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Abstract— 

In machine learning, optimization of hyperparameters 

aims to find the best values of model hyperparameters 

yielding an optimal model with minimum prediction error. It 

is the most important step that directly affects the 

performance of learned model. Many techniques have been 

proposed to optimize hyperparameters for different 

predictive models. In this paper, the performance of grid 

search, random search, Bayesian Tree Parzen Estimator 

(TPE) and Simulated Annealing (SA) optimization techniques 

is evaluated to determine the best hyperparameters for a 

logistic regression model when used in cancer classification. 

Wisconsin Breast Cancer Dataset (WBCD) has been used to 

evaluate the previously mentioned optimization techniques. 

The results show that Bayesian TPE outperformed other 

techniques in terms of number of iterations and running time. 

The number of iterations to get optimal parameters in TPE is 

less than SA by 75.75 %, and random search by 77.1%. While 

the time taken by TPE is better than SA, random search and 

grid search by 79.9%, 86.1% and 99.9% respectively. The 

resulted optimal hyperparameter values have been utilized to 

learn a logistic regression model to classify cancer using 

WBCD dataset. The optimized model succeeded in classifying 

cancer with 98.2% for test accuracy, 0.962 for kappa statistic 

and 0.963 for MCC metrics when evaluated using 10-fold 

cross validation.  
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Grid Search, Tree Parzen Estimator, Simulated Annealing 

I. INTRODUCTION  
 

In the world of machine learning, there exist two main 

types of parameters that determines the performance of the 

predictive model. These types are model parameters and 

hyperparameters. Model parameters are model coefficients 

such as weights for logistic regression model or neural 

network that can be estimated from the training data and 

resulted during model training [1]. Contrariwise, 

hyperparameters, also called tuning parameters [2], are set 

of options and settings that are independent of the training 

data and must be determined before training the model. 

Examples on hyperparameters are the penalty type and 

regularization strength for logistic regression, number of 

neighbors in KNN (K-Nearest Neighbors), kernel type in  

support vector machines (SVM) and number of trees in 

Random Forest.  

The performance of machine learning models mainly 

depends on the settings of their hyperparameters [3]. These 

parameters can be determined manually based on 

experience through multiple tests or it can be determined 

automatically using one of the widely used optimization 

algorithms [4]. Recently, new trends in machine learning 

depends on the automatic adjustment of hyperparameters, 

so, many techniques have been proposed and applied for 

this purpose. These techniques are classified as black-box 

and multi-fidelity optimization techniques [5].  Figure 1 

shows the classification of hyperparameter optimization 

techniques. Black box optimization doesn’t use the 

gradient of the objective function because the function is 

inaccessible or the gradient is expensive to be calculated. 

So, only the function output which is already known, is 

used to estimate the hyperparameters [6].  Contrariwise to 

black-box, instead of considering a single expensive 

evaluation for the objective function, multi-fidelity 

optimization utilizes many cheap low-fidelity evaluations 

to ignore the regions with low values while keeping 

expensive approximations for promising regions [7]. For 

hyperparameter optimization with large data sets, cheap 

approximations can be obtained by training the model using 

only a randomly chosen subset of the training dataset [8].  

 

In this paper, the performance of common black-box 

optimization techniques is evaluated to optimize logistic 

regression hyperparameters. These hyperparameters 

include penalty and learning rate. This study includes grid 

search, random search, Bayesian Tree Parzen Estimator 

(TPE) and Simulated Annealing (SA) techniques. The 

models are evaluated using Wisconsin Breast Cancer 

Dataset (WBCD) [9]. A model for cancer classification 

using the resulted optimal parameters is introduced. The 

performance of the optimized model has been investigated 

according to other research work. 

 

The rest of this paper is organized as follow: section 

2 explains the logistic model parameters. Section 3 reviews 

the black box optimization techniques. Section 4 introduces 

mailto:marwa_abbas2003@yahoo.com
mailto:nelfishawy@hotmail.com


 2 

the workflow. Section 5 shows the results and discussion. 

Section 6 is the conclusion and future work.  

II. LOGISTIC REGRESSION MODEL AND 

HYPERPARAMETERS 

Logistic regression is a machine learning algorithm 

used for classification problems. It utilizes the odds ratio 

to model the value of a binary or a multinomial dependent 

variable. The hypothesis used by logistic regression is 

given by: 

h(θTX) = 𝑃 (𝑌 = 1, 𝑋1, 𝑋2, ⋯ , 𝑋n) = 
1

1+ⅇ−θTx
                      (1)                                                              

Where 𝑌 is the dependent variable to be modelled, 

𝑋 1, 𝑋2, ⋯ , 𝑋n  are the given independent predictors and 

𝜃 is the weight vector for given predictors. Given m as 

sample size, logistic regression utilizes the cross-entropy 

function as a cost function which is expressed as:  
 
  

𝑱(𝜽) =
−𝟏

𝒎
∑ [

𝒚(𝒊) 𝒍𝒐𝒈 (𝒉𝜽(𝒙(𝒊))) +

(𝟏 − 𝒚(𝒊)) 𝒍𝒐𝒈 (𝟏 − 𝒉𝜽(𝒙(𝒊)))
]𝒎

𝒊=𝟏             (2) 

                             
Optimizing the cost function is required to obtain the 

best weights yielding maximum performance for learning 

model. Actually, many algorithms are used for this purpose. 

In this paper, averaged stochastic gradient descent is used 

where the updated weights in each iteration are given by: 

𝜽𝒋 = 𝜽𝒋 − 𝜶
𝝏

𝝏𝜽𝒋
𝑱(𝜽)                                                (3) 

Where 𝛂  is the learning rate, which really controls the 

learning process. The learning rate may be one of four 

categories supported by Python libraries which are constant, 

optimal, inverse scaling and adaptive learning rates [10]. 

For each category, initial learning rate eta0 is required to 

specify the learning rate value in each iteration during the 

learning process. Also, to avoid overfitting logistic 

regression is regularized by adding a new term to equation 

(2) that is called penalty. There are three main types of 

penalties: L1, L2 and Elastic net [11,12,13]. The terms 

added are 𝝀 ∑ |𝜽𝒋|
𝒏
𝒋=𝟏  for L1,  𝝀 ∑ 𝜽𝒋

𝟐𝒏
𝒋=𝟏   for L2 and   

𝝀𝟏 ∑ |𝜽𝒋|
𝒏
𝒋=𝟏 + 𝝀𝟐 ∑ 𝜽𝒋

𝟐  𝒏
𝒋=𝟏  for Elastic net and 𝝀   is the 

regularization strength. Logistic regression is regularized in 

python libraries by choosing the appropriate penalty type. 

  
Table 1: Logistic regression hyperparameters.  

 

 However, when the elastic net is selected, then a new 

parameter that called 1_ratio is used to determine 

regularization strength. Also, warm Strat is another setting 

that is used to allow or disallow the reuse of the previous 

fit.  Table 1 lists the most important hyperparameter for 

logistic regression model used in this paper.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

III. BLACK-BOX OPTIMIZATION TECHNIQUES 

Black-box optimization is a general optimization 

technique used to optimize functions with just a known 

output. So, it doesn’t have to make many assumptions 

about the problem being optimized that making it widely 

applicable to different areas [14]. Black-box algorithms are 

widely applied in machine learning for hyperparameter 

optimization by minimizing the model’s cost function (e.g., 

cross-entropy function) over the hyperparameter space. 

This section introduces the most common Black-box 

techniques which are applied in this paper.  

 

A. Grid Search 

 

Grid search simply selects optimal hyperparameters 

by testing all possible combinations among all given 

hyperparameters [15]. It is guaranteed to find the optimal 

solution if it exists in its hyperparameter space. Many 

contributions have utilized grid search for hyperparameter 

optimization [16, 17]. Despite it is widely used in 

hyperparameter optimization, it has many limitations 

making it unfavorable. First of them is the inability to work 

over hyperparameters with continuous distribution as this 

result in infinite combinations among hyperparameters. 

Hyperparameter Type    Values Description 

 

penalty_type Categoric {l1, l2, 

elasticnet} 

Type of 

regularization 
 

l1_ratio Continuous [0,1] Mixing for 

elastic net 
 

learning_rate Categoric {constant, 

optimal, 

invscaling, 

adaptive} 

Type of 

learning rate 

eta0 Continuous [0,2] Initial 

learning 

Alpha Continuous [0.00001,0.01] Regularization 

strength 
 

Warm_start Categoric {True, False} Reuse 

previous fit 

 

 

Figure 1: Classification of Hyperparameter Optimization techniques [5]. 
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Discretizing the continuous range with regular intervals 

may help solving this problem. However, grid search may 

lose the optimal solution [18]. Another limitation of grid 

search is the expensive cost in terms of time and 

computational resources required to search all 

hyperparameters combinations in its grid, especially with 

high dimensional hyperparameter space and large datasets 

[19].   

B. Random Search  

As its name implies, and on the contrary to grid 

search, not all combinations of the hyperparameters are 

tested to get the optimal solution.  The number of 

combinations to be tested are selected as a random subset 

of the overall hyperparameters space and explicitly passed 

to random search with alternative number of iterations.  

Random search is simply a black-box optimization 

technique that is proven theoretically and empirically to 

compete grid search [20]. In another research [21], the 

classification performance of random search equates the 

performance of some meta-heuristic optimization 

techniques namely Genetic Algorithm, Particle Swarm, and 

Estimation Distribution Algorithm with lower 

computational cost. Random search is not guaranteed to 

return the optimal solution, but it can find a near optimal 

solution with much less cost in terms of search time when 

compared to grid search.  
 

C. Bayesian Optimization  

 

Bayesian optimization is another black-box 

optimization technique. It utilizes Bayes probability 

theorem by setting a prior probability distribution over the 

function being optimized and combine it with the 

sample information (also, called evidence) to get a 

posterior function [22].  Bayesian optimization reduces the 

number of iterations to get the optimal hyperparameters by 

using all information of previous evaluations of the 

function being optimized [23]. Recently, Bayesian 

optimization has gained a high popularity in the field of 

hyperparameter optimization, especially for deep learning 

architectures [24]. In addition, many contributions have 

been done to utilize Bayesian optimization in different 

applications [25, 26]. For modeling the objective function, 

Bayesian optimization utilizes many probability 

distributions. Where Gaussian process (GP) is assumed to 

be the most suited distribution. It is used as a prior 

distribution for Bayesian optimization [27]. Recently, new 

models are gaining more popularity and proved its 

effectiveness. This makes it supported in hyperparameter 

optimization libraries such as python's Hyper-opt. 
 

C.1. Bayesian Tree Parzen Estimator 

One of these models is the Tree Parzen Estimator 

(TPE) which replaces the prior probabilistic distribution by 

a non-parametric density [28]. As a result of using the 

density estimator, TPE is able to use both continuous and 

discrete hyperparameter spaces [29].  Actually, TPE is 

structured as a tree keeping all conditional dependencies, 

allowing it to support hyperparameter spaces with 

conditional variables [30].  

C.2. Simulated Annealing 

Another model utilized by Bayesian optimization is 

Simulated Annealing (SA). It is a probabilistic and 

metaheuristic technique that is capable of optimizing a 

given function in a process simulating the material 

annealing. Recently SA has been used in hyperparameter 

optimization in different application areas [31,32]. During 

optimization of a function, SA moves randomly. If this 

movement improves the solution, then SA accepts it [33].  

IV. WORKFLOW AND DATASET 
 

 

In this paper, Wisconsin Breast Cancer Dataset 

(WBCD) has been used. It contains 32 numeric features 

computed from a digitized image of a fine needle aspirate 

(FNA) of a breast mass [9]. WBCD contains 569 samples 

with 212 among them classified as Malignant (M) while the 

rest 357 are classified as Benign (B).  

 

The proposed system starts with loading the dataset 

and preparing. All features were scaled to the range [0,1] 

using the min-max scaler by applying the following 

formula:  𝑥` =  
𝒙−𝒎𝒊𝒏(𝒙)

𝒎𝒂𝒙(𝒙)−𝒎𝒊𝒏(𝒙)
                                          (4) 

Where 𝒙  is the feature value before scaling, 𝑥 ` is the 

feature value after scaling, 𝑚𝑖𝑛(𝑥) is the minimum feature 

value and 𝑚𝑎𝑥(𝑥) is the maximum feature value. After 

pre-processing, the dataset was split through train-test split 

procedure. In this work, the train-test split ratio has been 

chosen as 80-20%. The test set is preserved unseen for 

evaluation of the final optimized model. The training set is 

used by cross validation procedure and the optimizer for 

hyperparameter estimation. During the training stage, after 

initializing the parameter space, the training set is divided 

to 10 folds using k-fold cross validation. Then, one of the 

four used optimizers (Grid search, Random search, TPE, 

SA) is chosen to fit the model and estimate the 

hyperparameters at the different number of iterations. 

Finally, the best hyperparameters estimated by the 

optimizer are used to retrain the logistic model and estimate 

its performance using the previously reserved test set. 

These steps and their sequence are displayed in Figure 2. 
 

V. RESULTS AND DISCUSSION 

An important parameter for TPE, SA and random 

search is the number of iterations. It represents number of 

combinations that are sampled to get an estimation of the 

hyperparameters. When the number of iterations increases, 

the quality of the solution increase, but also the time 

required to find the solution increase. So, the performance 

of these algorithms should be studied with increasing the 

number of iterations. The time required to achieve the 

optimal solution by the different optimizers has been 

evaluated. All experiments are carried out on a second-

generation machine with 8 GB RAM, and 2.4 GHZ Core i5 

processor and 64-bit windows 10 as operating system. Each 

experiment is repeated for 10 times and their results are 

averaged. 
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Figure 2:  The proposed system. 
 

 

A. Performance metrics variation with iterations 
 

In this section, the variation of the performance 

metrics for the optimized model has been studied with 

increasing number of iterations. Confusion matrix 

parameters which are True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN) are the 

main parameters from which classification metrics such as 

Accuracy, Precision, Recall and F1 score are computed 

[34]. Another metric is Matthew’s Correlation Coefficient 

(MCC) which is used in evaluating classification models 

with imbalanced dataset to indicate how much the 

predictive model is better than random guess [35].  Another 

metric is cohesion’s Kappa which measures the agreement 

between predicted and true classes [36].  Table 2 lists these 

metrics with their expressions as calculated based on 

confusion matrix parameters.  

 

Several experiments have been carried out to evaluate 

the mentioned parameters at different iterations. The result 

showed that by increasing the number of iterations, the 

performance has been improved as a result of reaching 

more better values of the optimized hyperparameters. Also, 

the results showed that at the 8th iteration, the performance 

of TPE in terms of test accuracy, kappa an MCC reached 

its maximum value, then settled down while SA reached at 

the 17th iteration, but it fell down, then regained its 

performance and settled down at the 33rd iteration and 

finally random search reached its maximum performance 

then settled down at the 35th iteration. Figures 3,4 and 5 

shows the variation of test accuracy, kappa and MCC 

metrics with the number of iterations for TPE, SA and 

Random search algorithms. Table 3 lists the values of 

hyperparameters obtained by each algorithm after reaching 

steady state which represents the optimal hyperparameters 

for each algorithm.   
           

  Table 2: Classification metrics. 

 
Table 3: Hyperparameter result of the different optimizers. 

 

 

B. Iterations and time required to get the optimal solution 
 

An important factor in the comparison between 

optimization algorithms is the speed of finding an optimal 

or near optimal solution. A number of experiments have 

been carried out to measure the number of iterations to 

reach the best solution for each algorithm. The number of 

iterations required to reach the maximum test accuracy 

have been recorded. The results showed that TPE reached 

to the best performance at 8th iteration only while simulated 

annealing reached at the 33rd iteration and finally the 

random search reached at the 35th iteration. This means that 

applying TPE, to get the optimal hyperparameters 

contributed in reduction of iterations by 75.75 % compared 

to SA and by 77.1 % when compared to random search. 

Figures 6 compares the number of iterations to get the 

 

Metric 

 

Expression 
 

 

Accuracy 

 

𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐓𝐍 + 𝐅𝐏 + 𝐅𝐍
 

               

 

Precision 

 

𝐓𝐏

𝐓𝐏 + 𝐅𝐏
 

 

 

Recall 

 

𝐓𝐏

𝐓𝐏 + 𝐅𝐍
 

 

 

F1 Score 

 

𝟐 ∗ 𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 ∗ 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 + 𝐑𝐞𝐜𝐚𝐥𝐥
 

 
 

MCC 

 

 

𝐓𝐏. 𝐓𝐍 − 𝐅𝐏. 𝐅𝐍

√(𝐓𝐏 + 𝐅𝐏)(𝐓𝐏 + 𝐅𝐍)(𝐓𝐍 + 𝐅𝐏)(𝐓𝐍 + 𝐅𝐍)
 

 

 

Kappa 

 

 

 

 

𝐏𝐨 − 𝐏𝐞

𝟏 − 𝐏𝐞
 

 

 

Hyperparameter 

Optimized values of Hyperparameters  

 

Grid Random Anneal TPE 

 

penalty_type Elastic 

net 

L2 L2 L2 

l1_ratio 0.1 

 

- - - 

learning_rate Adaptive Adaptive Adaptive Optimal 

 

eta0 1.71 1.118 1.712 0.04099 

 

Alpha 0.00031 0.000433 0.00053 0.000255 

Warm_start True False True False 

 

Preprocessing 

Start 

Dataset 

Train Test Split 

Test set Training set 

Retrained 

Model 

Parameters 

Cross Validation 

Best Parameters 

Final 

Evaluation 

End 

Metrics 

Generation 

Optimizer 
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optimal performance for TPE, SA and Random search 

algorithms. Also, the time required for reaching optimal 

performance is recorded. The results show that TPE takes 

0.81 seconds to reach the optimal performance while SA 

takes 4.0391 seconds and Random search takes 5.85 

seconds. Finally, Grid search needs 3705.29 seconds to 

reach the optimal solution which is a very long time when 

compared to other algorithms. This means that applying 

TPE resulted in reduction of time required to reach 

maximum performance by 79.9%, 86.1%, and 99.9% 

compared to SA, Random search and grid search 

respectively. Figure 7 compares training time of TPE, SA 

and Random search algorithms.  
 

 
                       

       Figure 3: Test Accuracy variation with Iterations for each optimizer. 
 

 
      

Figure 4: Kappa statistic variation with Iterations for each optimizer. 
 

 
 

Figure 5: MCC variation with Iterations for each optimizer. 

 

 
 

Figure 6: Iterations taken by each optimizer to get Optimal. 

 
 

Figure 7: Time taken by each optimizer to get Optimal. 
 

C. Training Time variation with iterations 
 

 In this section, the relation between the number of 

iterations and the training time of the logistic regression 

model when tuned by TPE, SA and Random search 

optimizers is studied.  A number of experiments have been 

carried out to measure the training time taken by each 

algorithm with varying iterations. To measure the time at 

each iteration, each experiment is repeated for 10 times and 

their time is averaged. Figure 8 illustrates the variation of 

time with a number of iterations for TPE, SA and Random 

search algorithms. The results show that with increasing the 

number of iterations, training time increased in a linear 

fashion with the three algorithms but with different slopes. 

Increasing number of iterations had the minimum effect on 

the Random search that had the line with minimum slope. 

SA algorithm had the worst time performance as a result of 

the maximum increase in time with increasing the number 

of iterations. Also, TPE had a training time closer to that of 

the Random search but much better than the SA 
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      Figure 8: Training Time variation with Iterations for each optimizer. 

 
 

D. Evaluation of the final optimized model  
 

 

After tunning the logistic regression hyperparameters, 

the resulted optimal hyperparameters are used again to 

build a model for cancer classification using WBCD data 

set and logistic regression. This model is tested using the 

previously reserved test set and all metrics in Table 2 are 

measured. The resulted evaluation metrics of this model is 

listed in Table 4.  

 
Table 4: Final Evaluation metrics of the optimized model. 

 

Train 

Acc. 

Test 

Acc. 

Kappa MCC F1 

Score 

Precision Recall 

0.982 0.9825 0.962 0.963 0.99 0.98 0.98 

 

To assess the effect of tunning the hyperparameters, 

the optimized model is compared with the non-optimized 

model using the performance metrics in Table 2. The 

results showed that the optimized model outperformed the 

non-optimized model by 1.15 %, 1.75 %, 3.7%, 3.8%, 3%, 

2% and 2% in training accuracy, test accuracy, kappa, 

MCC, f1 score, precision and recall, respectively. Figure 9 

draws a comparison between the optimized and non-

optimized models according to the discussed metrics. 

 

Also, as a classifier it has been compared with other 

classifiers using WBCD dataset. Vivek K. et al. [37] 

introduced an implementation of different classification 

techniques for cancer using WBCD dataset. This 

implementation included Boost M1, Decision Table, J-Rip, 

J48, Lazy IBK, Lazy K-star, Logistic Regression, 

Multilayer–Perceptron, Random Forest and Random Tree 

algorithm. They evaluated these algorithms using 10-fold 

cross-validation. Also, Md. Imran in [38] compared the 

performance of Naive Bayes (NB), Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) 

each with different configuration using WBCD and 10-fold 

cross-validation. The proposed optimized logistic 

regression classifier outperforms SVM with linear kernel in 

[38] by 1.53%, by 2.37% when compared to ANN with 

radius basis function, and by 2.34 % when compared to 

Gaussian NB. Moreover, the proposed optimized logistic 

regression model outperforms some of Vivek K. et al. [37] 

classifiers by 1.12%. 0.83%, 15.44%, 15.44% ,15.16 %, 

and 12.15% when compared to logistic regression, MLP, 

J48 Free, Ada-Boost M1, Decision Table and J-Rip. On the 

contrary, their Lazy k-star, Lazy IBK and Random Forest 

algorithms outperforms the proposed optimized model by 

0.89%. Figure 10 draws illustrates a comparison between 

the proposed optimised model and all other classifiers.  

 
 

 
 

Figure 9: Evaluation Metrics of optimized and non-optimized models. 

 

 
 

Figure 10: Test Accuracy of Optimized Model VS Other Classifiers. 
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VI. CONCLUSION AND FUTURE WORK 

In this paper, the performance of common black-box 

techniques namely Random search, Grid search, TPE and 

SA using WBCD dataset has been studied. TPE was proved 

to outperform other algorithms in terms of iterations and 

time requiring to get an optimized solution for logistic 

regression hyperparameters. TPE reduced number of 

iterations to get the optimized hyperparameter values by 

75.75 % compared to SA and by 77.1 % when compared to 

Random search. Also, it reduced time taken 79.9 % 

compared to simulated annealing and by 86.1 % when 

compared to random search and by 99.9 % when compared 

to grid search. The resulted hyperparameter values have 

been utilized to learn a logistic regression model to classify 

cancer using WBCD dataset. The optimized model 

succeeded in classifying cancer with 98.2% for test 

accuracy, 0.962 for kappa statistic and 0.963 for MCC 

metrics when evaluated using 10-fold cross validation. The 

future work will include other optimization techniques 

namely genetic algorithms and more complicated 

classifiers such as Deep Neural Networks (DNN) applied 

to higher dimensional datasets. 
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