT 2949. Italian Journal of Food Science, 23, 151-156.
- essential oils (trans-cinnamaldehyde, Manso, S.; Pezo, D.; Gomez-Lus, R.; Nerin, C.; Gómez-Lus, R. and Nerín, C. (2014). Diminution of aflatoxin **B**1 production caused by an active containing cinnamon packaging essential oil. Food Control, 45, 101https://doi.org/10.1016/j. 108. foodcont. 2014.04. 031.
- American Society for Microbiology, Martins, I. M.; Barreiro, M. F.; Coelho, M. and Rodrigues, E. (2014). A. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245,191-200. DOI: 10.1016/j.cej.2014.02.024.
 - W.F.; Munhuweyi, K.; Caleb, O. J.; van Reenen, A. J.; Opara, U. L. (2018). Physical and antifungal properties of betacvclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT -Food Science and Technology, 87, 413-422.
- J. J. and Xu, Y. (2010). Preparation of Nerin, C.; Astudillo, M.; Covián, I.; Mujika, R. (2017). Active Packaging that Inhibits Food Pathogens. European patent PCT/ES2007/070039.
 - H., (2016). Chapter 9 foodborne pathogenic bacteria in fresh-cut vegetables and fruits. In: Kotzekidou, P. (Ed.), In Food Hygiene and Toxicology in Ready-To-Eat Foods. Academic Press, San Diego, pp. 151-166. https://doi.org/10.1016/B978-0-12-801916-0.00009-1.
 - Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M. C. and Lo Nostro, A.

(2015). Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs, Food Control, 54, 188-199. DOI: 10.1016/j. foodcont. 2015.01.045.

- Szente, L.; Szejtli, J. (2004). Cyclodextrins as food ingredientes. Trends in Food Science and Technology, 15 (3-4), 137-142. DOI: 10.1016/j.tifs.2003. 09.019.
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N. Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils, Industrial Crops and Products, 43, 587-595. DOI: 10.1016/ j. indcrop.2012.07.069.
- Vani, K. P. and Lakshmi, O. B. (2014). In-vitro Antibacterial Efficacy of Common Spices and their Effect on Permeability of Membrane, of Pharma International Journal and *Bio* Sciences, 5(4) 1203 – 1211.
- Vemmer, M.; Patel, A. V. (2013). Review of Zhao, S.; White, D. G.; Friedman, S. L.; Glenn, encapsulation methods suitable for microbial biological control agents. Biological Control, 67(3) 380-389. DOI: 10.1016/j.biocontrol.2013. 09. 003.
- Vergis, J.; Gokulakrishnan, P.; Agarwal, R. K. and Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food 1323. https://doi.org/10.1080/ 10408398.2012.692127.
- Vivek, K. B.; Kwang, H. B.; SunChul, K. (2012). Control of Salmonella in foods by using essential oils. Food Research Journal, 45, 722-734.
- B. and Vivod, V. Voncina, (2013). Cyclodextrins in textile finishing. In:

[online]. p. 53–75. [Accessed 10 January 2022]. Retrieved from: http://www. intechopen.com/books/eco-friendlytextile-dyeing-and finishing/ cyclodextrins-in-textile-finishing

- Wang, J.; Cao, Y.; Sun, B. and Wang, C. (2011). Physicochemical and release characterization of garlic oil-ßcyclodextrin inclusion complexes. Food Chemistry, 127(4), 1680-1685. DOI: 10.1016/j.foodchem.2011.02. 036.
- R.; Nogueira, J. M. F.; Saraiva, J. A.; Wrona, M., Bentayeb, K., Nerín, C., 2015. A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus), Food Control, 54, 200-207. https:// doi.org/10. 1016/j.foodcont.2015.02.008.
 - Yuan, Z.; Ye, Y.; Gao, F.; Yuan, H.; Lan, M.; Lou, K. and Wang, W. (2013). Chitosan-graft-beta-cyclodextrin nanoparticles as а carrier for controlled drug release. International Journal of Pharmaceutics, 446, 191-8.
 - A.; Blickenstaff, K.; Ayers, S. L.; Abbott, J. W.; Hall-Robinson, E. and McDermott. Ρ. F. (2008).resistance Antimicrobial in Salmonella enterica serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006. Applied and environmental microbiology, 74, 6656-6662.
- Science and Nutrition, 55, 1320– Zhou, Z.; Xiao, Y.; Hatton, T. A. and Chung, T. S. (2009). Effects of spacer arm length and benzoation on enantioseparation β-cyclodextrin performance of functionalized cellulose membranes. Journal of Membrane Science, 339, 21-27