## Journal of Food and Dairy Sciences

Journal homepage: <u>www.jfds.mans.edu.eg</u> Available online at: <u>www.jfds.journals.ekb.eg</u>

## Improving the Storage Stability and Keeping Quality of Modified Papaya Juices Stored under Refrigeration Conditions

Abdel-Gawad, O. A.; H. A. Abdel-Aal; F. A. H. El-Soukkary and Sanaa M. Abdel-Hameed\*

Food Science Dept., Fac. of Agric., Minia Univ., Minia, Egypt.

## ABSTRACT

<image><image><image><image><image><image><image><image><section-header><section-header><section-header><section-header><section-header><text>

Fresh papaya puree was blended with orange, strawberry, mango and guava to improve the nutritional and quality properties of the mixed juices. The produced juices were evaluated for their nutritional, physicochemical, microbiological and sensory characteristics. The effect of pasteurization (at ~  $65^{\circ}C/20$  min) and/or chemical preservatives (0.05% potassium sorbate + 0.05% potassium metabisulphite) on the quality and shelf stability of papaya juices was also investigated during cold storage (at ~  $4^{\circ}$ C) for 6 months. The results showed that, the combined action of the thermal treatment and chemical preservatives (T<sub>3</sub>) on the quality and shelf stability of papaya juices was better than using either of them alone. During refrigerated storage, the values of moisture, pH, ascorbic acid and total phenolics significantly decreased as the storage time increased. While, the total soluble solids and titratable acidity values significantly increased. Despite this decrease, all juice samples remained satisfactory sources of ascorbic acid and phenolic compounds over the storage period. The sensory quality of papaya juices remained acceptable for up to six months. The total bacterial counts were less than 10<sup>2</sup> cfu/g for all juice samples. Yeasts and moulds were absent during refrigerated storage. Consequently, no potential microbial risk was associated with the storage conditions. As a conclusion, the papaya fruits could be successfully used singly or in combination with orange, strawberry, mango and guava to obtain delicious and healthy nutritious juices. The modified papaya juices (75% papaya + 25% orange/strawberry/mango/guava) had acceptable quality attributes, improved nutritional value, improved shelf stability and microbiological safety.

Keywords: Papaya, orange, strawberry, mango, guava, preservatives, pasteurization.

## INTRODUCTION

Nowadays, awareness of consuming healthy food for a healthy life is becoming more and more prevalent. In this respect, fruits and vegetables serve as important sources of a wide variety of vitamins, minerals and dietary fibers essential for human nutrition. They are recommended as important sources of health-promoting phytochemical compounds that may provide desirable health benefits beyond basic nutrition to reduce the risk of chronic diseases. There are many biologically reasonable reasons for this potentially protective association, including the fact that many of the phytochemicals act as antioxidants. Therefore, some people have conferred on fruits and vegetables the status of functional foods (Jongen, 2002; Rosa *et al.*, 2010; Slavin and Lloyd, 2012; Gündüz, 2016; Ramya and Patel, 2019 and Murthy and Bapat, 2020).

Fruit juices are becoming more and more popular all over world. They play an important role in promoting health, due to their high content of essential nutrients and bioactive compounds. The current dietary trend toward healthy diets makes juice consumption an important alternative and improves the availability of its nutritive compounds. Fresh juices are highly perishable. Delays between processing and consumption of juices can result in losses of flavor and nutritional quality. Therefore, they should be preserved using an appropriate preservation method unless consumed fresh (Bhardwaj *et al.*, 2014; Arend *et al.*, 2017; Dasenaki and Thomaidis, 2019; Guine *et al.*, 2020 and Ruxton and Myers, 2021).

Cross Mark

Papaya (Carica papaya) is a principal horticultural crop of tropical and subtropical regions. It is commonly known for its nutritional, medicinal and neutraceutical properties worldwide. Papaya fruits are delicious and healthy due to their high content of vitamins, minerals, proteolytic enzymes and many other biological active compounds. Papaya fruits are consumed when they ripe and become soft and sweet. They are eaten fresh in fruit salads, blended as juice or processed as jam. The lack of storage facility and perishable nature of papaya fruits can result in severe postharvest losses of this nutritious fruit. Therefore, the processing of papaya into functional foods not only extends its shelf life but also preserves the nutritive value of the fruit (Aravind et al., 2013; Devaki et al., 2015; Shrivastava and Gowda, 2016; Aly et al., 2020; Dwivedi et al., 2020; Sharma et al., 2020 and Dotto and Abihudi, 2021).

Oranges (*Citrus sinensis*) are among the most popular fruits around the world. The nutrients in oranges offer a range of health benefits. They have been reported as a rich source of vitamin C, fibers, potassium and phytochemicals such as flavonoids. Thus, the consumption of orange could provide significant amounts of bioactive compounds with antioxidant activity (Vanamala *et al.*, 2006; Ndife and Abbo, 2009; Ndife *et al.*, 2013; Abobatta, 2019 and Pardo *et al.*, 2021).

Strawberries (*Fragaria ananassa*) are popular fruits grown in Egypt and many other countries. In the

Mediterranean diet, strawberries are a common and important fruit because of their high content of essential nutrients and beneficial phytochemicals, which seem to have relevant biological activity in human health. According to their nutrient profile, the strawberries represent a healthy food choice (El-Beltagy *et al.*, 2007; Aaby *et al.*, 2012; Giampieri *et al.*, 2012; Basu *et al.*, 2014; Gündüz, 2016 and Putri *et al.*, 2020).

Mango (*Mangifera indica*) is one of the most important tropical and subtropical fruits worldwide in terms of production and consumer acceptance. Mango is a highly nutritive fruit and has several health benefits. In addition to its unique color and flavor, it is a good source of carbohydrates, antioxidants including ascorbic acid, carotenoids and polyphenols. Mango can be consumed fresh or processed into juices, nectars, concentrates, jams, jelly, fruit bars, flakes and dried fruits (Khan *et al.*, 2008; Djioua *et al.*, 2009; Maldonado-Celis *et al.*, 2019; Akther *et al.*, 2020 and Lebaka *et al.*, 2021).

Guava (*Psidium guajava*) is an important fruit crop of the subtropical and tropical regions in the world. It is commercially important because of its flavor and aroma. It has a considerable nutritional importance due to its excellent source of vitamins, antioxidants, fibers and minerals essential for human nutrition and health (Soares *et al.*, 2007, Singh and Pal, 2008; Kuchi *et al.*, 2014; Yadav *et al.*, 2017 and Anand *et al.*, 2020).

Therefore, the main objectives of this investigation are to: (1) produce delicious and healthy nutritious juices using papaya puree singly or in combination with orange, strawberry, mango and guava. (2) Evaluate the nutritional and quality properties of the produced juices. (3) Improve the storage stability and keeping quality of the modified papaya juices stored at refrigeration temperature (~ 4°C) by using pasteurization (~ 65°C/20 min) and/or chemical preservatives (0.05% potassium sorbate + 0.05% potassium metabisulphite).

## MATERIALS AND METHODS

#### Materials:

Freshly harvested papaya (*Carica papaya*) was obtained from the Horticulture Research Farm, Fac. of Agric. Minia Univ., Minia, Egypt. Orange (*Citrus sinensis*), strawberry (*Fragaria ananassa*), mango (*Mangifera indica*) and guava (*Psidium guajava*) were purchased from the local market (Minia, Egypt). All chemicals used in this study were of analytical grade and purchased from Sigma and El-Naser pharmaceutical chemicals.

### Methods:

#### Preparation of the raw materials for juice processing:

**Papaya purce:** Fresh papaya fruits were subjected to successive steps of washing, sorting and trimming, then peeled and cut into halves to remove the seeds. Papaya puree was obtained using a food processor, drain with a suitable filter when needed to obtain homogenous puree.

**Orange juice:** Orange fruits were subjected to successive steps of washing, sorting and trimming, then cut into halves. Orange juice was extracted using a juice extracting machine and filtered to obtain clear juice.

**Strawberry puree:** Strawberry fruits were subjected to successive steps of washing, sorting and trimming, then blended and screened to obtain homogenous puree.

**Mango purce:** Mango fruits were subjected to successive steps of washing, sorting and trimming. The fruits were peeled and the stones were removed, then the fleshes of samples were blended and screened through a mesh screen to form homogenous puree.

**Guava puree:** Guava fruits were washed, sorted, cut into small pieces, blended and screened to remove seeds and obtain homogenous puree.

## Processing and storage of papaya juice blends:

Preliminary trials were conducted to prepare papaya juice blends. Papaya puree was mixed (in different proportions) with orange, strawberry, mango and guava. Based on the sensory assessment data, the research on the best sensory samples (75% papaya + 25% orange/strawberry/mango/guava) was completed. The preservation treatments ( $T_0$ ,  $T_1$ ,  $T_2$  and  $T_3$ ) for juice samples were done as follows:

 $T_0 = Control$  (without any treatments).

 $T_1$  = Pasteurization at ~ 65°C / 20 min.

 $T_2=0.05\%$  potassium sorbate (PS) + 0.05% potassium metabisulphite (KMS).

 $T_3$  = Pasteurization at ~ 65°C / 20 min + 0.05% potassium sorbate (PS) + 0.05% potassium metabisulphite (KMS).

The juice samples were aseptically filled into sterile and clear glass bottles (200 mL), sealed and stored at refrigeration temperature (~  $4^{\circ}$ C) for six months. Evaluation tests for juice samples were carried out at the beginning of experiments (zero time), then every month throughout the storage period. The processing steps of mixed papaya juice preparation and preservation are illustrated in Fig (1).



# Fig. 1. The processing steps of mixed papaya juices preparation.

## **Determination of moisture content:**

Moisture content of juice samples was determined according to the methods of the AOAC (2000). All determinations were performed in triplicates and the means were reported.

#### Determination of total soluble solids (TSS):

The total soluble solids were measured (as °Brix) using hand refractometer at room temperature (~  $25^{\circ}$ C) according to AOAC (2000).

#### Determination of pH and titratable acidity:

The pH of juice samples was determined using a digital pH meter according to the methods of the AOAC (2000). Titratable acidity (as % citric acid) was determined according to Adekunte *et al.* (2010).

### Determination of ascorbic acid:

Ascorbic acid was determined by the 2,6dichlorophenol-indophenol method according to Ranganna (1977). The results were expressed as mg ascorbic acid / 100g sample.

## **Determination of total phenols:**

Estimation of total phenols was carried out according to Musa et al. (2011) using Folin-Ciocalteu reagent. Approximately 10 g sample was homogenized with 100 mL extracting solvent (methanol 50%) for 1 min under high speed. The extracted samples were centrifuged for 15 min at 3000 rpm. The supernatants were collected and passed through Whatman No.1 filter paper. About 0.50 mL sample extract was added with 2 mL distilled water and 2.50 mL diluted Folin-Ciocalteu reagent (0.20 N). The samples (extracts with Folin-Ciocalteu reagent) were left for 5 min before 5 mL of 7.5% (w/v) Na2CO3 was added. The absorbances were taken at 765 nm after 2 hrs. Calibration curve of gallic acid was set up to estimate the activity capacity of samples. The results were expressed as mg of gallic acid equivalents (GAE)/100g of sample.

## Microbiological analysis:

The total bacterial count was determined according to Diliello (1982) using nutrient agar media. Yeast and mould count was done using malt extract agar media according to AOAC (2000). The number of bacterial colonies, yeasts and molds were counted, after incubation at 37°C / 48 hrs for bacteria and  $25^{\circ}$ C / 72 hrs for yeasts and molds, and expressed as colony forming units per gram of the sample (CFU/g).

## Sensory evaluation:

Sensory evaluation for the color, flavor texture and overall quality were done in order to determine consumer acceptability. A numerical hedonic scale which ranged from 1 to 10 (1 is very bad and 10 for excellent) was used for sensory evaluation (Larmond, 1977).

## Statistical analysis:

The statistical analysis was carried out according to Snedecor and Cochran (1982) using the statistical package for social scientist (SPSS) software program. All results are presented as arithmetic means  $\pm$  SD. Means and standard deviation (SD) were measure by the least significant difference (LSD) and Duncan's multiple range test at 5% significant level.

## **RESULTS AND DISCUSSION**

## The moisture content of papaya juice samples during storage:

The moisture contents of control and treated papaya juice samples during cold storage (at ~ 4oC) for six months are presented in Table (1). From which, it could be seen that all preservation treatments and storage intervals both had a significant effect on the moisture content values for most juice samples. The data indicated a gradual inecrease in moisture content up to the third month of storage for all juice samples (except the formula contined 75% papaya + 25% orange). Then there was a gradual decrease up to the end of storage (6 months) for all juice samples. This decrease in moisture content consequently led to an increase in the total solids content. Similar results are reported by Chowdhury et al. (2008) for mixed juice based on wood apple and papaya.

 Table 1. Moisture content (%)\*of papaya juice samples during cold storage (at ~ 4°C).

|                          | Storage intervals (month)               |                              |                          |                          |                                |                              |                       |  |  |  |  |
|--------------------------|-----------------------------------------|------------------------------|--------------------------|--------------------------|--------------------------------|------------------------------|-----------------------|--|--|--|--|
| Treatments**             | Zero time                               | 1 <sup>st</sup>              | $2^{nd}$                 | 3 <sup>rd</sup>          | 4 <sup>th</sup>                | 5 <sup>th</sup>              | 6 <sup>th</sup>       |  |  |  |  |
|                          |                                         |                              | 1                        | 00% Papaya jui           | ce                             |                              |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $83.74 \pm 0.04^{k}$                    | -                            | -                        | -                        | -                              | -                            | -                     |  |  |  |  |
| T <sub>1</sub>           | $83.99 \pm 0.02^{i}$                    | $84.18\pm0.03^{h}$           | $84.23 \pm 0.04^{g}$     | $84.61 \pm 0.02^{\circ}$ | $84.45 \pm 0.04^{d}$           | $84.30 \pm 0.02^{f}$         | $83.77 \pm 0.03^{k}$  |  |  |  |  |
| $T_2$                    | $84.18\pm0.03^{\rm h}$                  | $84.39 \pm 0.03^{e}$         | $84.46 \pm 0.02^{d}$     | $84.97 \pm 0.02^{a}$     | $84.65 \pm 0.02^{\circ}$       | $84.44 \pm 0.02^{d}$         | $83.88 \pm 0.03^{j}$  |  |  |  |  |
| T <sub>3</sub>           | $83.91 \pm 0.02^{j}$                    | $84.15 \pm 0.02^{h}$         | $84.32 \pm 0.01^{ m f}$  | $84.74 \pm 0.03^{b}$     | $84.45 \pm 0.02^{d}$           | $84.43 \pm 0.03^{de}$        | $83.68 \pm 0.04^{1}$  |  |  |  |  |
|                          |                                         | 759                          | % Papaya juice +         | 25% Orange juid          | ce                             |                              |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $86.25 \pm 0.05^{d}$                    | -                            | -                        | -                        | -                              | -                            | -                     |  |  |  |  |
| $T_1$                    | $86.09 \pm 0.02^{e}$                    | $86.02 \pm 0.01^{ef}$        | $85.70 \pm 0.02^{h}$     | $85.59\pm0.02^{\rm h}$   | $85.42 \pm 0.01^{i}$           | $85.25 \pm 0.02^{j}$         | $85.10 \pm 0.02^{k}$  |  |  |  |  |
| $T_2$                    | $86.74 \pm 0.03^{a}$                    | $86.67 \pm 0.02^{ab}$        | $86.47 \pm 0.03^{\circ}$ | $86.35 \pm 0.02^{cd}$    | $85.93 \pm 0.02^{\mathrm{fg}}$ | $85.89 \pm 0.02^{fg}$        | $85.85 \pm 0.03^{g}$  |  |  |  |  |
| T3                       | $86.64 \pm 0.03^{ab}$                   | $86.60 \pm 0.02^{b}$         | $86.27 \pm 0.04^{d}$     | $86.02 \pm 0.03^{ef}$    | $85.87\pm0.01^{\text{g}}$      | $85.72 \pm 0.02^{h}$         | $85.68 \pm 0.02^{h}$  |  |  |  |  |
|                          | 75% Papaya juice + 25% Strawberry juice |                              |                          |                          |                                |                              |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $85.23\pm0.02^{\rm c}$                  | -                            | -                        | -                        | -                              | -                            |                       |  |  |  |  |
| $T_1$                    | $85.26 \pm 0.02^{\circ}$                | $85.45 \pm 0.03^{bc}$        | $85.72 \pm 0.04^{b}$     | $85.97 \pm 0.03^{a}$     | $85.63 \pm 0.02^{b}$           | $85.42 \pm 0.01^{bc}$        | $84.98 \pm 0.02^{de}$ |  |  |  |  |
| $T_2$                    | $85.29 \pm 0.03^{\circ}$                | $85.41 \pm 0.01^{bc}$        | $85.67 \pm 0.02^{b}$     | $86.05 \pm 0.01^{a}$     | $85.67 \pm 0.02^{b}$           | $85.20 \pm 0.02^{\circ}$     | $84.99 \pm 0.03^{de}$ |  |  |  |  |
| T3                       | $85.13 \pm 0.02^{cd}$                   | $85.21 \pm 0.02^{\circ}$     | $85.44 \pm 0.02^{bc}$    | $85.71 \pm 0.02^{b}$     | $85.42 \pm 0.03^{bc}$          | $85.28 \pm 0.02^{\circ}$     | $84.87 \pm 0.02^{de}$ |  |  |  |  |
|                          |                                         | 759                          | % Papaya juice +         | 25% Mango juio           | ce                             |                              |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $82.59 \pm 0.02^{\text{gh}}$            |                              | -                        | -                        |                                |                              |                       |  |  |  |  |
| $T_1$                    | $82.37 \pm 0.01^{1}$                    | $82.40 \pm 0.03^{1}$         | $82.68 \pm 0.03^{19}$    | $83.35 \pm 0.02^{\circ}$ | $83.09 \pm 0.04^{d}$           | $82.62 \pm 0.05^{\text{gh}}$ | $82.14 \pm 0.02^{j}$  |  |  |  |  |
| $T_2$                    | $82.48 \pm 0.03^{\text{hi}}$            | $82.64 \pm 0.02^{\text{gh}}$ | $82.91 \pm 0.04^{e}$     | $83.75 \pm 0.03^{a}$     | $83.35 \pm 0.02^{\circ}$       | $82.85 \pm 0.03^{\text{ef}}$ | $82.33 \pm 0.03^{1}$  |  |  |  |  |
| T <sub>3</sub>           | $82.30 \pm 0.02^{1}$                    | $82.34 \pm 0.02^{1}$         | $82.76 \pm 0.02^{etg}$   | $83.53 \pm 0.02^{b}$     | $82.99 \pm 0.03^{de}$          | $82.62 \pm 0.02^{\text{gh}}$ | $82.35 \pm 0.02^{1}$  |  |  |  |  |
|                          |                                         | 75                           | % Papaya juice +         | - 25% Guava juic         | æ                              |                              |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $84.47 \pm 0.03^{d}$                    |                              | -                        |                          |                                |                              |                       |  |  |  |  |
| $T_1$                    | $84.23 \pm 0.02^{etg}$                  | $84.38 \pm 0.03^{de}$        | $84.73 \pm 0.02^{\circ}$ | $84.82 \pm 0.02^{bc}$    | $84.48 \pm 0.02^{d}$           | $84.13 \pm 0.06^{\text{gh}}$ | $83.97 \pm 0.04^{h}$  |  |  |  |  |
| $T_2$                    | $84.42 \pm 0.01^{d}$                    | $84.46 \pm 0.01^{d}$         | $84.95 \pm 0.02^{ab}$    | $85.01 \pm 0.02^{a}$     | $84.69 \pm 0.03^{\circ}$       | $84.09 \pm 0.03^{\text{gh}}$ | $84.02 \pm 0.02^{h}$  |  |  |  |  |
| T3                       | $84.14 \pm 0.02^{\text{gh}}$            | $84.31 \pm 0.02^{def}$       | $84.47 \pm 0.04^{d}$     | $84.92 \pm 0.03^{ab}$    | $84.43 \pm 0.04^{d}$           | $84.21 \pm 0.02^{\text{fg}}$ | $84.03 \pm 0.03^{h}$  |  |  |  |  |
| * Means of three de      | eterminations ± SD,                     | values within the s          | ame column and r         | ow followed by the       | e same letter are no           | ot significantly diffe       | rent (P < 0.05).      |  |  |  |  |

\*\*  $T_1$  = Pasteurization at ~ 65°C/20 min. \*\*  $T_2$  = 0.05% potassium sorbate + 0.05% potassium metabisulphite.

\*\*  $T_3$  = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

# The total soluble solids of papaya juice samples during storage:

The total soluble solids (TSS) as an indicator for the sugar content is an important factor in the production of fruit juice. In this respect, the TSS (as °Brix) values of control and treated papaya juice samples during cold storage (at  $\sim 4^{\circ}$ C) for six months are presented in Table (2). From which, it could be seen that the storage intervals had a significant effect on the TSS values for all juice samples. While in most juice samples, the preservation treatments did not affect the TSS values significantly. The data indicated a gradual increase in TSS values during storage for all juice samples. This increase could be due to hydrolysis of polysaccharides and solubilization of pulp constituents during storage. For example, the TSS values of 100% papaya juice were significantly increased from 15 °Brix at zero time and reached 16.1, 15.9 and 15.8 °Brix for  $T_1$  (pasteurization at ~ 65°C/20 min),  $T_2$  (0.05%

potassium sorbate + 0.05% potassium metabisulphite) and T<sub>3</sub> (pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite), respectively at the end of the storage period. The highest increase percent was observed in T<sub>1</sub> (7.33%) followed by T<sub>2</sub> (6.0%), while T<sub>3</sub> recorded the lowest increase percent (5.33%). This could be due to the combined action of the thermal treatment and chemical preservatives. The TSS values for the rest of the juice samples (75% papaya + 25% orange, 75% papaya + 25% strawberry, 75% papaya + 25% mango and 75% papaya + 25% guava) presented in Table (2) followed the similar pattern as 100% papaya juice samples.

Similar observations were found by Ayub *et al.* (2010) for strawberry juice; Khan *et al.* (2012) for mangosea buckthorn blended juice; Singh *et al.* (2014) for aonlamango blended beverages; Rohila *et al.* (2017) for baelguava nectar and crush; Yadav *et al.* (2017) for guava pulp and Zakaria *et al.* (2017) for black mulberry pulpy juice.

| Table 2. Total soluble solution (as DTIX) of papaya junce samples during cold storage (at ~ + C) |
|--------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------|

|                                           | Storage intervals (month) |                       |                       |                                             |                       |                        |                      |  |  |  |  |
|-------------------------------------------|---------------------------|-----------------------|-----------------------|---------------------------------------------|-----------------------|------------------------|----------------------|--|--|--|--|
| Treatments**                              | Zero time                 | 1 <sup>st</sup>       | 2 <sup>nd</sup>       | 3 <sup>rd</sup>                             | 4 <sup>th</sup>       | 5 <sup>th</sup>        | 6 <sup>th</sup>      |  |  |  |  |
|                                           |                           |                       | 1                     | 00% Papaya jui                              | ce                    |                        |                      |  |  |  |  |
| T <sub>0</sub> (Control)                  | $15\pm0.2^{	ext{g}}$      | -                     | -                     | -                                           | -                     | -                      | -                    |  |  |  |  |
| $T_1$                                     | $15\pm0.2^{g}$            | $15.1\pm0.2^{\rm fg}$ | $15.3\pm0.2^{efg}$    | $15.5\pm0.2^{cde}$                          | $15.7\pm0.2^{bcd}$    | $16.1\pm0.2^{a}$       | $16.1 \pm 0.2^{a}$   |  |  |  |  |
| $T_2$                                     | $15\pm0.2^{g}$            | $15.1\pm0.2^{\rm fg}$ | $15.4\pm0.2^{def}$    | $15.4\pm0.2^{def}$                          | $15.5\pm0.2^{cde}$    | $15.6\pm0.2^{bcde}$    | $15.9\pm0.2^{ab}$    |  |  |  |  |
| T <sub>3</sub>                            | $15\pm0.2^{g}$            | $15.1\pm0.2^{fg}$     | $15.3\pm0.2^{efg}$    | $15.3\pm0.2^{efg}$                          | $15.5\pm0.2^{cde}$    | $15.5\pm0.2^{cde}$     | $15.8\pm0.2^{abc}$   |  |  |  |  |
|                                           |                           | 759                   | % Papaya juice +      | 25% Orange juid                             | ce                    |                        |                      |  |  |  |  |
| T <sub>0</sub> (Control)                  | $15\pm0.2^{g}$            | -                     | -                     | -                                           | -                     | -                      | -                    |  |  |  |  |
| $T_1$                                     | $15\pm0.2^{g}$            | $15.1\pm0.2^{\rm fg}$ | $15.2\pm0.2^{efg}$    | $15.4 \pm 0.2^{cdef}$                       | $15.5 \pm 0.2^{bcde}$ | $15.7\pm0.2^{abc}$     | $16.0\pm0.2^{a}$     |  |  |  |  |
| $T_2$                                     | $15\pm0.2^{g}$            | $15\pm0.2^{ m g}$     | $15.1\pm0.2^{\rm fg}$ | $15.4 \pm 0.2^{cdef}$ $15.5 \pm 0.2^{bcde}$ |                       | $15.6 \pm 0.2^{bcd}$   | $15.8\pm0.2^{ab}$    |  |  |  |  |
| T <sub>3</sub>                            | $15\pm0.2^{g}$            | $15\pm0.2^{g}$        | $15.1\pm0.2^{\rm fg}$ | $15.3\pm0.2^{defg}$                         | $15.3\pm0.2^{defg}$   | $15.5\pm0.2^{bcde}$    | $15.5\pm0.2^{bcde}$  |  |  |  |  |
| 75% Papaya juice $+25\%$ Strawberry juice |                           |                       |                       |                                             |                       |                        |                      |  |  |  |  |
| T <sub>0</sub> (Control)                  | $15\pm0.2^{e}$            | -                     | -                     | -                                           | -                     | -                      | -                    |  |  |  |  |
| $T_1$                                     | $15\pm0.2^{e}$            | $15.1\pm0.1^{de}$     | $15.2\pm0.2^{cde}$    | $15.4 \pm 0.2^{abcd}$                       | $15.5\pm0.2^{abc}$    | $15.5\pm0.2^{abc}$     | $15.7\pm0.2^{a}$     |  |  |  |  |
| $T_2$                                     | $15\pm0.2^{e}$            | $15\pm0.1^{e}$        | $15.1 \pm 0.2^{de}$   | $15.4 \pm 0.2^{abcd}$                       | $15.5\pm0.2^{abc}$    | $15.6\pm0.2^{ab}$      | $15.6\pm0.2^{ab}$    |  |  |  |  |
| T <sub>3</sub>                            | $15\pm0.2^{e}$            | $15\pm0.1^{e}$        | $15.1 \pm 0.2^{de}$   | $15.2\pm0.2^{cde}$                          | $15.3\pm0.2^{bcde}$   | $15.3\pm0.2^{bcde}$    | $15.5\pm0.2^{abc}$   |  |  |  |  |
|                                           |                           | 75                    | % Papaya juice +      | 25% Mango juid                              | ce                    |                        |                      |  |  |  |  |
| T <sub>0</sub> (Control)                  | $15\pm0.2^{e}$            | -                     | -                     | -                                           | -                     | -                      | -                    |  |  |  |  |
| $T_1$                                     | $15\pm0.2^{e}$            | $15.1 \pm 0.2^{e}$    | $15.3\pm0.2^{cde}$    | $15.5\pm0.2^{bcd}$                          | $15.7\pm0.2^{b}$      | $16.1\pm0.2^{a}$       | $16.3\pm0.2^{a}$     |  |  |  |  |
| $T_2$                                     | $15\pm0.2^{e}$            | $15.1 \pm 0.2^{e}$    | $15.3\pm0.2^{cde}$    | $15.4\pm0.2^{cde}$                          | $15.5\pm0.2^{bcd}$    | $15.6\pm0.2^{bc}$      | $15.8\pm0.2^{b}$     |  |  |  |  |
| <b>T</b> <sub>3</sub>                     | $15\pm0.2^{e}$            | $15.1 \pm 0.2^{e}$    | $15.2 \pm 0.2^{de}$   | $15.3 \pm 0.2^{cde}$                        | $15.3 \pm 0.2^{cde}$  | $15.5 \pm 0.2^{bcd}$   | $15.5 \pm 0.2^{bcd}$ |  |  |  |  |
|                                           |                           | 75                    | % Papaya juice +      | - 25% Guava juic                            | æ                     |                        |                      |  |  |  |  |
| T <sub>0</sub> (Control)                  | $15\pm0.2^{	ext{g}}$      | -                     | -                     | -                                           | -                     | -                      | -                    |  |  |  |  |
| $T_1$                                     | $15\pm0.2^{g}$            | $15.1\pm0.2^{g}$      | $15.3\pm0.2^{efg}$    | $15.6\pm0.2^{cde}$                          | $15.8\pm0.2^{bcd}$    | $16.1 \pm 0.2^{ab}$    | $16.2\pm0.2^{a}$     |  |  |  |  |
| $T_2$                                     | $15\pm0.2^{g}$            | $15.1\pm0.2^{g}$      | $15.3\pm0.2^{efg}$    | $15.4\pm0.2^{efg}$                          | $15.7\pm0.2^{cd}$     | $15.9\pm0.2^{abc}$     | $15.9\pm0.2^{abc}$   |  |  |  |  |
| T3                                        | $15 \pm 0.2g$             | $15.1\pm0.2^{g}$      | $15.2\pm0.2^{fg}$     | $15.3\pm0.2^{efg}$                          | $15.5\pm0.2^{def}$    | $15.5 \pm 0.2^{def}$   | $15.6\pm0.2^{cde}$   |  |  |  |  |
| * Means of three de                       | terminations $\pm$ SD,    | values within the     | same column and r     | ow followed by the                          | e same letter are no  | ot significantly diffe | rent (P ≤ 0.05).     |  |  |  |  |
| ** T De standing 4                        |                           |                       | ** T 0.050            | /                                           | 4. · 0.050/ 4         |                        |                      |  |  |  |  |

\*\*  $T_1$  = Pasteurization at ~ 65°C/20 min. \*\*  $T_2$  = 0.05% potassium sorbate + 0.05% potassium metabisulphite. \*\*  $T_3$  = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

13 - 1 ascurization at ~ 05 C/20 min + 0.05% potassium sorbate + 0.05% potassium metably

The pH and titratable acidity values of papaya juice samples during storage:

The pH value has a great importance for maintaining the quality and shelf stability of juices, as it affects their flavor and manufacturing requirements. The pH and titratable acidity values of papaya juice samples during cold storage (at ~ 4°C) for six months are shown in Tables (3 and 4). The results showed that the pH values were significantly decreased during storage for all juice samples. The pH values of 100% papaya juice were significantly decreased from 4.71, 4.72 and 4.73 at zero time and reached 3.61, 3.96 and 4.30 for T<sub>1</sub> (pasteurization at ~ 65°C/20 min), T<sub>2</sub> (0.05% potassium sorbate + 0.05% potassium metabisulphite) and T<sub>3</sub> (pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05%

potassium metabisulphite), respectively at the end of the storage period. The highest decrease percent was observed in T<sub>1</sub> (23.35%) followed by T<sub>2</sub> (16.10%), while T<sub>3</sub> recorded the lowest decrease percent (9.09%). This could be due to the combined action of the thermal treatment and chemical preservatives. The pH values for the rest of the juice samples presented in Table (3) followed the similar pattern as 100% papaya juice samples. Similar results are reported by Hussain *et al.* (2008) for apricot and apple juices; Mehmood *et al.* (2008) for apple juice and Zakaria *et al.* (2017) for black mulberry pulpy juice.

The results presented in Table (4) showed that the storage intervals had a significant effect on the titratable acidity (as % citric acid) values for all juice samples. While in most samples, the preservation treatments did not affect

the titratable acidity significantly. Papaya juice samples differed in titratable acidity values according to the mixed fruits. The values ranged from 0.19% (for 100% papaya juice) to 0.24% (for 75% papaya + 25% strawberry juice) at zero time of storage. These values were significantly increased during storage for all juice samples. This increment in acidity coud be due to the formation of acids by sugars, breakdown of polysaccharides and oxidation of

reducing sugars, pectin hydrolysis or degradation of ascorbic acid. Similar results are reported by Baghaei *et al.* (2008) for orange-cantaloupe seed beverage; Hussain *et al.* (2008) for apricot and apple juices; Mehmood *et al.* (2008) for apple juice; Ayub *et al.* (2010) for strawberry juice; Bal *et al.* (2014) for guava nectar; Yadav *et al.* (2017) for guava pulp and Zakaria *et al.* (2017) for black mulberry pulpy juice.

| Table 3. The pH | values <sup>*</sup> of | papava juice | samples during | cold storage | (at ~ 4°C). |
|-----------------|------------------------|--------------|----------------|--------------|-------------|
|-----------------|------------------------|--------------|----------------|--------------|-------------|

|                          | Storage intervals (month)               |                         |                         |                       |                       |                       |                         |  |  |  |  |
|--------------------------|-----------------------------------------|-------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-------------------------|--|--|--|--|
| Treatments**             | Zero time                               | 1 <sup>st</sup>         | $2^{nd}$                | 3 <sup>rd</sup>       | 4 <sup>th</sup>       | 5 <sup>th</sup>       | 6 <sup>th</sup>         |  |  |  |  |
|                          |                                         |                         | 10                      | )0% Papaya jui        | ce                    |                       |                         |  |  |  |  |
| T <sub>0</sub> (Control) | $4.71 \pm 0.02^{ab}$                    | -                       | -                       | -                     | -                     | -                     | -                       |  |  |  |  |
| $T_1$                    | $4.71 \pm 0.02^{ab}$                    | $4.64 \pm 0.02^{d}$     | $4.50\pm0.02^{g}$       | $4.42\pm0.02^{h}$     | $4.14 \pm 0.02^{1}$   | $3.90 \pm 0.02^{n}$   | $3.61 \pm 0.02^{\circ}$ |  |  |  |  |
| $T_2$                    | $4.72\pm0.02^a$                         | $4.67 \pm 0.02^{\circ}$ | $4.60 \pm 0.02^{e}$     | $4.54\pm0.02^{\rm f}$ | $4.37 \pm 0.01^{i}$   | $4.18\pm0.02^k$       | $3.96\pm0.02^m$         |  |  |  |  |
| T3                       | $4.73\pm0.02^{a}$                       | $4.70 \pm 0.02^{abc}$   | $4.68 \pm 0.03^{bc}$    | $4.62 \pm 0.02^{de}$  | $4.50\pm0.03^{g}$     | $4.40\pm0.02^{\rm h}$ | $4.30\pm0.02^{g}$       |  |  |  |  |
|                          |                                         | 75%                     | % Papaya juice +        | 25% Orange juic       | ce                    |                       |                         |  |  |  |  |
| T <sub>0</sub> (Control) | $4.48\pm0.03^{b}$                       | -                       | -                       | -                     | -                     | -                     | -                       |  |  |  |  |
| $T_1$                    | $4.53\pm0.02^a$                         | $4.43 \pm 0.02^{cd}$    | $4.31 \pm 0.02^{fg}$    | $4.23 \pm 0.02^{h}$   | $4.05 \pm 0.02^{j}$   | $3.47 \pm 0.02^{n}$   | $3.64\pm0.02^m$         |  |  |  |  |
| $T_2$                    | $4.49 \pm 0.02^{b}$                     | $4.41 \pm 0.02^{d}$     | $4.35 \pm 0.02^{e}$     | $4.29\pm0.02^{g}$     | $4.11 \pm 0.02^{i}$   | $3.91 \pm 0.02^{k}$   | $3.75 \pm 0.02^{1}$     |  |  |  |  |
| T3                       | $4.50\pm0.03^{ab}$                      | $4.50 \pm 0.03^{ab}$    | $4.45 \pm 0.03^{\circ}$ | $4.40 \pm 0.03^{d}$   | $4.30\pm0.03^{g}$     | $4.10\pm0.03^{\rm i}$ | $3.90 \pm 0.03^{k}$     |  |  |  |  |
|                          | 75% Papaya juice + 25% Strawberry juice |                         |                         |                       |                       |                       |                         |  |  |  |  |
| T <sub>0</sub> (Control) | $4.40\pm0.03^{b}$                       | -                       | -                       | -                     | -                     | -                     | -                       |  |  |  |  |
| $T_1$                    | $4.43\pm0.02^a$                         | $4.39 \pm 0.02^{bc}$    | $4.30\pm0.02^{e}$       | $4.21\pm0.02^{g}$     | $3.95 \pm 0.02^{j}$   | $3.42\pm0.02^{\circ}$ | $3.56 \pm 0.02^n$       |  |  |  |  |
| $T_2$                    | $4.39 \pm 0.02^{bc}$                    | $4.36 \pm 0.02^{cd}$    | $4.25 \pm 0.02^{f}$     | $4.19\pm0.02^{\rm g}$ | $3.98 \pm 0.02^{i}$   | $3.79 \pm 0.02^{1}$   | $3.67\pm0.02^m$         |  |  |  |  |
| T3                       | $4.39 \pm 0.03^{bc}$                    | $4.34 \pm 0.03^{d}$     | $4.27\pm0.03^{\rm f}$   | $4.20\pm0.03^{g}$     | $4.12\pm0.03^{\rm h}$ | $4.02\pm0.03^{i}$     | $3.83\pm0.03^k$         |  |  |  |  |
|                          |                                         | 759                     | % Papaya juice +        | 25% Mango juic        | e                     |                       |                         |  |  |  |  |
| T <sub>0</sub> (Control) | $4.58\pm0.01^{a}$                       | -                       | -                       | -                     | -                     | -                     | -                       |  |  |  |  |
| $T_1$                    | $4.56 \pm 0.02^{ab}$                    | $4.50\pm0.02^{e}$       | $4.43\pm0.02^{\rm f}$   | $4.30 \pm 0.02^{i}$   | $4.01 \pm 0.02^{k}$   | $3.45\pm0.02^{\circ}$ | $3.66 \pm 0.02^{n}$     |  |  |  |  |
| $T_2$                    | $4.55 \pm 0.02^{abc}$                   | $4.51 \pm 0.01^{de}$    | $4.42\pm0.02^{\rm f}$   | $4.36\pm0.02^{g}$     | $4.15 \pm 0.02^{j}$   | $3.93 \pm 0.02^{1}$   | $3.82\pm0.02^m$         |  |  |  |  |
| T3                       | $4.56\pm0.03^{ab}$                      | $4.54 \pm 0.02^{bcd}$   | $4.50\pm0.03^{e}$       | $4.42\pm0.03^{\rm f}$ | $4.33\pm0.03^{\rm h}$ | $4.13 \pm 0.01^{j}$   | $3.94 \pm 0.03^{1}$     |  |  |  |  |
|                          |                                         | 759                     | % Papaya juice +        | 25% Guava juic        | e                     |                       |                         |  |  |  |  |
| T <sub>0</sub> (Control) | $4.65 \pm 0.01^{a}$                     | -                       | -                       | -                     | -                     | -                     | -                       |  |  |  |  |
| $T_1$                    | $4.64 \pm 0.01^{ab}$                    | $4.60 \pm 0.02^{cd}$    | $4.52 \pm 0.02^{fg}$    | $4.44 \pm 0.02^{i}$   | $4.10\pm0.02^m$       | $3.89 \pm 0.02^{n}$   | $3.52\pm0.02^{\circ}$   |  |  |  |  |
| T <sub>2</sub>           | $4.63 \pm 0.01^{abc}$                   | $4.57 \pm 0.02^{de}$    | $4.53\pm0.02^{fg}$      | $4.47\pm0.02^{\rm h}$ | $4.23 \pm 0.01^{1}$   | $4.11\pm0.02^m$       | $3.88\pm0.02^{n}$       |  |  |  |  |
| T3                       | $4.61 \pm 0.01^{bc}$                    | $4.60 \pm 0.02^{cd}$    | $4.55\pm0.03^{ef}$      | $4.51\pm0.02^{g}$     | $4.40\pm0.03^{j}$     | $4.34\pm0.02^k$       | $4.21\pm0.02^{\rm l}$   |  |  |  |  |
| * Means of three de      | terminations ± SD,                      | values within the s     | ame column and r        | ow followed by the    | same letter are no    | t significantly diffe | rent (P ≤ 0.05).        |  |  |  |  |

\*\*  $T_1$  = Pasteurization at ~ 65°C/20 min. \*\*  $T_2$  = 0.05% potassium sorbate + 0.05% potassium metabisulphite.

\*\*  $T_3$  = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

#### Table 4. Titratable acidity (as % citric acid)\* of papaya juice samples during cold storage (at ~ 4°C).

|                          | Storage intervals (month)               |                         |                         |                              |                        |                        |                       |  |  |  |  |
|--------------------------|-----------------------------------------|-------------------------|-------------------------|------------------------------|------------------------|------------------------|-----------------------|--|--|--|--|
| Treatments**             | Zero time                               | 1 <sup>st</sup>         | 2 <sup>nd</sup>         | 3 <sup>rd</sup>              | 4 <sup>th</sup>        | 5 <sup>th</sup>        | 6 <sup>th</sup>       |  |  |  |  |
|                          |                                         |                         | 1                       | 00% Papaya jui               | ce                     |                        |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $0.19 \pm 0.02^{\rm f}$                 | -                       | -                       | -                            | -                      | -                      | -                     |  |  |  |  |
| $T_1$                    | $0.19\pm0.02^{\rm f}$                   | $0.20\pm0.01^{ef}$      | $0.22 \pm 0.02^{cdef}$  | $0.23 \pm 0.02^{bcde}$       | $0.24 \pm 0.02^{abcd}$ | $0.26 \pm 0.02^{ab}$   | $0.27 \pm 0.02^{a}$   |  |  |  |  |
| $T_2$                    | $0.19\pm0.02^{\rm f}$                   | $0.19\pm0.01^{\rm f}$   | $0.20\pm0.02^{ef}$      | $0.22 \pm 0.02^{cdef}$       | $0.23 \pm 0.02^{bcde}$ | $0.24 \pm 0.02^{abcd}$ | $0.25 \pm 0.02^{abc}$ |  |  |  |  |
| T <sub>3</sub>           | $0.19\pm0.02^{\rm f}$                   | $0.19\pm0.01^{\rm f}$   | $0.20\pm0.02^{ef}$      | $0.21 \pm 0.02^{\text{def}}$ | $0.23 \pm 0.02^{bcde}$ | $0.24 \pm 0.02^{abcd}$ | $0.25 \pm 0.02^{abc}$ |  |  |  |  |
|                          |                                         | 759                     | % Papaya juice +        | 25% Orange jui               | ce                     |                        |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $0.23 \pm 0.02^{\circ}$                 | -                       | -                       | -                            | -                      | -                      | -                     |  |  |  |  |
| $T_1$                    | $0.23 \pm 0.02^{\circ}$                 | $0.24 \pm 0.01^{bc}$    | $0.25 \pm 0.02^{abc}$   | $0.25 \pm 0.02^{abc}$        | $0.27 \pm 0.02^{ab}$   | $0.28 \pm 0.02^{a}$    | $0.28\pm0.03^{a}$     |  |  |  |  |
| $T_2$                    | $0.23 \pm 0.02^{\circ}$                 | $0.23 \pm 0.02^{\circ}$ | $0.24 \pm 0.02^{bc}$    | $0.25 \pm 0.02^{abc}$        | $0.25 \pm 0.02^{abc}$  | $0.27 \pm 0.02^{ab}$   | $0.27 \pm 0.02^{ab}$  |  |  |  |  |
| T3                       | $0.23 \pm 0.02^{\circ}$                 | $0.23\pm0.01^{\circ}$   | $0.23\pm0.02^{\rm c}$   | $0.24 \pm 0.02^{bc}$         | $0.24 \pm 0.02^{bc}$   | $0.25 \pm 0.02^{abc}$  | $0.26 \pm 0.02^{abc}$ |  |  |  |  |
|                          | 75% Papaya juice + 25% Strawberry juice |                         |                         |                              |                        |                        |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $0.24 \pm 0.02^{\circ}$                 | -                       | -                       | -                            | -                      | -                      | -                     |  |  |  |  |
| $T_1$                    | $0.24 \pm 0.02^{\circ}$                 | $0.24 \pm 0.02^{c}$     | $0.25 \pm 0.02^{bc}$    | $0.26 \pm 0.02^{abc}$        | $0.26 \pm 0.02^{abc}$  | $0.27 \pm 0.02^{abc}$  | $0.29\pm0.02^{a}$     |  |  |  |  |
| T <sub>2</sub>           | $0.24 \pm 0.02^{\circ}$                 | $0.24\pm0.01^{\circ}$   | $0.25 \pm 0.02^{bc}$    | $0.26 \pm 0.02^{abc}$        | $0.27 \pm 0.02^{abc}$  | $0.27 \pm 0.02^{abc}$  | $0.28 \pm 0.02^{ab}$  |  |  |  |  |
| T3                       | $0.24 \pm 0.02^{\circ}$                 | $0.24 \pm 0.01^{\circ}$ | $0.24 \pm 0.02^{\circ}$ | $0.25 \pm 0.02^{bc}$         | $0.26 \pm 0.02^{abc}$  | $0.27 \pm 0.02^{abc}$  | $0.27 \pm 0.02^{abc}$ |  |  |  |  |
|                          |                                         | 75                      | % Papaya juice +        | 25% Mango juid               | ce                     |                        |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $0.22 \pm 0.01^{e}$                     | -                       | -                       |                              |                        | -                      | -                     |  |  |  |  |
| $T_1$                    | $0.22 \pm 0.01^{e}$                     | $0.22 \pm 0.01^{e}$     | $0.23 \pm 0.01^{de}$    | $0.24 \pm 0.01^{cd}$         | $0.24 \pm 0.01^{cd}$   | $0.25 \pm 0.01^{bc}$   | $0.27 \pm 0.01^{a}$   |  |  |  |  |
| $T_2$                    | $0.22 \pm 0.01^{e}$                     | $0.22 \pm 0.01^{e}$     | $0.23 \pm 0.01^{de}$    | $0.23 \pm 0.01^{de}$         | $0.24 \pm 0.01^{cd}$   | $0.25 \pm 0.01^{bc}$   | $0.26 \pm 0.01^{ab}$  |  |  |  |  |
| T <sub>3</sub>           | $0.22 \pm 0.01^{e}$                     | $0.22 \pm 0.01^{e}$     | $0.22 \pm 0.01^{e}$     | $0.23 \pm 0.01^{de}$         | $0.23 \pm 0.01^{cd}$   | $0.24 \pm 0.01^{cd}$   | $0.25 \pm 0.01^{bc}$  |  |  |  |  |
|                          |                                         | 75                      | % Papaya juice +        | - 25% Guava juic             | e                      |                        |                       |  |  |  |  |
| T <sub>0</sub> (Control) | $0.21 \pm 0.01^{e}$                     | -                       |                         | -                            | -                      | -                      | -                     |  |  |  |  |
| $T_1$                    | $0.21 \pm 0.01^{e}$                     | $0.21 \pm 0.01^{e}$     | $0.22 \pm 0.01^{de}$    | $0.23 \pm 0.01^{cd}$         | $0.24 \pm 0.0^{bc}$    | $0.24 \pm 0.01^{bc}$   | $0.25 \pm 0.01^{a}$   |  |  |  |  |
| $T_2$                    | $0.21 \pm 0.01^{e}$                     | $0.21 \pm 0.01^{e}$     | $0.22 \pm 0.01^{de}$    | $0.22 \pm 0.01^{de}$         | $0.23 \pm 0.01^{cd}$   | $0.24 \pm 0.01^{bc}$   | $0.25 \pm 0.02^{a}$   |  |  |  |  |
| T3                       | $0.21 \pm 0.01^{e}$                     | $0.21\pm0.01^{e}$       | $0.21 \pm 0.01^{e}$     | $0.22 \pm 0.01^{de}$         | $0.23 \pm 0.01^{cd}$   | $0.24 \pm 0.01^{bc}$   | $0.24 \pm 0.01^{bc}$  |  |  |  |  |
| * Means of three det     | terminations ± SD,                      | values within the       | same column and r       | ow followed by the           | e same letter are no   | t significantly diffe  | rent (P < 0.05).      |  |  |  |  |

\*\*  $T_1$  = Pasteurization at ~ 65°C/20 min. \*\*  $T_2$  = 0.05% potassium sorbate + 0.05% potassium metabisulphite.

\*\*  $T_3$  = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

## Ascorbic acid content of papaya juice samples during storage:

Ascorbic acid is an important nutrient in fresh fruits and vegetables. It is water-soluble vitamin and more sensitive to heat, oxygen, light and considered to be highly subjected to losses during processing and storage. Consequently, the retention of ascorbic acid is used as an indicator of the potential preservation of all other nutrients. In this respect, ascorbic acid contents of control and treated papaya juice samples during cold storage (at ~  $4^{\circ}$ C) for six months are presented in Table (5). From which, it could be seen that the control papaya juice samples ( $T_0$  without any treatments) differed in ascorbic acid content according to the mixed fruits (orange, strawberry, mango and guava). The values ranged from 27.66 mg/100g (for 75% papaya + 25% mango juice) to 34.47 mg/100g (for 100% papaya juice) at zero time of storage. This could be due to the high content of ascorbic acid in papaya fruits compared to the other mixed fruits. The results also showed that all preservation treatments and storage intervals both had a significant effect on ascorbic acid values for all juice samples (LSD<sub>0.05</sub> = 0.10 - 0.37). The data indicated a gradual decrease in ascorbic acid values during storage for all juice samples. This decrease could be due to the oxidation of ascorbic acid into dehydro-ascorbic acid depending on the applied preservation treatments and storage conditions. Despite this decrease, all juice samples remained satisfactory sources of ascorbic acid over the storage period of six months. For example, the ascorbic acid values of 100% papaya juice samples were significantly decreased (LSD<sub>0.05</sub> = 0.37) from 30.05, 34.33 and 31.42 mg/100g (as such basis) at zero time and reached 20.90, 29.07 and 26.94 mg/100g for T<sub>1</sub> (pasteurization at ~  $65^{\circ}C/20$  min), T<sub>2</sub> (0.05% potassium sorbate + 0.05% potassium metabisulphite) and  $T_3$ (pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite), respectively at the end of the storage period. The highest decrease percent was observed in  $T_1$  (30.45%) followed by  $T_2$  (15.32%), while  $T_3$  recorded the lowest decrease percent (15.21%). This could be due to the combined action of the thermal treatment and chemical preservatives that have protected the vitamin from loss during storage. As shown in the same Table (5), the ascorbic acid values for the rest of the juice samples (75% papaya + 25% orange, 75% papaya + 25% strawberry, 75% papaya + 25% mango and 75% papaya + 25% guava) followed the similar pattern as 100% papaya juice samples. These results are in a good agreement with those reported by Hussain et al. (2008) for apricot and apple juices; Mehmood et al. (2008) for apple juice; Ayub et al. (2010) for strawberry juice; Khan et al. (2012) for mango-sea buckthorn blended juice; Mandal and Nath (2013) for aonla squash; Singh et al. (2014) for aonlamango blended beverages; Muzaffar et al. (2017) for pomegranate juice; Rohila et al. (2017) for bael-guava nectar and crush and Yadav et al. (2017) for guava pulp.

Table 5. Ascorbic acid  $(mg/100g)^*$  of papaya juice samples during cold storage (at ~ 4°C).

|                          | Storage intervals (month)               |                          |                          |                            |                        |                      |                          |  |  |  |
|--------------------------|-----------------------------------------|--------------------------|--------------------------|----------------------------|------------------------|----------------------|--------------------------|--|--|--|
| Treatments**             | Zero time                               | 1 <sup>st</sup>          | 2 <sup>nd</sup>          | 3 <sup>rd</sup>            | 4 <sup>th</sup>        | 5 <sup>th</sup>      | 6 <sup>th</sup>          |  |  |  |
|                          |                                         |                          | 1                        | 00% Papaya jui             | ce                     |                      |                          |  |  |  |
| T <sub>0</sub> (Control) | $34.47 \pm 0.11^{a}$                    | -                        | -                        | -                          | -                      | -                    | -                        |  |  |  |
| $T_1$                    | $30.05 \pm 0.08^{g}$                    | $28.17 \pm 0.04^{1}$     | $27.29\pm0.10^m$         | $25.21 \pm 0.10^{\circ}$   | $23.70 \pm 0.10^{p}$   | $22.82 \pm 0.10^{q}$ | $20.90\pm0.12^r$         |  |  |  |
| $T_2$                    | $34.33 \pm 0.09^{a}$                    | $33.57 \pm 0.06^{b}$     | $32.22\pm0.08^{c}$       | $31.43 \pm 0.14^{d}$       | $30.01 \pm 0.07^{g}$   | $29.52 \pm 0.08^{i}$ | $29.07 \pm 0.08^{j}$     |  |  |  |
| T3                       | $31.42\pm0.07^d$                        | $31.16\pm0.08^{e}$       | $30.82\pm0.11^{\rm f}$   | $29.67\pm0.10^{h}$         | $28.56 \pm 0.10^k$     | $27.07\pm0.12^n$     | $26.94\pm0.13^n$         |  |  |  |
|                          |                                         | 759                      | % Papaya juice +         | 25% Orange juid            | ce                     |                      |                          |  |  |  |
| T <sub>0</sub> (Control) | $28.24\pm0.16^a$                        | -                        | -                        | -                          | -                      | -                    | -                        |  |  |  |
| T <sub>1</sub>           | $25.16\pm0.12^{\rm i}$                  | $24.86\pm0.07^{j}$       | $23.77\pm0.06^{n}$       | $22.97\pm0.06^{\text{p}}$  | $21.14\pm0.06^q$       | $20.93\pm0.04^{r}$   | $18.30\pm0.05^{s}$       |  |  |  |
| $T_2$                    | $28.11 \pm 0.09^{b}$                    | $27.87 \pm 0.05^{\circ}$ | $27.02 \pm 0.10^{d}$     | $26.22 \pm 0.10^{g}$       | $25.17 \pm 0.10^{i}$   | $24.53 \pm 0.10^{k}$ | $24.12 \pm 0.10^{l}$     |  |  |  |
| T <sub>3</sub>           | $26.63 \pm 0.10^{e}$                    | $26.45\pm0.07^{\rm f}$   | $25.79\pm0.07^h$         | $25.26\pm0.08^i$           | $24.04\pm0.05^{lm}$    | $23.91\pm0.07^m$     | $23.37\pm0.09^{o}$       |  |  |  |
|                          | 75% Papaya juice + 25% Strawberry juice |                          |                          |                            |                        |                      |                          |  |  |  |
| T <sub>0</sub> (Control) | $31.72\pm0.15^a$                        | -                        | -                        | -                          | -                      | -                    | -                        |  |  |  |
| T <sub>1</sub>           | $28.37 \pm 0.07^{g}$                    | $26.43 \pm 0.05^k$       | $25.53\pm0.04^m$         | $23.41 \pm 0.06^{n}$       | $21.90\pm0.05^{o}$     | $21.10\pm0.08^{p}$   | $20.16\pm0.05^{\rm q}$   |  |  |  |
| $T_2$                    | $31.70\pm0.11^a$                        | $31.34 \pm 0.07^{b}$     | $30.51 \pm 0.05^{\circ}$ | $29.65 \pm 0.05^{e}$       | $28.36\pm0.04^{g}$     | $27.35 \pm 0.06^{i}$ | $26.88 \pm 0.07^{j}$     |  |  |  |
| T3                       | $29.81 \pm 0.12^{d}$                    | $29.68\pm0.05^e$         | $29.27\pm0.06^{\rm f}$   | $28.20\pm0.04^{\rm h}$     | $27.32\pm0.04^{\rm i}$ | $26.92 \pm 0.04^{j}$ | $26.12 \pm 0.03^{1}$     |  |  |  |
|                          |                                         | 75                       | % Papaya juice +         | 25% Mango juid             | ce                     |                      |                          |  |  |  |
| T <sub>0</sub> (Control) | $27.66\pm0.17^{a}$                      | -                        | -                        | -                          | -                      | -                    | -                        |  |  |  |
| T <sub>1</sub>           | $25.35 \pm 0.10^{h}$                    | $24.79 \pm 0.05^{j}$     | $23.65 \pm 0.04^{n}$     | $22.88\pm0.05^{\text{p}}$  | $21.18\pm0.07^{\rm q}$ | $20.90\pm0.05^r$     | $18.10 \pm 0.05^{s}$     |  |  |  |
| $T_2$                    | $27.54 \pm 0.12^{b}$                    | $27.08 \pm 0.03^{\circ}$ | $26.33 \pm 0.09^{e}$     | $26.00 \pm 0.04^{\rm f}$   | $25.10 \pm 0.05^{i}$   | $24.03 \pm 0.10^{1}$ | $23.82\pm0.10^m$         |  |  |  |
| T3                       | $26.51 \pm 0.10^{d}$                    | $26.33 \pm 0.04^{e}$     | $25.70 \pm 0.05^{g}$     | $25.12\pm0.08^{\rm i}$     | $24.10\pm0.05^k$       | $23.83\pm0.06^m$     | $23.19 \pm 0.07^{\circ}$ |  |  |  |
|                          |                                         | 75                       | % Papaya juice +         | - 25% Guava juic           | æ                      |                      |                          |  |  |  |
| T <sub>0</sub> (Control) | $31.08\pm0.13^a$                        | -                        | -                        | -                          | -                      | -                    | -                        |  |  |  |
| $T_1$                    | $28.71 \pm 0.09^{h}$                    | $26.80 \pm 0.04^{k}$     | $25.94 \pm 0.05^{\circ}$ | $23.82 \pm 0.07^{	ext{q}}$ | $22.30\pm0.05^r$       | $21.52 \pm 0.04^{s}$ | $20.64 \pm 0.05^{t}$     |  |  |  |
| $T_2$                    | $30.89 \pm 0.11^{b}$                    | $30.43\pm0.05^c$         | $29.57\pm0.06^d$         | $28.74\pm0.04^{gh}$        | $27.16 \pm 0.04^{j}$   | $26.67 \pm 0.05^{1}$ | $26.29\pm0.06^n$         |  |  |  |
| T <sub>3</sub>           | $29.31\pm0.04^{e}$                      | $29.12\pm0.04^{\rm f}$   | $28.82\pm0.04^{\rm g}$   | $27.70\pm0.03^i$           | $26.60\pm0.06^m$       | $26.27\pm0.05^n$     | $25.83\pm0.03^p$         |  |  |  |
| * Moong of three         | determinations + S                      | D (os such basis)        | volues within the        | como column and            | now followed by        | the came latter or   | a not significantly      |  |  |  |

Means of three determinations  $\pm$  SD (as such basis), values within the same column and row followed by the same letter are not significantly different (P < 0.05).

\*\* T<sub>1</sub> = Pasteurization at ~ 65°C/20 min.

Total phenols content of papaya juice samples during storage:

Phenolic compounds provide antioxidant potential and health-promoting properties and contribute to the flavor and color attributes of fruits and vegetables. In this respect, the total phenols values of control and treated papaya juice samples during cold storage (at ~  $4^{\circ}$ C) for six months are presented in Table (6). From which, it could be seen that the control papaya juice samples (T<sub>0</sub> without any treatments) differed in total phenols content according to the type of mixed fruits (orange, strawberry, mango and guava). The values ranged from 25.61 mg/100g (for 75% papaya + 25% strawberry juice) to 31.75 mg/100g (for 100% papaya juice) at zero time of storage. This could be

<sup>\*\*</sup>  $T_2 = 0.05\%$  potassium sorbate + 0.05% potassium metabisulphite. \*\* T<sub>3</sub> = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

due to the high content of total phenols in papaya fruits compared to the other mixed fruits. The results also showed that all preservation treatments and storage intervals both had a significant effect on the total phenols values for all juice samples (LSD<sub>0.05</sub> = 0.09 - 0.24). The data indicated a gradual decrease in total phenols values during storage for all juice samples. This decrease could be due to the nature of phenolic compounds as they are highly volatile and easily oxidized. Despite this decrease, all juice samples remained satisfactory sources of phenolic compounds over the storage period of six months. For example, the total phenols values of 100% papaya juice samples were significantly decreased (LSD<sub>0.05</sub> = 0.09) from 31.27, 31.32 and 31.56 mg/100g (as such basis) at zero time and reached 26.82, 27.85 and 28.47 mg/100g for  $T_1$ (pasteurization at ~ 65°C/20 min), T<sub>2</sub> (0.05% potassium sorbate + 0.05% potassium metabisulphite) and  $T_3$ (pasteurization at ~ 65°C/20 min + 0.05% potassium

sorbate + 0.05% potassium metabisulphite), respectively at the end of the storage period. The highest decrease percent was observed in  $T_1$  (14.23%) followed by  $T_2$  (11.08%), while  $T_3$  recorded the lowest decrease percent (9.79%). This could be due to the combined action of the thermal treatment and chemical preservatives that have protected the phenolic compounds from degredation during storage. As shown in the same Table (6), the total phenols values for the rest of the juice samples (75% papaya + 25%)orange, 75% papaya + 25% strawberry, 75% papaya + 25% mango and 75% papaya + 25% guava) followed the similar pattern as 100% papaya juice samples. These results are in a good agreement with those reported by Sharma et al. (2012) for guava-jamun ready-to-serve drink and squash; Karpagavalli and Amutha (2015) for pomegranate squash; Muzaffar et al. (2017) for pomegranate juice and Rohila et al. (2017) for bael-guava nectar and crush.

Table 6. Total phenols (mg GAE/100g)\* of papaya juice samples during cold storage (at ~ 4°C).

|                          | Storage intervals (month)               |                          |                                |                        |                          |                            |                          |  |  |  |  |
|--------------------------|-----------------------------------------|--------------------------|--------------------------------|------------------------|--------------------------|----------------------------|--------------------------|--|--|--|--|
| Treatments**             | Zero time                               | 1 <sup>st</sup>          | 2 <sup>nd</sup>                | 3 <sup>rd</sup>        | <b>4</b> <sup>th</sup>   | 5 <sup>th</sup>            | 6 <sup>th</sup>          |  |  |  |  |
|                          |                                         |                          | 1(                             | )0% Papaya jui         | ce                       |                            |                          |  |  |  |  |
| T <sub>0</sub> (Control) | $31.75\pm0.08^{a}$                      | -                        | -                              | -                      | -                        | -                          | -                        |  |  |  |  |
| $T_1$                    | $31.27 \pm 0.06^{cd}$                   | $31.16 \pm 0.05^{e}$     | $30.62 \pm 0.04^{g}$           | $29.28 \pm 0.05^{i}$   | $28.17 \pm 0.05^{n}$     | $27.94 \pm 0.05^{\circ}$   | $26.82 \pm 0.06^{q}$     |  |  |  |  |
| $T_2$                    | $31.32\pm0.08^{c}$                      | $31.20 \pm 0.06d^{e}$    | $30.60 \pm 0.05^{g}$           | $29.37 \pm 0.04^{i}$   | $28.80 \pm 0.05^{k}$     | $28.37\pm0.04^m$           | $27.85 \pm 0.08^{p}$     |  |  |  |  |
| T3                       | $31.56 \pm 0.07^{b}$                    | $31.36 \pm 0.07^{\circ}$ | $30.76 \pm 0.06^{\rm f}$       | $29.81 \pm 0.05^{h}$   | $29.32 \pm 0.06^{i}$     | $28.93 \pm 0.06^{j}$       | $28.47 \pm 0.07^{1}$     |  |  |  |  |
|                          |                                         | 75%                      | % Papaya juice +               | 25% Orange juic        | æ                        |                            |                          |  |  |  |  |
| T <sub>0</sub> (Control) | $28.08\pm0.06^a$                        | -                        | -                              | -                      | -                        | -                          | -                        |  |  |  |  |
| $T_1$                    | $27.84 \pm 0.09^{\circ}$                | $27.55 \pm 0.06^{e}$     | $27.07 \pm 0.05^{g}$           | $26.30 \pm 0.05^{j}$   | $25.13\pm0.07^n$         | $24.15 \pm 0.07^{	ext{q}}$ | $23.78\pm0.08^r$         |  |  |  |  |
| $T_2$                    | $27.93 \pm 0.06^{bc}$                   | $27.68 \pm 0.05^{d}$     | $27.15\pm0.06^g$               | $26.43\pm0.04^{\rm i}$ | $25.58 \pm 0.05^{1}$     | $24.91\pm0.05^{\rm o}$     | $24.65 \pm 0.04^{p}$     |  |  |  |  |
| T3                       | $27.95 \pm 0.07^{b}$                    | $27.74 \pm 0.04^{d}$     | $27.29\pm0.04^{\rm f}$         | $26.87 \pm 0.05^{h}$   | $26.02 \pm 0.06^{k}$     | $25.95 \pm 0.06^{k}$       | $25.31\pm0.05^m$         |  |  |  |  |
|                          | 75% Papaya juice + 25% Strawberry juice |                          |                                |                        |                          |                            |                          |  |  |  |  |
| T <sub>0</sub> (Control) | $25.61\pm0.08^a$                        | -                        | -                              | -                      | -                        | -                          | -                        |  |  |  |  |
| $T_1$                    | $25.11 \pm 0.08^{cd}$                   | $24.92 \pm 0.06^{de}$    | $24.30 \pm 0.05^{g}$           | $23.57 \pm 0.06^{hi}$  | $22.60 \pm 0.05^{k}$     | $22.06 \pm 0.06^{1}$       | $21.48\pm0.07^{m}$       |  |  |  |  |
| $T_2$                    | $25.26 \pm 0.05^{bc}$                   | $25.03 \pm 0.04^{de}$    | $24.48 \pm 0.06^{\mathrm{fg}}$ | $23.76 \pm 0.04^{h}$   | $23.09 \pm 0.04^{j}$     | $22.96 \pm 0.06^{j}$       | $22.39 \pm 0.05^{k}$     |  |  |  |  |
| T3                       | $25.47 \pm 0.04^{b}$                    | $25.21 \pm 0.05^{\circ}$ | $24.72 \pm 0.04^{ef}$          | $24.23\pm0.05^g$       | $23.58\pm0.05^{hi}$      | $23.37 \pm 0.05^{i}$       | $23.08 \pm 0.06^{j}$     |  |  |  |  |
|                          |                                         | 75%                      | % Papaya juice +               | 25% Mango juic         | e e                      |                            |                          |  |  |  |  |
| T <sub>0</sub> (Control) | $31.05 \pm 0.07^{a}$                    | -                        | -                              | -                      |                          | -                          | -                        |  |  |  |  |
| $T_1$                    | $30.67 \pm 0.06^{cd}$                   | $30.41 \pm 0.04^{e}$     | $29.87 \pm 0.06^{g}$           | $29.03 \pm 0.04^{i}$   | $27.82 \pm 0.05^{1}$     | $26.73 \pm 0.04^{n}$       | $26.17 \pm 0.07^{\circ}$ |  |  |  |  |
| $T_2$                    | $30.85 \pm 0.05^{bc}$                   | $30.64 \pm 0.06^{d}$     | $30.21 \pm 0.04^{\rm f}$       | $29.46 \pm 0.06^{h}$   | $28.61 \pm 0.04^{\circ}$ | $27.89 \pm 0.06^{1}$       | $27.31 \pm 0.04^{m}$     |  |  |  |  |
| T <sub>3</sub>           | $30.91 \pm 0.07^{ab}$                   | $30.76 \pm 0.05^{bcd}$   | $30.57 \pm 0.05^{de}$          | $29.71 \pm 0.05^{g}$   | $28.84 \pm 0.04^{i}$     | $28.26\pm0.05^k$           | $27.96 \pm 0.05^{1}$     |  |  |  |  |
|                          |                                         | 759                      | % Papaya juice +               | 25% Guava juic         | e                        |                            |                          |  |  |  |  |
| T <sub>0</sub> (Control) | $31.17 \pm 0.07^{a}$                    |                          |                                |                        | -                        | -                          | -                        |  |  |  |  |
| $T_1$                    | $30.78 \pm 0.06^{d}$                    | $30.52\pm0.04^{\rm f}$   | $29.87 \pm 0.05^{j}$           | $29.22 \pm 0.05^{1}$   | $28.14 \pm 0.06^{\circ}$ | $27.23\pm0.05^{\text{p}}$  | $26.19 \pm 0.06^{q}$     |  |  |  |  |
| $T_2$                    | $30.90 \pm 0.04^{bc}$                   | $30.69 \pm 0.05^{e}$     | $30.12 \pm 0.06^{h}$           | $29.88 \pm 0.06^{ij}$  | $29.64 \pm 0.04^{k}$     | $28.36\pm0.05^n$           | $27.22\pm0.04^{p}$       |  |  |  |  |
| T3                       | $30.97 \pm 0.05^{b}$                    | $30.83 \pm 0.04^{cd}$    | $30.34\pm0.04^g$               | $30.06\pm0.04^{\rm h}$ | $29.95\pm0.04^{\rm i}$   | $28.82\pm0.06^m$           | $28.09\pm0.04^{\rm o}$   |  |  |  |  |
| * Means of three of      | leterminations ± S                      | D (as such basis).       | values within the              | same column and        | row followed by          | the same letter ar         | e not significantly      |  |  |  |  |

different (P  $\leq$  0.05).

\*\*  $T_2 = 0.05\%$  potassium sorbate + 0.05% potassium metabisulphite.

\*\* T<sub>1</sub> = Pasteurization at ~ 65°C/20 min. \*\*  $T_3$  = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

## Microbiological analysis of papaya juice samples during storage:

Fruit juices contain a microbial load representative of the organisms normally found on fruits during harvest plus contaminants added post-harvest (during transport, storage and processing). Many microorganisms can use the fruit juices as substrate and cause spoilage, producing off flavors and discoloration. If the contaminating microorganisms are pathogens, they can also cause human diseases. Under favorable conditions, the toxigenic fungi can produce mycotoxin in fruit juice. Using thermal treatments and chemical preservatives will rid juices from pathogens and other heat-sensitive microbes. Therefore, they will substantially reduce the microbial load and extend the shelf-life (Tournas et al., 2006; Amirpour et al., 2016 and Almeida et al., 2018).

The microbiological analysis (total bacterial, yeast and mould counts) of papaya juice samples during cold storage (at ~  $4^{\circ}$ C) for six months are shown in Tables (7 and 8). The results showed that the total bacterial counts slowly increased throughout the storage period, but still lower than the critical microbial limit for fruit juices. The total bacterial count was less than 10<sup>2</sup> cfu/g for all preserved juice samples. This indicated that the applied preservation treatments and storage conditions were efficient and post contamination did not occurred. The preserved papaya juice samples achieved a shelf life up to 6 months below the microbial load limit ( $10^6$  cfu/ml).

| Table 7 | . Total | bacterial  | count  | (CFU/g)*    | of pa | paya | juice |
|---------|---------|------------|--------|-------------|-------|------|-------|
|         | samp    | les during | cold s | storage (at | ~ 4°C | C).  |       |

|              | month)            |                 |                 |                 |                 |                 |                 |  |  |
|--------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Treatments** | Zero time         | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> |  |  |
|              | 100% Papaya juice |                 |                 |                 |                 |                 |                 |  |  |

| T <sub>0</sub> (Control) | $130\pm8$   | -          | -     | -        | -         | -     | -     |
|--------------------------|-------------|------------|-------|----------|-----------|-------|-------|
| $T_1$                    | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
| T <sub>2</sub>           | <100        | <100       | <100  | <100     | <100      | <100  | <100  |
| T3                       | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
|                          | 75% Pap     | aya juic   | e+25% | 6 Orange | e juice   |       |       |
| T <sub>0</sub> (Control) | $110 \pm 7$ | -          | -     | -        | -         | -     | -     |
| $T_1$                    | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
| T <sub>2</sub>           | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
| T3                       | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
|                          | 75% Papay   | /a juice - | +25%  | Strawbe  | rry juice |       |       |
| T <sub>0</sub> (Control) | $145\pm 6$  | -          | -     | -        | -         | -     | -     |
| $T_1$                    | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
| T <sub>2</sub>           | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
| T3                       | <100        | < 100      | < 100 | < 100    | < 100     | < 100 | < 100 |
|                          | 75% Pap     | aya juic   | e+25% | 6 Mango  | o juice   |       |       |
| T <sub>0</sub> (Control) | $130\pm5$   | -          | -     | -        | -         | -     | -     |
| $T_1$                    | <100        | <100       | <100  | <100     | < 100     | <100  | <100  |
| $T_2$                    | <100        | <100       | < 100 | <100     | < 100     | <100  | <100  |
| <b>T</b> <sub>3</sub>    | <100        | <100       | <100  | <100     | < 100     | <100  | <100  |
|                          | 75% Pap     | aya juic   | e+25% | % Guava  | i juice   |       |       |
| T <sub>0</sub> (Control) | $140\pm3$   | -          | -     | -        | -         | -     | -     |
| $T_1$                    | <100        | <100       | <100  | <100     | <100      | <100  | <100  |
| $T_2$                    | <100        | <100       | <100  | <100     | <100      | <100  | <100  |
| T3                       | < 100       | <100       | < 100 | <100     | <100      | <100  | <100  |

\* Means of three determinations  $\pm$  SD.

\*\* T<sub>1</sub> = Pasteurization at ~ 65°C/20 min.

\*\*  $T_2 = 0.05\%$  potassium sorbate + 0.05% potassium metabisulphite. \*\*  $T_3 =$  Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

Table 8. Yeast and mould counts (CFU/g)<sup>\*</sup> of papaya juice samples during cold storage (at ~ 4°C).

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Storage intervals (month)               |                 |                 |                 |                 |                 |                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Treatments**                        | Zero time                               | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                         |                 | 100% Pa         | apayaj          | juice           |                 |                 |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>0</sub> (Control)            | $20 \pm 3$                              | -               | -               | -               | -               | -               | -               |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_1$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_2$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T3                                  | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75% Papaya juice + 25% Orange juice |                                         |                 |                 |                 |                 |                 |                 |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>0</sub> (Control)            | $10 \pm 2$                              | -               | -               | -               | -               | -               | -               |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_1$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T <sub>2</sub>                      | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T <sub>3</sub>                      | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 75% Papaya juice + 25% Strawberry juice |                 |                 |                 |                 |                 |                 |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>0</sub> (Control)            | $20\pm5$                                | -               | -               | -               | -               | -               | -               |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_1$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_2$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T3                                  | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 75% Papa                                | ya juic         | e+25%           | Mango           | juice           |                 |                 |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>0</sub> (Control)            | $20\pm 2$                               | -               | -               | -               | -               | -               | -               |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_1$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_2$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T3                                  | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 75% Papa                                | ya juic         | x + 25%         | Guava           | juice           |                 |                 |  |  |  |
| T1         Nil         Nil | T <sub>0</sub> (Control)            | $20 \pm 4$                              | -               | -               | -               | -               | -               | -               |  |  |  |
| T <sub>2</sub> Nil Nil Nil Nil Nil Nil Nil Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_1$                               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| To NEI NEI NEI NEI NEI NEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>T</b> <sub>2</sub>               | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |
| 13 INI INI INI INI INI INI INI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T3                                  | Nil                                     | Nil             | Nil             | Nil             | Nil             | Nil             | Nil             |  |  |  |

\* Means of three determinations ± SD.

\*\*\*  $T_1$  = Pasteurization at ~ 65°C/20 min.

\*\*  $T_2 = 0.05\%$  potassium sorbate + 0.05% potassium metabisulphite. \*\*  $T_3 =$  Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

Yeasts and moulds were absent (Nil) during refrigerated storage for all preserved juice samples. Consequently, no potential microbial risk was associated with the storage conditions. The data of control juice samples ( $T_0$  without any treatments) at zero time were included in the tables (7 and 8) for comparison with the preserved juice samples  $(T_1 - T_2 T_3$ ). But they were spoiled in less than a week therefore their storage experiments were not completed. Similar results are reported by Vasavada and Heperkan, (2002); Tournas et al. (2006); Baghaei et al. (2008) for orangecantaloupe seed beverage; Mehmood et al. (2008) for apple juice; Hossain et al. (2011) for tomato juice; Chia et al. (2012) for pineapple juices; Sakhale et al. (2012) for kesar mango pulp and Almeida et al. (2018) for cashew, guava, mango and pineapple juices. They reported that yeasts and moulds are considered as the main contaminant of fruit juices. The juices produced from healthy fruits have yeast loads between  $10^3$  to  $10^5$ cfu/ml. The limit of microbial shelf life for juice is 10<sup>6</sup> cfu/ml.

# Sensory characteristics of papaya juice samples during storage:

Sensory characteristics (color, flavor, texture and overall quality) of papaya juice samples during cold storage (at ~  $4^{\circ}$ C) for six months are shown in Tables (9 12). The results showed that the preservation treatments and storage intervals did not affect the sensory quality significantly up to the third month of storage for all juice samples. Then the sensory assessment values began to decrease. This decrease was significantly in some juice samples, but the values remained above the acceptable level. In the case of treatment  $T_1$  (pasteurization at ~ 65°C/20 min), the color scores decreased from 95% at zero time and reached 80% at the end of storage. There were no significant changes in the sensory quality for  $T_2$  (0.05% potassium sorbate + 0.05% potassium metabisulphite) and  $T_3$ (pasteurization at ~  $65^{\circ}C/20 \text{ min} + 0.05\%$  potassium sorbate + 0.05% potassium metabisulphite) during storage for all juice samples. Their color scores (85 -90%) evaluated better than  $T_1$  (80%) at the end of storage.

It is evident from Tables (9-12) that the sensory assessment values for flavor (Table 10), texture (Table 11) and overall quality (Table 12) had the same trend as color values (Table 9). The results of control juice samples (T<sub>0</sub> without any treatments) at zero time were included in the tables for comparison with the preserved juice samples. But they were spoiled in less than a week therefore their storage experiments were not completed.

It is obviously observed from Tables (9 - 12) that all papaya juice blends (100% papaya, 75% papaya + 25% orange, 75% papaya + 25% strawberry, 75% papaya + 25% mango and 75% papaya + 25% guava) had excellent sensory assessment values in terms of color, flavor, texture and overall quality. These values remained above the acceptable level up to the end of storage (6 months) for all juice samples.

Similar results are reported by Mehmood *et al.* (2008) for apple juice; Ayub *et al.* (2010) for strawberry juice; Hossain *et al.* (2011) for tomato juice; Sakhale *et al.* (2012) for kesar mango pulp; Rohila *et al.* (2017) for bael-guava nectar and crush and Zakaria *et al.* (2017) for black mulberry pulpy juice.

|                          | Storage intervals (month) |                     |                     |                          |                     |                     |                     |  |  |
|--------------------------|---------------------------|---------------------|---------------------|--------------------------|---------------------|---------------------|---------------------|--|--|
| Treatments**             | Zero time                 | 1 <sup>st</sup>     | 2 <sup>nd</sup>     | 3 <sup>rd</sup>          | 4 <sup>th</sup>     | 5 <sup>th</sup>     | 6 <sup>th</sup>     |  |  |
|                          |                           | 100% Papaya juice   |                     |                          |                     |                     |                     |  |  |
| T <sub>0</sub> (Control) | $9.5\pm0.5^{\rm a}$       | -                   | -                   | -                        | -                   | -                   | -                   |  |  |
| $T_1$                    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.0\pm0.5^{ab}$         | $8.5\pm0.5^{bc}$    | $8.5\pm0.5^{bc}$    | $8.0\pm0.5^{\rm c}$ |  |  |
| $T_2$                    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$      | $9.0\pm0.5^{ab}$    | $8.5\pm0.5^{bc}$    | $8.5\pm0.5^{bc}$    |  |  |
| <b>T</b> <sub>3</sub>    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$      | $9.0\pm0.5^{ab}$    | $9.0\pm0.5^{ab}$    | $9.0\pm0.5^{ab}$    |  |  |
|                          |                           | 75%                 | Papaya juice +      | 25% Orange ju            | iice                |                     |                     |  |  |
| T <sub>0</sub> (Control) | $9.5\pm0.5^{\rm a}$       | -                   | -                   | -                        | -                   | -                   | -                   |  |  |
| $T_1$                    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.0\pm0.5^{ab}$         | $8.5\pm0.5^{bc}$    | $8.5\pm0.5^{bc}$    | $8.0\pm0.5^{\rm c}$ |  |  |
| $T_2$                    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$      | $9.0\pm0.5^{ab}$    | $8.5\pm0.5^{bc}$    | $8.5\pm0.5^{bc}$    |  |  |
| T <sub>3</sub>           | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$      | $9.0\pm0.5^{ab}$    | $9.0\pm0.5^{ab}$    | $9.0\pm0.5^{ab}$    |  |  |
|                          |                           | 75% P               | apaya juice + 2     | 5% Strawberry            | juice               |                     |                     |  |  |
| T <sub>0</sub> (Control) | $9.0\pm0.5^{\mathrm{a}}$  | -                   | -                   | -                        | -                   | -                   | -                   |  |  |
| $T_1$                    | $9.0\pm0.5^{\rm a}$       | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$ | $8.5\pm0.5^{ab}$         | $8.0\pm0.5^{\rm b}$ | $8.0\pm0.5^{\rm b}$ | $8.0\pm0.5^{\rm b}$ |  |  |
| $T_2$                    | $9.0\pm0.5^{\rm a}$       | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$      | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$    |  |  |
| $T_3$                    | $9.0\pm0.5^{\rm a}$       | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$      | $9.0\pm0.5^{\rm a}$ | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$    |  |  |
|                          |                           | 75%                 | Papaya juice +      | 25% Mango ju             | iice                |                     |                     |  |  |
| T <sub>0</sub> (Control) | $9.5\pm0.5^{\mathrm{a}}$  | -                   | -                   | -                        | -                   | -                   | -                   |  |  |
| $T_1$                    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.0\pm0.5^{ab}$         | $8.5\pm0.5^{bc}$    | $8.5\pm0.5^{bc}$    | $8.0\pm0.5^{\rm c}$ |  |  |
| $T_2$                    | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$      | $9.0\pm0.5^{ab}$    | $8.5\pm0.5^{bc}$    | $8.5\pm0.5^{bc}$    |  |  |
| T <sub>3</sub>           | $9.5\pm0.5^{\rm a}$       | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$ | $9.5\pm0.5^{\rm a}$      | $9.0\pm0.5^{ab}$    | $9.0\pm0.5^{ab}$    | $9.0\pm0.5^{ab}$    |  |  |
|                          |                           | 75%                 | Papaya juice +      | - 25% Guava ju           | ice                 |                     |                     |  |  |
| T <sub>0</sub> (Control) | $9.0\pm0.5^{\rm a}$       | -                   | -                   | -                        | -                   | -                   | -                   |  |  |
| $T_1$                    | $9.0\pm0.5^{\rm a}$       | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$ | $8.5\pm0.5^{ab}$         | $8.0\pm0.5^{bc}$    | $7.5\pm0.5^{cd}$    | $7.0\pm0.5^{\rm d}$ |  |  |
| $T_2$                    | $9.0\pm0.5^{\rm a}$       | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$      | $8.5\pm0.5^{ab}$    | $8.0\pm0.5^{bc}$    | $8.0\pm0.5^{bc}$    |  |  |
| <b>T</b> <sub>3</sub>    | $9.0\pm0.5^{\rm a}$       | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\mathrm{a}}$ | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$    | $8.0\pm0.5^{bc}$    |  |  |

| Table | 9. Sensor | y characteristics | (color)* | of p | papaya | juice samp | les during | g cold stora | ge (at ~ 4°C). |  |
|-------|-----------|-------------------|----------|------|--------|------------|------------|--------------|----------------|--|
|-------|-----------|-------------------|----------|------|--------|------------|------------|--------------|----------------|--|

\* Means of ten determinations  $\pm$  SD, values within the same column and row followed by the same letter are not significantly different (P  $\leq$  0.05). \*\* T<sub>1</sub> = Pasteurization at ~ 65°C/20 min. \*\* T<sub>2</sub> = 0.05% potassium sorbate + 0.05% potassium metabisulphite. \*\*  $T_3$  = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

| Table 10 | ). Sensorv | characteristics ( | flavor | ) <b>* of</b> 1 | papa | va iuic | e sample | s during | g cold | storage  | (at | ~ 4°C | Э. |
|----------|------------|-------------------|--------|-----------------|------|---------|----------|----------|--------|----------|-----|-------|----|
|          |            |                   |        |                 |      |         | •        |          |        | Neo- ege | (   |       |    |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stora                                                  | ge intervals (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ionth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Zero time           | 1 <sup>st</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2^{nd}$                                               | 3 <sup>rd</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 <sup>th</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 <sup>th</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 <sup>th</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                     | 100% Papaya juice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $8.5\pm0.5^{\rm a}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $8.5\pm0.5^{\rm a}$ | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.0\pm0.5^{ab}$                                       | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $8.5\pm0.5^{\rm a}$ | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.5\pm0.5^{\rm a}$                                    | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.5\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $8.5\pm0.5^{\rm a}$ | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.5\pm0.5^{\rm a}$                                    | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.5\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Papaya juice +                                         | 25% Orange ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $9.0\pm0.5^{\rm a}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                     | 75% P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | apaya juice + 2                                        | 5% Strawberry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | juice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $9.0\pm0.5^{\rm a}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.0\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.0\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.0\pm0.5^{\rm d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.0\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.5\pm0.5^{cd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.5\pm0.5^{cd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Papaya juice +                                         | 25% Mango ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $9.0\pm0.5^{\rm a}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $9.0\pm0.5^{\rm a}$                                    | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8.0\pm0.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $9.0\pm0.5^{\rm a}$ | $9.0\pm0.5^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $9.0\pm0.5^{\rm a}$                                    | $9.0\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.5\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8.0\pm0.5^{\text{b}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Papaya juice +                                         | - 25% Guava ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $8.5\pm0.5^{\rm a}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $8.5\pm0.5^{\rm a}$ | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.0\pm0.5^{ab}$                                       | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $7.0\pm0.5^{\rm c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $8.5\pm0.5^{\rm a}$ | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.5\pm0.5^{\rm a}$                                    | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.5\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $8.5\pm0.5^{\rm a}$ | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.5\pm0.5^{\rm a}$                                    | $8.5\pm0.5^{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8.0\pm0.5^{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.5\pm0.5^{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                     | $\begin{tabular}{ c c c c } \hline \textbf{Zero time} \\ \hline 8.5 \pm 0.5^a \\ \hline 9.0 \pm 0.5^a \\ \hline 8.5 \pm 0.5^a \\ $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Zero time $1^{st}$ $2^{nd}$ $8.5 \pm 0.5^a$ $  8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^a$ | Zero time1st2nd3rd $8.5 \pm 0.5^a$ $   8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $9.0 \pm 0.5^a$ | Storage intervals (month)Zero time1st2nd3rd4th100% Papaya juice $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $7.0 \pm 0.5^{c}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.5 \pm 0.5^{a}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{bc}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{bb}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $9.0 \pm 0.5^{a}$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $9.0 \pm 0.5^{a}$ <td< td=""><td>Storage intervals (month)Zero time1st2nd3rd4th5th100% Papaya juice<math>8.5 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>7.0 \pm 0.5^c</math><math>7.0 \pm 0.5^c</math><math>8.5 \pm 0.5^a</math><math>8.5 \pm 0.5^a</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^a</math><math>8.5 \pm 0.5^a</math><math>8.5 \pm 0.5^a</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^a</math><math>8.5 \pm 0.5^a</math><math>8.5 \pm 0.5^a</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{bb}</math><math>8.0 \pm 0.5^{bb}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{bc}</math><math>8.0 \pm 0.5^{bc}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.0 \pm 0.5^{bc}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>8.5 \pm 0.5^{ab}</math><math>9.0 \pm 0.5^a</math><math>9.0 \pm 0.5^a</math><math>9</math></td></td<> | Storage intervals (month)Zero time1st2nd3rd4th5th100% Papaya juice $8.5 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $7.0 \pm 0.5^c$ $7.0 \pm 0.5^c$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.5 \pm 0.5^a$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.0 \pm 0.5^{ab}$ $8.5 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{bb}$ $8.0 \pm 0.5^{bb}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{bc}$ $8.0 \pm 0.5^{bc}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.0 \pm 0.5^{bc}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $8.5 \pm 0.5^{ab}$ $9.0 \pm 0.5^a$ $9.0 \pm 0.5^a$ $9$ |  |  |  |

\* Means of ten determinations  $\pm$  SD, values within the same column and row followed by the same letter are not significantly different (P  $\leq$  0.05). \*\* T<sub>1</sub> = Pasteurization at ~ 65°C/20 min. \*\* T<sub>2</sub> = 0.05% potassium sorbate + 0.05% potassium metabisulphite.

### Abdel-Gawad, O. A. et al.

|                          |                   |                          | Stora                    | age intervals (m    | onth)                 |                     |                       |  |  |
|--------------------------|-------------------|--------------------------|--------------------------|---------------------|-----------------------|---------------------|-----------------------|--|--|
| Treatments**             | Zero time         | 1 <sup>st</sup>          | $2^{nd}$                 | 3 <sup>rd</sup>     | 4 <sup>th</sup>       | 5 <sup>th</sup>     | 6 <sup>th</sup>       |  |  |
|                          |                   | 100% Papaya juice        |                          |                     |                       |                     |                       |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$ | -                        | -                        | -                   | -                     | -                   | -                     |  |  |
| T <sub>1</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$  | $8.0 \pm 0.5^{b}$     | $8.0 \pm 0.5^{b}$   | $8.0 \pm 0.5^{b}$     |  |  |
| T <sub>2</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$   | $8.5 \pm 0.5^{ab}$    | $8.5 \pm 0.5^{ab}$  | $8.5 \pm 0.5^{ab}$    |  |  |
| T <sub>3</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0\pm0.5^{a}$          | $9.0\pm0.5^{a}$     | $8.5\pm0.5^{ab}$      | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$      |  |  |
|                          |                   | 759                      | % Papaya juice +         | 25% Orange juid     | ce                    |                     |                       |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$ | -                        | -                        | -                   | -                     | -                   | -                     |  |  |
| $T_1$                    | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$  | $8.0 \pm 0.5^{bc}$    | $8.0 \pm 0.5^{bc}$  | $7.5 \pm 0.5^{\circ}$ |  |  |
| T <sub>2</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$   | $8.5 \pm 0.5^{ab}$    | $8.5 \pm 0.5^{ab}$  | $8.0 \pm 0.5^{bc}$    |  |  |
| T3                       | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0\pm0.5^{a}$          | $9.0\pm0.5^{a}$     | $8.5\pm0.5^{ab}$      | $8.5\pm0.5^{ab}$    | $8.0 \pm 0.5^{bc}$    |  |  |
|                          |                   | 75%                      | Papaya juice + 2         | 5% Strawberry ju    | lice                  |                     |                       |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$ | -                        | -                        | -                   | -                     | -                   | -                     |  |  |
| T <sub>1</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$  | $8.0 \pm 0.5^{b}$     | $8.0 \pm 0.5^{b}$   | $8.0 \pm 0.5^{b}$     |  |  |
| T <sub>2</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$   | $8.5 \pm 0.5^{ab}$    | $8.5 \pm 0.5^{ab}$  | $8.5 \pm 0.5^{ab}$    |  |  |
| T3                       | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0\pm0.5^{a}$          | $9.0\pm0.5^{a}$     | $9.0\pm0.5^{a}$       | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$      |  |  |
|                          |                   | 759                      | % Papaya juice +         | 25% Mango juic      | æ                     |                     |                       |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$ | -                        | -                        |                     | -                     | -                   | -                     |  |  |
| $T_1$                    | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$  | $8.0 \pm 0.5^{b}$     | $8.0 \pm 0.5^{b}$   | $8.0 \pm 0.5^{b}$     |  |  |
| T <sub>2</sub>           | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$   | $8.5 \pm 0.5^{ab}$    | $8.5 \pm 0.5^{ab}$  | $8.5 \pm 0.5^{ab}$    |  |  |
| T3                       | $9.0 \pm 0.5^{a}$ | $9.0 \pm 0.5^{a}$        | $9.0\pm0.5^{a}$          | $9.0\pm0.5^{a}$     | $9.0\pm0.5^{a}$       | $8.5\pm0.5^{ab}$    | $8.5\pm0.5^{ab}$      |  |  |
|                          |                   | 75                       | % Papaya juice +         | 25% Guava juic      | æ                     |                     |                       |  |  |
| T <sub>0</sub> (Control) | $8.5 \pm 0.5^{a}$ | -                        | -                        | -                   | -                     | -                   | -                     |  |  |
| T <sub>1</sub>           | $8.5 \pm 0.5^{a}$ | $8.5\pm0.5^{\mathrm{a}}$ | $8.0\pm0.5^{ab}$         | $8.0\pm0.5^{ab}$    | $7.0 \pm 0.5^{\circ}$ | $7.0\pm0.5^{\circ}$ | $7.0 \pm 0.5^{\circ}$ |  |  |
| $T_2$                    | $8.5 \pm 0.5^{a}$ | $8.5\pm0.5^{\mathrm{a}}$ | $8.5\pm0.5^{\mathrm{a}}$ | $8.0\pm0.5^{ab}$    | $8.0\pm0.5^{ab}$      | $8.0\pm0.5^{ab}$    | $7.5\pm0.5^{bc}$      |  |  |
| T <sub>3</sub>           | $8.5\pm0.5^{a}$   | $8.5\pm0.5^{\rm a}$      | $8.5\pm0.5^{\rm a}$      | $8.5\pm0.5^{\rm a}$ | $8.0\pm0.5^{ab}$      | $8.0\pm0.5^{ab}$    | $7.5\pm0.5^{bc}$      |  |  |

| Table 11. Sensory characteristics (texture) <sup>*</sup> of particular particular of particular pa | baya juice samples during cold storage (at ~ 4°C). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|

\* Means of ten determinations  $\pm$  SD, values within the same column and row followed by the same letter are not significantly different (P  $\leq$  0.05). \*\* T<sub>1</sub> = Pasteurization at ~ 65°C/20 min. \*\* T<sub>2</sub> = 0.05% potassium sorbate + 0.05% potassium metabisulphite. \*\* T<sub>3</sub> = Pasteurization at ~ 65°C/20 min + 0.05% potassium sorbate + 0.05% potassium metabisulphite.

| Table 12. Sensor | y characteristics ( | overall qualit | ;y)* of <u>p</u> | papaya j  | juice samp | les during | cold storage | $(at \sim 4^{\circ}C).$ |
|------------------|---------------------|----------------|------------------|-----------|------------|------------|--------------|-------------------------|
|                  |                     |                |                  | Ctomo and |            | a 41.)     |              |                         |

|                          | Storage intervals (month) |                          |                          |                          |                             |                       |                                |  |  |
|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|-----------------------|--------------------------------|--|--|
| Treatments**             | Zero time                 | 1 <sup>st</sup>          | 2 <sup>nd</sup>          | 3 <sup>rd</sup>          | 4 <sup>th</sup>             | 5 <sup>th</sup>       | 6 <sup>th</sup>                |  |  |
|                          | 100% Papaya juice         |                          |                          |                          |                             |                       |                                |  |  |
| T <sub>0</sub> (Control) | $8.5 \pm 0.5^{a}$         | -                        | -                        | -                        | -                           | -                     | -                              |  |  |
| $T_1$                    | $8.5 \pm 0.5^{a}$         | $8.5 \pm 0.5^{a}$        | $8.0 \pm 0.5^{ab}$       | $8.0 \pm 0.5^{ab}$       | $7.0 \pm 0.5^{\circ}$       | $7.0 \pm 0.5^{\circ}$ | $7.0 \pm 0.5^{\circ}$          |  |  |
| T <sub>2</sub>           | $8.5 \pm 0.5^{a}$         | $8.5\pm0.5^{\mathrm{a}}$ | $8.5 \pm 0.5^{a}$        | $8.0 \pm 0.5^{ab}$       | $8.0 \pm 0.5^{ab}$          | $8.0 \pm 0.5^{ab}$    | $7.5 \pm 0.5^{bc}$             |  |  |
| T3                       | $8.5\pm0.5^{a}$           | $8.5\pm0.5^{\rm a}$      | $8.5\pm0.5^{\mathrm{a}}$ | $8.5\pm0.5^{\mathrm{a}}$ | $8.0\pm0.5^{ab}$            | $8.0 \pm 0.5^{ab}$    | $7.5 \pm 0.5^{bc}$             |  |  |
|                          |                           | 759                      | % Papaya juice +         | 25% Orange jui           | ce                          |                       |                                |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$         | -                        | -                        | -                        | -                           | -                     | -                              |  |  |
| $T_1$                    | $9.0 \pm 0.5^{a}$         | $9.0\pm0.5^{\mathrm{a}}$ | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$       | $8.0\pm0.5^{b}$             | $8.0 \pm 0.5^{b}$     | $7.0 \pm 0.5^{\circ}$          |  |  |
| $T_2$                    | $9.0 \pm 0.5^{a}$         | $9.0\pm0.5^{\mathrm{a}}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$          | $8.5 \pm 0.5^{ab}$    | $8.0\pm0.5^{\mathrm{b}}$       |  |  |
| T <sub>3</sub>           | $9.0\pm0.5^{\mathrm{a}}$  | $9.0\pm0.5^{\rm a}$      | $9.0\pm0.5^{\rm a}$      | $9.0\pm0.5^{\rm a}$      | $8.5\pm0.5^{ab}$            | $8.5\pm0.5^{ab}$      | $8.0\pm0.5^{\mathrm{b}}$       |  |  |
|                          |                           | 75%                      | Papaya juice + 2         | 5% Strawberry ji         | uice                        |                       |                                |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$         | -                        | -                        | -                        | -                           | -                     | -                              |  |  |
| $T_1$                    | $9.0 \pm 0.5^{a}$         | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$       | $8.0 \pm 0.5^{\mathrm{bc}}$ | $8.0 \pm 0.5^{bc}$    | $7.0 \pm 0.5^{d}$              |  |  |
| T <sub>2</sub>           | $9.0 \pm 0.5^{a}$         | $9.0\pm0.5^{\mathrm{a}}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$          | $8.0 \pm 0.5^{bc}$    | $7.5 \pm 0.5^{cd}$             |  |  |
| T3                       | $9.0\pm0.5^{a}$           | $9.0\pm0.5^{\mathrm{a}}$ | $9.0 \pm 0.5^{a}$        | $9.0\pm0.5^{a}$          | $8.5 \pm 0.5^{ab}$          | $8.5 \pm 0.5^{ab}$    | $7.5 \pm 0.5^{cd}$             |  |  |
|                          |                           | 75                       | % Papaya juice +         | 25% Mango jui            | ce                          |                       |                                |  |  |
| T <sub>0</sub> (Control) | $9.0 \pm 0.5^{a}$         | -                        | -                        | -                        | -                           | -                     | -                              |  |  |
| $T_1$                    | $9.0 \pm 0.5^{a}$         | $9.0\pm0.5^{\mathrm{a}}$ | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$       | $8.0\pm0.5^{b}$             | $8.0 \pm 0.5^{b}$     | $7.0 \pm 0.5^{\circ}$          |  |  |
| T <sub>2</sub>           | $9.0 \pm 0.5^{a}$         | $9.0\pm0.5^{\mathrm{a}}$ | $9.0 \pm 0.5^{a}$        | $9.0 \pm 0.5^{a}$        | $8.5 \pm 0.5^{ab}$          | $8.5 \pm 0.5^{ab}$    | $8.0\pm0.5^{\mathrm{b}}$       |  |  |
| T3                       | $9.0\pm0.5^{a}$           | $9.0\pm0.5^{\rm a}$      | $9.0\pm0.5^{a}$          | $9.0\pm0.5^{\rm a}$      | $8.5\pm0.5^{ab}$            | $8.5\pm0.5^{ab}$      | $8.0\pm0.5^{\mathrm{b}}$       |  |  |
|                          |                           | 75                       | % Papaya juice +         | - 25% Guava juic         | ce                          |                       |                                |  |  |
| T <sub>0</sub> (Control) | $8.5 \pm 0.5^{a}$         | -                        | -                        | -                        | -                           | -                     | -                              |  |  |
| $T_1$                    | $8.5 \pm 0.5^{a}$         | $8.5\pm0.5^{\mathrm{a}}$ | $8.0 \pm 0.5^{ab}$       | $8.0 \pm 0.5^{ab}$       | $7.0 \pm 0.5^{\circ}$       | $7.0 \pm 0.5^{\circ}$ | $7.0 \pm 0.5^{\circ}$          |  |  |
| $T_2$                    | $8.5 \pm 0.5^{a}$         | $8.5\pm0.5^{\mathrm{a}}$ | $8.5 \pm 0.5^{a}$        | $8.0 \pm 0.5^{ab}$       | $8.0\pm0.5^{ab}$            | $8.0 \pm 0.5^{ab}$    | $7.5\pm0.5^{\mathrm{bc}}$      |  |  |
| T <sub>3</sub>           | $8.5 \pm 0.5^{a}$         | $8.5\pm0.5^{\mathrm{a}}$ | $8.5 \pm 0.5^{a}$        | $8.5\pm0.5^{\mathrm{a}}$ | $8.0\pm0.5^{ab}$            | $8.0 \pm 0.5^{ab}$    | $7.5 \pm 0.5^{bc}$             |  |  |
| * Means of ten dete      | erminations + SD          | values within the s      | same column and r        | row followed by th       | e same letter are r         | ot significantly dif  | ferent ( $\mathbf{P} < 0.05$ ) |  |  |

\*  $T_1 = Pasteurization at ~ 65^{\circ}C/20 min + 0.05\% potassium sorbate + 0.05\% potassium metabisulphite.$ 

## CONCLUSION

In the light of the obtained results, it could be concluded that, the papaya fruits could be successfully used singly or in combination with orange, strawberry, mango and guava to obtain delicious and healthy nutritious juices. The combined action of the thermal treatment (pasteurization at ~  $65^{\circ}C/20$  min) and chemical preservatives (0.05% potassium sorbate + 0.05% potassium metabisulphite) on the quality and shelf stability of papaya juices stored under refrigeration conditions (~ 4°C) for 6 months was better than using either of them alone. The modified papaya juices (75% papaya + 25% orange/strawberry/mango/guava) had acceptable quality attributes, improved nutritional value, improved shelf stability and microbiological safety for up to 6 months.

## REFERENCES

- Aaby, K.; Mazur, S.; Arnfinn, N. and Grete, S. (2012). Phenolic compounds in strawberry (*Fragaria* × *ananassa* Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chemistry, 132: 86-97.
- Abobatta, W.F. (2019). Nutritional benefits of citrus fruits. Am. J. Biomed. Sci. & Res., 3 (4): 303-306.

- Adekunte, A.; Tiwari, B.K.; Cullen, P.J.; Scannell, A. and Donnell, C. (2010). Effect of sonication on color, ascorbic acid and yeast inactivation in tomato juice. Food Chem., 122: 500-507.
- Akther, S.; Alim, M.A.; Badsha, M.R.; Matin, A.; Ahmad, M. and Hoque, S.M.Z. (2020). Formulation and quality evaluation of instant mango drink powder. Food Research, 4 (4): 1287-1296.
- Almeida, E.T.C.; Barbosa, I.M.; Tavares, J.F.; Barbosa-Filho, J.M.; Magnani, M. and Souza, E.L. (2018). Inactivation of spoilage yeasts by *Mentha spicata* L. and *M. x villosa* Huds. essential oils in cashew, guava, mango and pineapple juices. Frontiers in Microbiology, 9: 1-12.
- Aly, I.; Taher, H. and EL-Feky, F. (2020). Antischistosomal and antioxidant protective role of *Carica papaya* fruit extracts against *Schistosoma mansoni*. African J. Biol. Sci., 16 (1): 107-117.
- Amirpour, M.; Arman, A.; Yolmeh, A.; Akbari, A.M. and Moradi-Khatoonabadi, Z. (2015). Sodium benzoate and potassium sorbate preservatives in food stuffs in Iran. Food Addit. Contam. Part B Surveill. 8, 142-148.
- Anand, A.V.; Velayuthaprabhu, S.; Rengarajan, R.L.; Sampathkumar, P. and Radhakrishnan, R. (2020).
  Bioactive compounds of guava (*Psidium guajava* L.). Part VIII, Underutilized fruits and nuts rich in volatile compounds, Ch. 30, 503-527. In: Murthy H., Bapat V. (eds). Bioactive compounds in underutilized fruits and nuts. Reference series in phytochemistry. Springer, Cham.
- AOAC (2000). Official methods of analysis,17<sup>th</sup> ed. Association of Official Analytical Chemists International, Maryland.
- Aravind, G.; Bhowmik, D.; Duraivel, S.; and Harish, G. (2013). Traditional and medicinal uses of *Carica papaya*. Journal of Medicinal Plants Studies, 1 (1): 7-15.
- Arend, G.D.; Adorno, W.T.; Rezzadori, K.; Di Luccio, M.; Chaves, V.C.; Reginatto, F.H. and Petrus, J.C.C. (2017). Concentration of phenolic compounds from strawberry (*Fragaria X ananassa* Duch) juice by nanofiltration membrane. J. Food Eng., 201: 36-41.
- Ayub, M.; Ullah, J.; Muhammad, A. and Zeb, A. (2010). Evaluation of strawberry juice preserved with chemical preservatives at refrigeration temperature. International Journal of Nutrition and Metabolism, 2 (2): 27-32.
- Baghaei, H.; Shahidi, F.; Varidi, M.J. and Mahallati, M.N. (2008). Orange-Cantaloupe seed beverage: Nutritive value, effect of storage time and condition on chemical, sensory and microbial properties. World Applied Sciences Journal, 3 (5): 753-758.
- Bal, L.M.; Ahmad, T.; Senapati, A.K. and Pandit, P.S. (2014). Evaluation of quality attributes during storage of guava nectar cv. Lalit from different pulp and TSS ratio. J. Food Processing and Technol., 5 (5): 329-334.

- Basu, A.; Nguyen, A.; Betts, N.M. and Lyons T.J. (2014). Strawberry as a functional food: an evidencebased review. Critical Reviews in Food Science and Nutrition, 54: 790-806.
- Bhardwaj, R.L.; Nandal, U. Pal, A. and Jain, S. (2014). Bioactive compounds and medicinal properties of fruit juices. Fruits, 69 (5): 391-412.
- Chia, S.L.; Rosnah, S.; Noranizan, M.A. and Ramli, W.D.W. (2012). The effect of storage on the quality attributes of ultraviolet-irradiated and thermally pasteurized pineapple juices. International Food Research Journal 19 (3): 1001-1010.
- Chowdhury, M.G.F.; Islam, M.N.; Islam, M.S.; Islam, A.F.M.T. and Hossain, M.S. (2008). Study on preparation and shelf-life of mixed juice based on wood apple and papaya. J. Soil. Nature, 2 (3): 50-60.
- Dasenaki, M.E. and Thomaidis, N.S. (2019). Quality and authenticity control of fruit juices - a review. Molecules, 24 (1014): 1-35.
- Devaki, C.S.; Farha Samreen, F. and Prakash, J. (2015). A review on composition, processed products and medicinal uses of papaya (*Carica papaya* L.). International Journal of Food, Nutrition and Dietetics, 3 (3): 99-118.
- Diliello, L.R. (1982). Methods in food and dairy microbiology, Avi. Publishing Company, INC. Westport, Connecticute, U.S.A.
- Djioua,T.; Charles, F.; Lopez-Lauri, F.; Filgueiras, H.; Coudret, A.; Jr, M. F.; Ducamp-Collind, M.-N. and Sallanon, H. (2009). Improving the storage of minimally processed mangoes (*Mangifera indica* L.) by hot water treatments. Postharvest Biology and Technology, 52: 221-226.
- Dotto, J.M. and Abihudi, S.A. (2021). Nutraceutical value of *Carica papaya*: A review. Scientific African, 13: e00933.
- Dwivedi, M.K.; Sonter, S.; Mishra, S.; Patel, D.K. and Singh, P.K. (2020). Antioxidant, antibacterial activity, and phytochemical characterization of *Carica papaya* flowers. Beni-Suef University Journal of Basic and Applied Sciences, 9 (23): 1-11.
- El-Beltagy, A.; Gamea, G.R. and Essa, A.H.A. (2007). Solar drying characteristics of strawberry. J. Food Eng., 78: 456-464.
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B. and Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28: 9-19.
- Guine, R.P.F.; Correia, P.M.R.; Ferrao, A.C.; Goncalves, F.; Lerat, C.; El-Idrissi, T. and Rodrigo, E. (2020). Evaluation of phenolic and antioxidant properties of strawberry as a function of extraction conditions. Braz. J. Food Technol., 23: 1-11.
- Gündüz, K. (2016). Strawberry: phytochemical composition of strawberry (*Fragaria × ananassa*).
  Ch. 30, 733-752. In: Simmonds, M.S.J. and Preedy, V.R. (Eds.), Nutritional composition of fruit cultivars. Academic Press.

- Hossain, M.N.; Fakruddin, M. and Islam, M.N. (2011). Effect of chemical additives on the shelf life of tomato juice. American Journal of Food Technology, 6 (10): 914-923.
- Hussain, I.; Zeb, A.; Shakir, I. and Shah, A.S. (2008). Combined effect of potassium sorbate and sodium benzoate on individual and blended juices of apricot and apple fruits grown in Azad Jammu and Kashmir. Pakistan Journal of Nutrition, 7 (1): 181-185.
- Jongen, W. (2002). Fruit and vegetable processing: Improving quality. Woodhead Publishing Ltd and CRC Press LLC.
- Karpagavalli, B. and Amutha, S. (2015). Influence of storage condition on the antioxidant activity of pomegranate squash. Plant Archives, 15: 405-410.
- Khan, M.A.M.; Ahrne, L.; Oliveira, J.C. and Oliveira, F.A.R. (2008). Prediction of water and soluble solids concentration during osmotic dehydration of mango. Food and Bioproducts Processing, 86: 7-13.
- Khan, R.U.; Afridi, S.R.; Ilyas, M.; Abid, H.; Sohail, M. and Khan, S.A. (2012). Effect of different chemical preservatives on the storage stability of mango-sea buckthorn blended juice. Pak. J. Biochem. Mol. Biol., 45 (1): 6-10.
- Kuchi, V.S.; Gupta, R.; Gupta, R. and Tamang, S. (2014). Standardization of recipe for preparation of guava jelly bar. Journal of Crop and Weed, 10 (2): 77-81.
- Larmond, E. (1977). Laboratory methods for sensory evaluation of food. Canadian Government Publishing Center, Ottawa, Canada.
- Lebaka, V.R.; Wee, Y.-J.; Ye, W.; Korivi, M. (2021). Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health, 18 (741): 1-20.
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B. and Guerrero Ospina, J.C. (2019). Chemical composition of mango (*Mangifera indica* L.) fruit: nutritional and phytochemical compounds. Front. Plant Sci., 10: 1-21.
- Mandal, P. and Nath, A. (2013). Study on processing and storage stability of aonla (*Emblica officinalis*) squash. Beverage Food World, 40 (4): 40-41.
- Mehmood, Z.; Zeb, A.; Ayub, M.; Bibi, N.; Badshah, A. and Ihsanullah (2008). Effect of pasteurization and chemical preservatives on the quality and shelf stability of apple juice. American Journal of Food Technology, 3 (2): 147-153.
- Murthy, H.N. and Bapat, V.A. (2020). Bioactive compounds in underutilized fruits and nuts. Reference series in phytochemistry. Springer, Cham.
- Musa, K.H.; Abdullah, A.; Jusoh, K. and Subramaniam, V. (2011). Antioxidant activity of pink-flesh guava (*Psidium guajava* L.): Effect of extraction techniques and solvents. Food Anal. Methods, 4: 100-107.

- Muzaffar, K.; Nayik G.A.; Gull. A. and Kumar P. (2017). Changes in quality characteristics of pomegranate juice concentrate during refrigerated storage. Journal of Postharvest Technology, 5 (3): 16-21.
- Ndife, J. and Abbo, E. (2009). Functional foods: prospects and challenges in Nigeria. J. Sci. Technol., 1 (5):1-6.
- Ndife, J; Awogbenja, D. and Zakari, U. (2013). Comparative evaluation of the nutritional and sensory quality of different brands of orange-juice in Nigerian market. Afr. J. Food Sci., 7 (12): 479-484.
- Pardo, H.; Owoyemi, A. Benjamin, O.; Goldenberg, L. Yaniv, Y.; Doron-Faigenboim, A.; Carmi, N. and Poratm R. (2021). Sensory analysis of a new citrus juice made from 'Aliza' fruit: a new pomelo x mandarin hybrid. J. Food Sci. Nutr. Res., 4 (1): 1-11.
- Putri, M.D.; Wiboworini, B. and Dirgahayu, P. (2020). The effect of strawberry on type 2 diabetes mellitus: A review. Int. J. Nutr. Sci., 5 (1): 1-6.
- Ramya, V. and Patel, P. (2019). Health benefits of vegetables. International Journal of Chemical Studies, 7 (2): 82-87.
- Ranganna, S. (1977). Hand book of manual of analysis of fruit and vegetable products. New Delhi: Tata Mc Graw-Hill.
- Rohila, H.; Gehlot, R.; Siddiqui, S. and Rekha (2017). Changes in chemical constituents and overall acceptability of bael-guava nectar and crush during storage. J. Hortl. Sci., 12 (1): 65-70.
- Rosa, L.A.; Alvarez-Parrilla, E. and Gonzalez-Aguilar, G.A. (2010). Fruit and vegetable phytochemicals: chemistry, nutritional value and stability. 1<sup>st</sup> Edition. Blackwell Publishing, A. John Wiley & Sons, Inc., Publication.
- Ruxton, C.H.S. and Myers, M. (2021). Fruit juices: are they helpful or harmful? an evidence review. Nutrients, 13 (1815): 1-14.
- Sakhale, B.K.; Pawar, V.N. and Ranveer, R.C. (2012). Studies on effect of chemical preservatives on keeping quality of kesar mango pulp. Open Access Scientific Reports, 1 (3): 184.
- Sharma, M.; Gehlot, R.; Singh, R. and Siddiqui, S. (2012). Changes in chemical constituents and overall acceptability of guava-jamun blends ready-to-serve drink and squash during storage. Beverage and Food World, 39 (4): 39-42.
- Sharma, A.; Bachheti, A.; Sharma, P.; Bachheti, R.K. and Husen, A. (2020). Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of *Carica papaya* L.: A comprehensive review. Current Research in Biotechnology, 2: 145-160.
- Shrivastava, A. and Doreappa Gowda, I.N.D. (2016). Development of intermediate-moisture slices of papaya (*Carica papaya*) by hurdle technology. J. Hortl. Sci., 11 (1): 67-71.

- Singh, S.P. and Pal, R.K. (2008). Controlled atmosphere storage of guava (*Psidium guajava* L.) fruit. Postharvest Biology and Technology, 47: 296-306.
- Singh, O. Pathak, S. Richa Singh, R. and Singh, P. (2014). Changes in chemical constituents and overall acceptability of aonla-mango low calorie blended beverages during storage. Plant Archives, 14 (1): 343-346.
- Slavin, J.L. and Lloyd, B. (2012). Health benefits of fruits and vegetables. American Society for Nutrition. Adv. Nutr. 3: 506-516.
- Snedecor, G. and Cochran, W. (1982). Statistical methods, 7<sup>th</sup> Ed. The Iowa State University Press. Ames, IA.
- Soares, F.D.; Pereira, T.; Marques, M.O.M. and Monteiro, A.R. (2007). Volatile and non-volatile chemical composition of the white guava fruit (*Psidium guajava*) at different stages of maturity. Food Chem., 100: 15-21.
- Tournas, V.H.; Heeres, J. and Burgess, L. (2006). Moulds and yeasts in fruit salads and fruit juices. Food Microbiology, 23: 684-688.

- Vanamala, J.; Reddivari, L.; Sun-Yoo, K.; Pike, L. and Patil, B. (2006). Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices. J. Food Compost. Anal., 19: 157-166.
- Vasavada, P.C. and Heperken, .Z.D. (2002). Non-thermal alternative processing technologies for the control of spoilage bacteria in fruit juices and fruit-based drinks. Food Safety Magazine, 8 (1): 8, 10, 13, 46-47.
- Yadav, S.K.; Sarolia, D.K.; Pilania, S.; Meena, H.R. and Mahawer, L.N. (2017). Studies on keeping quality of preserved guava pulp during storage. Int. J. Curr. Microbiol. App. Sci., 6 (3): 1235-1242.
- Zakaria, M.; Batool, S I.; Zeb, A. and Asad Ullah. (2017). Impact of some chemical preservatives on physicochemical quality of pulpy juice of black mulberry grown in northern area of Pakistan. International Journal of Food Science and Nutrition, 2 (1): 42-47.

## تحسين الثبات التخزيني والحفاظ على جودة عصائر الباباظ المعدلة والمخزنة تحت ظروف التبريد عمر أحمد عبد الجواد ، حسين عبد الجليل عبد العال ، فوزي علي حسن السكري و سناء محمد عبد الحميد قسم علوم الأغذية – كلية الزراعة – جامعة المنيا

تم خلط بيوريه (مهروس اللب) البابلظ الطازج مع البرتقل – الفراولة – المانجو – الجوافة لتحسين الخصائص الغذائية والجودة للعصائر المختلطة. تم تقييم العصائر المنتجة من حيث قيمتها الغذائية وخواصها الفيز وكيميائية والميكروبيولوجية والحسية. كما تم دراسة تأثير البسترة (650م / 20 دقيقة) و/أو المواد الحافظة الكيميائية (0,00% سوربات البوتاسيوم + 0,00% ميتا كبريتيت البوتاسيوم) على خواص الجودة والثبات التخزيني لعصائر البابلظ المعدلة وذلك خلال التغزين المبرد (0,4% مور أوضحت النتائج أن الفعل المشترك للمعاملة الحرارية والمواد الحافظة الكيميائية (7.3%) سوربات البوتاسيوم + 0,00% ميتا كبريتيت البوتاسيوم) على خواص الجودة والثبات التخزيني لعصائر البابلظ المعدلة وذلك خلال التغزين المبرد (0,4%) لمدة 6 شهور. أوضحت النتائج أن الفعل المشترك للمعاملة الحرارية والمواد الحافظة الكيميائية (7.3) على خواص الجودة والثبات التخزيني لعصائر البابلظ المعدلة ونك خلال لتخزين المبرد (0,4%) لمدة 6 شهور كان أفضل من استخدام أي منهما منفرداً. كما بينت النتائج أنه المبرد انخصات قيم المحتوى الرطوبي والأس الهيدروجيني وحامض الأسكوربيك والفينولات الكلية انخفاضاً معنوياً مع زيادة زمن التخزين المبرد انخفضت قيم الحصائر النخول المعدلة وغلي من الموادي والأس الهيدروجيني وحامض الأسكوربيك والفينولات الكلية انخفاضاً معنوياً مع زيادة زمن التخزين ، في حين زادت قيم كل من المواد المرغ من هذا الذائبة والحموضة القابلة للمعايرة. وكان لكل من معاملات الحفظ وفترات التخزين تأثير معنوي على هذه القيم لجميع عينات عصير البابل وعلى الرغم من هذا الانخوس أل غم من هذا الانخفاض ظلت جميع عينات المعار مورف التخزين تأثير معنوي على هذه القيم لجميع عينات عصير البابل. وعلى الم غمن هذا الانخوس أل غم من هذا الانخوض المورف التفرين العربي العامير مصادر مرضية لحامض والفيزول الما والغور وينا والما المون ويوني والما لمود ويون والمود في مدى التخزيني معنوي على هذال التخزين المبرد (0,4%) للمعايرة. وكان لكل من معاملات الحفظ والمان العزين تأثير معنوي على هذه القيم لجميع عينات عصير البابلة. وعلى الر غم من هذا الانغولية على من الحد الحرم العابي قيمة على من مامود من المود من قال ما للاغم مان هذا المودة إلى مان الدرد في ما ما الدغون المبرد. وبلكن ما معردي والخون التمر مالبابل عمان ما المود وال المعرمي أل ما مار