
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 4 Issue 1, January 2022

(https://fcihib.journals.ekb.eg)

1

Abstract— Software vulnerabilities are security flaws, defects,

or weaknesses in software architecture, design, or implementation.

With the explosion of open source code available for analysis, there

is a chance to learn about bug patterns that can lead to security

vulnerabilities to assist in the discovery of vulnerabilities. Recent

advances in deep learning in natural language processing, speech

recognition, and image processing have demonstrated the great

potential of neural models to understand natural language. This

has encouraged researchers in the cybersecurity sector and

software engineering to utilize deep learning to learn and

understand vulnerable code patterns and semantics that indicate

vulnerable code properties. In this paper, we review and analyze

the recent state-of-the-art research adopting machine learning and

deep learning techniques to detect software vulnerabilities, aiming

to investigate how to leverage neural techniques for learning and

understanding code semantics to facilitate vulnerability detection.

From this paper's results, 12 primary studies were found from the

search processes. 7 out of them were published in IEEE, 2 were

published in ACM, 2 were published in Springer and the rest of

them were published in different conferences and journals. Most

primary studies worked on NVD and SARD datasets, and others

used open-source projects. Results show that machine learning

and deep learning techniques give promising results in the

automatic detection of vulnerabilities, but there are still some gaps

in existing models that need to be addressed in future research.

Index Terms—Software vulnerabilities, vulnerability detection

, machine learning, deep learning, program analysis.

I. INTRODUCTION

ith the rapid advancement of information technology,

software is becoming increasingly vital in a wide range

of fields around the world. Simultaneously, possible

software security vulnerabilities are rising as a global

challenge. One of the main reasons for security issues is

software vulnerabilities. Recent history is full of examples,

e.g., the infamous Heartbleed vulnerability was triggered by

two missing lines of code [1]. Because of the widespread

usage of open-source software and code reuse, these flaws are

frequently caused by programming errors and can quickly

propagate.

Vulnerabilities remain a big issue in spite of academic and

industry attempts to improve software quality. This is

demonstrated by the fact that numerous vulnerabilities are

reported each year in the Common Vulnerabilities and

Exposures (CVE) [2].

According to the Common Vulnerabilities and Exposures

(CVE) organization's statistics and the National Vulnerability

Database (NVD) Report [3], The number of vulnerabilities

recorded in a single year has never been higher than in 2020

(18,103). It can be seen from Figure 1 that the number of

vulnerabilities has reached its peak in the past three years.

Fig. 1. CVE number by year: 1988-2020

Fig. 2. CVEs reported by year: 2010 vs. 2020

Figure 2 depicts the rate of change, as demonstrated by the

fact that in 2020 (10,342) there were more critical and high

A Systematic Literature Review on Software

Vulnerability Detection Using Machine

Learning Approaches

Ahmed Bahaa1,2 , Aya El-Rahman Kamal1 , Amr S. Ghoneim3
1 Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University,

Helwan 11795, Egypt; ahmed.bahaa@fci.helwan.edu.eg or ahmed.bahaa.farid@gmail.com (A.B.);

aya.rahman@fci.helwan.edu.eg or aya.elrahman93@gmail.com (A.K.)
2 Department of Information Systems, Faculty of Computers and Artificial Intelligence, Beni-Suef University,

Beni-Suef 62521, Egypt; ahmed.bahaa@fcis.bsu.edu.eg
3 Department of Computer Science, Faculty of Computers and Artificial Intelligence, Helwan University,

Helwan 11795, Egypt; amr.ghoneim@fci.helwan.edu.eg or amr.ghoneim@gmail.com (A.G.);

W

https://www.hindawi.com/journals/scn/2020/8858010/fig1/
https://www.hindawi.com/journals/scn/2020/8858010/fig1/
mailto:aya.rahman@fci.helwan.edu.eg
mailto:aya.elrahman93@gmail.com
mailto:amr.ghoneim@fci.helwan.edu.eg
mailto:amr.ghoneim@gmail.com

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

2

severity vulnerabilities than in 2010. (4,639, including low,

medium, high, and critical).

Resolving vulnerabilities discovered after software

release is much more expensive than fixing them during

development. Knowing that there are three types of code

analysis approaches for detecting vulnerabilities: static,

dynamic, and hybrid. Static techniques that depend on the

source code without executing it, such as rule-based

analysis, symbolic execution [4], and code similarity

detection. Hence false-positives vulnerabilities may be

reported. However, this method often struggles to reveal

vulnerabilities that can occur during runtime. Dynamic

methods focused on vulnerability detection that occurs

during program execution. Dynamic analysis cannot

analyze the behavior of a program as a whole because there

is often an infinite amount of input and execution state, as

taint analysis and fuzzing. They have low-code coverage

since it's feasible to miss some vulnerabilities in invisible

program states. Hybrid techniques combine static and

dynamic analysis techniques to overcome the

aforementioned shortcomings.

The structure of this article is as follows: Second

section presents the used research methodology. The third

section provides some background knowledge of different

definitions of software vulnerability summarized from

previous studies. Then, the related work of prior studies for

vulnerability detection is discussed. Section four discusses

machine learning-based vulnerability detection techniques.

Section five discusses vulnerability detection techniques

based on deep learning. Section six reviews and analyzes

the state-of-the-art studies according to used techniques,

datasets, and limitations. The results of the study are

discussed in section seven. Finally, the last section

concludes this paper and provides future work

recommendations.

II. RESEARCH METHODOLOGY

To study software vulnerability detection models, the

systematic literature review (SLR) methodology is

followed. To answer the review questions below, the SLR

includes reviewing, investigating, and evaluating the

existing research work.

A. Review Questions (RQs)

Research questions are presented here to assess and

review the primary studies.

RQ1: What data sets were utilized to detect software

vulnerabilities?

RQ2: Which machine learning techniques have been

used for software vulnerabilities detection?

RQ3: What level of granularity is used to extract

features?

RQ4: What feature extraction methods are used?

RQ5: What are the evaluation metrics used for

vulnerabilities detection models?

B. Review Protocol

The procedure of the study search consisted of selecting

digital sources, constructing a search string, doing an initial

search, and then retrieving a collection of primary studies

from digital sources.

Digital Sources Selection

Many searches were conducted to locate and select the most

relevant research papers relative to the research questions. The

following are the used online sources:

 IEEE Xplore

 Springer Link

 ACM

 Other journals & conferences

Search Strings Construction

After selecting the sources, the search string needs to be

constructed to perform a comprehensive search to select the

most relevant search studies to the topic as follows:

 (Vulnerability OR Software Vulnerability) AND

(Detection OR Automatic Detection OR Discovery)

AND (Machine Learning OR Deep Learning OR

Deep Neural Networks)

 (Automatic AND Vulnerability AND Detection OR

Discovery) OR (Automatically AND Detect AND

Vulnerabilities) OR (Automated AND Vulnerability

AND Detection) AND (Machine Learning OR Deep

Learning)

Inclusion and Exclusion Criteria

Search strings are used to retrieve all available research papers

in the digital sources mentioned above. In order to select the

primary studies from the initial search result, inclusion and

exclusion criteria were designed.

Inclusion criteria:

 the text is written in the English language.

 relevant to the detection of software vulnerabilities.

 a paper that has been published in a journal or at a

conference.

 publications that have been peer-reviewed.

Exclusion criteria:

 research studies that are irrelevant to the search

string.

 without any empirical research or results.

 outdated search papers.

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

3

 the structure of the study is disorganized.

Using the search strings, we acquired a huge number of papers

as preliminary studies from digital sources. Then, using the

above-mentioned exclusion and inclusion criteria, we chose

the primary studies based on the title, abstract, and keywords.

III. BACKGROUND

A. Software Vulnerability: Different definitions

Software security vulnerabilities (short for vulnerabilities),

also known as security defects [5], security bugs [6], and

software weaknesses [7], are described by the Mitre

organization in charge of the Common Vulnerability and

Exposures (CVE) dictionary as a:
 “A flaw in the computational logic, such as code, is identified

in software and hardware components that, when exploited,

has a detrimental influence on confidentiality, integrity, or

availability.” [2]. Among various vulnerabilities, code-based

vulnerabilities are the reason for most exploits. [8] (Software,

data, or commands that may cause a violation of security

policy [9]).

“An instance of an error in the specification, development, or

configuration of software that allows its execution to violate a

security policy” is what a software vulnerability is [9].

National Institute of Standards and Technology (NIST):

“A threat source could exploit or cause a weakness in an

information system, system security procedures, internal

controls, or implementation.”.

B. Prior studies related to vulnerability detection.

Vulnerability detection is a technique for detecting flaws in

the software. Traditional vulnerability detection methods rely

on human involvement and are prone to false positives and

negatives [10] [11]. It requires a significant amount of time

and effort from domain experts to generate handcrafted

features to identify vulnerable code. These handcrafted

features frequently fail to capture program semantic and

structural information.

There are two methods for source code-based static

vulnerability detection: code similarity-based and pattern-

based. Code similarity-based detectors can only detect

vulnerabilities incurred by code cloning as VUDDY [12] and

VulPecker [13].

VUDDY and VulPecker both have high false-negative rates of

18.2 % and 38 %, respectively.

There are three steps to the code similarity-based technique.

Breaking down a program into code portions is the first step.

Tokens, trees, and graphs are instances of code snippets that are

abstractly represented in the second stage. The third step is to

determine the similarity between code snippets using the

abstract representations established in the previous phase.

Pattern-based methods, which can be further subdivided into

rule-based and machine learning-based methods.

In rule-based methods, vulnerability detection is dependent on

rules that are usually generated manually by human experts.

(E.g., Flawfinder [14], RATS [15], Checkmarx [16]). These

tools often have high false-positive rates and/or high false-

negative rates [17].

Thus, it's important to combine program analysis technologies

with machine learning to help software security research

enhance automated vulnerability detection is being developed.

IV. MACHINE LEARNING-BASED VULNERABILITY DETECTION

One of the key research directions is to develop intelligent

vulnerability detection techniques that act on source code. The

following three sub-categories can be found: vulnerability

detection methods based on software metrics [18] [19] [20]

[21], anomaly detection technique for detecting vulnerabilities

by looking for abnormal patterns [22], and vulnerable pattern

learning [23].

The intelligent vulnerability detection approaches make use of

software syntax and semantic information to enhance

detection performance.

V. DEEP LEARNING-BASED VULNERABILITY DETECTION

In the past few years, deep learning has received a lot of

attention. Deep learning is a subset of machine

learning in artificial intelligence (AI) which mimics the human

brain's neuronal network. Deep learning models build a

network that resembles the nervous system in the human body.

It imitates the thought mechanism of humans. Deep learning is

a network of nodes, each of which functions as a neuron.

Deep learning has recently sparked a surge of interest in the

field of software engineering. In recent studies, deep learning

technology was used to investigate automated intelligent

software security analysis. To extract features, the researchers

used techniques inspired by previous DL applications, such as

automated language processing.

A Deep Neural Network (DNN) consists of an input layer, an

output layer, and some hidden layers between them. This

network is capable of handling not only unstructured and

unlabeled data, but also non-linearity. One of the most

significant benefits of using neural networks is their ability to

learn features on their own. [24].

It’s crucial to highlight that deep learning techniques have

been widely used to discover software weaknesses. It is

applied to the fields of the prediction of defects [25] [26] [27]

[28] [29], finding erroneous source code [30], program

analysis [31] [32] [33], code clone detection [34], ,

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

4

recognizing functions in binaries [32] and recently it has been

used in software security vulnerability detection [24] [35] [36]

[37] successfully.

VI. STATE-OF-THE-ART STUDIES

In this section, we review and analyze the state-of-the-art

studies in vulnerability detection using machine learning and

deep learning where research questions are tackled:

Guanjun et al. [37] Proposed POSTER, an approach for

function-level vulnerability detection on cross-project

domains. They used Abstract Syntax Tree (AST) for function

representation. To capture the features in a function, they used

Bidirectional Long Short-Term Memory (BLSTM).

Runhao et al. [38] Presented an approach for detecting

vulnerabilities using Bidirectional Long Short-Term Memory

(BLSTM) based on the extraction of semantics features of

function names from the intermediate representation of source

code to distinguish between vulnerable and secure functions.

They worked on CVE entries reported from 2008 to 2018 and

selected eligible function names from vulnerabilities

information. The approach is able to detect multiple kinds of

vulnerabilities and reduced the false-positive rate.

Rebecca et al. [39] Proposed a system for vulnerability

detection based on machine learning using the function-

granularity level. They developed a special lexer

representation intended to capture the relevant meaning of

critical tokens from the raw source code of each function.

They used a labeled dataset by static analysis tools which are

collected from several open-source projects and Assurance

Reference Dataset (SARD) [40] and they used Ensemble

learning on neural representations based on Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs) to extract valuable features.

Zhen et al. [35] Presented VulDeePecker, which is classified as

a pattern-based method for detecting vulnerabilities.

VulDeePecker is the first system showing the feasibility of

utilizing deep learning to discover vulnerabilities at the

granularity level of API function calls. To represent the

program, it uses code gadgets. At the beginning, the program is

converted to intermediate representation to sustain the

dependency between program elements and finally, this

intermediate representation is converted to vectors which are

the deep neural network's required input. The results showed

that VulDeePecker achieved significantly fewer false-negative

rates than other methods. VulDeePecker dataset is derived from

both the National Vulnerability Database (NVD) [41] and the

Software Assurance Reference Dataset (SARD) [40] and it is

available at [42]. Although the code gadget paradigm allows for

data and control dependencies, it's worth mentioning that

VulDeePecker only provides data flow analysis but can’t

support control flow analysis.

Deqing et al. [36] Presented µVulDeePecker, the first system

based on deep learning to find vulnerabilities in multiclass

which extends VulDeePecker [35] work. µVulDeePecker

accommodates not only data dependence but also control

dependence which leads to higher effectiveness in multiclass

vulnerability detection. µVulDeePecker dataset is derived

from both SARD [40] and NVD [41].

Zhen et al. [43] Proposed SySeVR, the first system that used

deep learning for vulnerability detection in the source code of

the program in the slice-granularity level which is finer than

presented in VulDeePecker. The focus of the research is to

obtain a representation of the program that can contain both

the syntax and semantic information related to the

vulnerability. SySeVR dataset is derived from both NVD [41]

and SARD [40] and it is available at [44]. SySeVR overcomes

the weaknesses of VulDeePecker mentioned above by

working on semantic information caused by data and control

dependence.

Zeki et al. [45] Proposed a machine learning-based model for

predicting vulnerabilities from the program code by using

Multi-Layer Perceptron (MLP) algorithm and based on

Abstract Syntax Tree (AST) for source code representation to

extract the features to be able to perform intelligent analysis

and distinguish between vulnerable and invulnerable code

fragments. The code fragment is function-granularity level.

Resulted AST of the source code fragment is converted into a

numerical array representation to keep the syntactic and

semantic relations of the source code fragments. The used

dataset in this study is collected from several open-source

projects and NVD [41].

Some of the prior studies in the field of vulnerability detection

tried to evaluate theories that are a correlation between

software characteristics: complexity, coupling, etc. [19] [46]

[47] [18]. Mohammed et al. [20] Aim to use code metrics as

features to detect software vulnerabilities based on deep

learning with a fine granularity level. The findings showed

that code metrics are good, but not ideal to be used as features

in DL-based vulnerability detection. This approach is applied

only for one type of vulnerabilities

Zhen et al. [48] Propose VulDeeLocator, the first deep

learning-based vulnerability detector from source code that

can achieve a high vulnerability locating precision and high

detection capability as they introduced the notion of

granularity refinement to locate the vulnerable lines of code

using Bidirectional Recurrent Neural Network (BRNN). In

comparison to the state-of-the-art detector [43],
VulDeeLocator improved the vulnerability detection F1-

measure, false-positive rate, and false-negative rate by 9.8 %,

7.9 %, and 8.2 %, respectively, as well as the vulnerability

locating precision by 4.2X. VulDeeLocator dataset is

combined from both (NVD) and (SARD) datasets and its

dataset is available at [49].

Ning et al. [50] Presented VulHunter, a system to detect

vulnerabilities based on bytecode using deep learning.

VulHunter is the first system to detect vulnerabilities in source

code using bytecode features. They worked only on two types

of vulnerabilities: SQL injection and Cross-Site Scripting.

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

5

VulHunter outperformed prior approaches in terms of false-

positive rate and false-negative rate. VulHunter calculates the

resemblance between the target software and the vulnerability

template, unlike earlier studies that directly decide if the target

software contains vulnerabilities. However, they are incapable

of detecting complex vulnerabilities.

Guanjun et al. [51] Suggest a vulnerability detection

benchmarking framework. This system provides six common

neural network models as well as two distinct code embedding

approaches, allowing for one-click vulnerability detection

model creation and testing. The used dataset is collected from

SARD and real-world vulnerability ground truth dataset

containing manually labeled vulnerable functions as they are

working on the function granularity level.

VII. RESULTS

In this study, we reviewed 12 primary research papers on

vulnerability detection using both machine learning and deep

learning techniques that were published from 2017 to 2021.

Table 1 provides a summary of these studies, which covers the

below points:

A. Datasets

A dataset is a collection of data that is usually related to a

specific field of study. Seven of the state-of-the-art studies we

discussed worked on the National Vulnerability Database

(NVD) dataset [41] in combination with the Software

Assurance Reference Dataset (SARD) [40], whereas the rest

relied on either one of them only or open-source projects.

NVD is a repository of all Common Vulnerabilities and

Exposures (CVE) [2] records which reached 156468 records.

SARD is a group of known security weaknesses identified as

to test cases and test suites. Both datasets have an issue that

their data may not be representative of real-world software

products which affect the performance results of many studies.

Dataset imbalance is a prevalent issue in the majority of the

reviewed research that results in certain biases in the results.

B. Machine learning techniques

In the literature, various machine learning and deep learning

algorithms for vulnerability detection have been introduced.

The Multi-Layer Perceptron (MLP), Convolutional Neural

Network (CNN), and Recurrent Neural Network (RNN) were

used in the majority of the primary studies. Long Short-Term

Memory (LSTM) and Bidirectional Long Short-Term Memory

(BLSTM) are examples of applied RNN algorithms.

C. Evaluation Metrics

Vulnerability detection models should be assessed to see

how effective and efficient they are. The primary studies that

reviewed were using a variety of methodologies to assess the

efficacy of their proposed technique. Precision, recall, false-

positive rate, false-negative rate, and others are all examples

of measurements. In the primary studies, both false-positive

rates and false-negative rates were commonly applied.

The first evaluation metric is precision that measures how

many results are relevant? Using the below formula:
Precision = true positives / (true positives + false positives).

The second widely utilized evaluation metric for

detecting vulnerabilities is recall, which is defined

as the percentage of all discovered positives

(total relevant results) that were accurately predicted

using the below formula:

Recall = true positives / (true positives + false negatives).

When the detection model predicts a security vulnerability that

doesn't exist, it's called a false positive which is the third most

commonly used evaluation metric. A false negative is the

polar opposite of the FP, implying that there is no

vulnerability when, in reality, there is,

which is the fourth most commonly used evaluation metric.

D. Granularity level

Because it's important to determine not only whether the

software is vulnerable or not, but also to pinpoint where the

vulnerabilities are located. Several reviewed works used

function granularity for vulnerability detection [37] [38] [45]

[59] and they have identified the reliance on it as a drawback

as it is unsatisfactory and inaccurate. Other studies to work on

finer granularity as code slice [20] [35] [43] [50]. As a result,

pinpointing the exact position of vulnerabilities inside the

functions becomes more challenging.

E. Feature-Extraction Approach

By applying Machine learning-based techniques to detect

vulnerabilities, features can be developed automatically [35]

[36] [37], eliminating the need for human experts to manually

define the features, which frequently overlooks many

vulnerabilities. In addition to one of the primary studies used

code metrics for defining code characteristics [20].

F. Challenges and Issues

The most common challenges and problems of reviewed

papers are explained as follows:

1) Type of vulnerabilities

Studies experiments focus on a few types of vulnerability

syntax characteristics based on the used datasets which affect

the overall coverage as the datasets might not have been

reflective of real-world software products. For instance,

Mohammed et al. [20] worked on only one kind of

vulnerability, and Zhen et al. [43] focused on four kinds. Zhen

et al. [35] Worked on function calls only. More

comprehensive vulnerability syntactic characteristics will need

to be identified in future research.

2) Dataset labelling

Some studies used a static analyzer for labeling the dataset

[59] and others added it manually, which result in a mislabeled

dataset and affected the result accuracy. These studies

highlighted that as a limitation, and it is necessary to improve

the labeling strategy for reliable results.

https://cve.mitre.org/cve/

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

6

3) Single model

Experiments in state-of-the-art studies focus on employing a

single model to discover several types of vulnerabilities.

4) Vulnerability localization

For detecting vulnerabilities, the reviewed studies used

function and slice level detection, which might need to be

enhanced to pin down the location more precisely where a

vulnerability resides.

5) Model Selection

For the same data, different deep learning models have

varying learning capacities, therefore determining which

model is best for learning feature data and dealing with

software security defects require more research.

6) Programming language

Almost all the research studies use the same programming

language which is C/C++ to detect vulnerability in data sets.

Many papers have mentioned that as a shortcoming that

should be investigated more in the future to use other

programming languages.

Figure 3 presents the classification of studies over various

digital sources.

Fig. 3. Primary studies classification

Following the answers to research questions listed earlier in

Section 2.1. RQ1 is investigating the datasets that are used by

researchers to train and test the vulnerability detection models

in their studies. Most primary studies used Software

Assurance Reference Dataset (SARD) [52] and National

Vulnerability Database (NVD) [41] which are public and free

access datasets. RQ2 concerns machine learning techniques,

which are frequently used to build vulnerability detection

models and the result shows that three techniques are

significantly used in the automated detection of

vulnerabilities. The first one is a machine learning technique

Multi-Layer Perceptron (MLP) and the other two techniques

are deep learning neural networks techniques Convolutional

Neural Network (CNN) and Recurrent Neural Network

(RNN). Other kinds of neural networks that could be used for

vulnerability detection need to be applied. RQ3 is related to

the granularity level of source code to represent the program

that is used to extract the features of the vulnerabilities. Some

primary studies worked on function level and the others tried

to work with finer granularity level to pin down the precise

location of the vulnerabilities using slice level. The result for

RQ4 which analyses the feature extraction method used, and

by using the automatic analysis of deep learning and machine

learning methods for the detection of vulnerabilities the

features are extracted automatically. RQ5 is about the applied

evaluation metrics to evaluate vulnerability detection models,

which are false-positive rate, false-negative rate, precision,

recall, and F1 Score.

VIII. CONCLUSION AND FUTURE WORK

Machine Learning and deep learning technologies have

paved the way for researchers to investigate possible software

security flaws, and several automated methods have been

proposed as a result. Recently, automatic detection of security

vulnerabilities has become an important research area. In this

study, we reviewed and analyzed the recent existing studies of

software vulnerability detection based on deep learning and

machine learning techniques. We worked on 12 primary

studies between 2017 and 2021. Additionally, the SLR

summarizes these primary studies based on the used datasets,

ML or DL techniques, granularity level, feature extraction

approach, and evaluation metrics. The key findings are

summarized as follows:

 Most primary studies worked on NVD and SARD

datasets, and others used open-source programs.

 CNN, RNN, and MLP were the most commonly

used ML and DL techniques for vulnerability

detection in primary studies

 Most primary studies were working on the slice

level of granularity, and others worked on the

function level.

 Vulnerable code features could be extracted

automatically without the need for human experts

when applying deep learning and machine

learning techniques.

 Precision, recall, false-positive rate, and false-

negative were the most commonly used evaluation

metrics in the primary studies.

All previously discussed deep learning and machine learning

models for detecting software vulnerabilities have some gaps

that require further improvements in future studies as follows:

 Most of the above-mentioned studies’ experiments

focus only on one or a few kinds of vulnerability

syntax characteristics

 Datasets in some studies are not real-

world software and are not sufficient in some

other studies which affect the result.

 Algorithms used for generating syntactic and

semantic information for vulnerability detection

needs more improvement to provide more

information.

 Applying a single model to detect multiple kinds

of vulnerabilities.

https://www.hindawi.com/journals/scn/2020/8858010/fig1/

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

7

TABLE I

A SUMMARY OF STATE-OF-THE-ART STUDIES

REFERENCE USED

DATASETS

SOURCE

NAME

ML/DL

TECHNIQUES

EVALUATION

METRICS

GRANULARITY

LEVEL

FEATURE-

EXTRACTION

APPROACH

CHALLENGES

AND ISSUES

(Rebecca et al.,

2018) [59]

Debian, The

Juliet

Test Suite

programs, and

open source

projects from

GitHub

IEEE

Xplore

CNN,

RNN,

RF

Precision, recall

, and false-

positive rate

Function-level Automatically

learned features

Dataset labels and

Vulnerability

detection

localization

(Zeki et al., 2020)

[45]

Open-source

projects and

NVD

IEEE

Xplore

MLP Precision,

recall, and F1

Score

Function-level Automatically

learned features

Vulnerability

detection

localization

(Zhen et al., 2021)

[43]

NVD,

SARD

IEEE

Xplore

RNN,

CNN,

DBN

False-positive

rate, false-

negative rate,

and precision

Slice-level Automatically

learned features

Vulnerability

syntax

characteristics,

dataset,

programing

language, and

single model

(Mohammed et

al., 2020) [20]

SeVC

and SyVC

Dataset

IEEE

Xplore

MLP,

RNN

False-positive

rate, false-

negative rate,

and precision

Slice-level Code Metrics Types of

vulnerabilities,

code metrics and

model architecture

(Zhen et al., 2018)

[35]

NVD,

SARD

Other

conference

RNN False-positive

rate, false-

negative rate,

and precision

Slice-level Automatically

learned features

Types of

vulnerabilities,

control

flow analysis, and

Programing

language

(Deqing et al.,

2019) [36]

NVD,

SARD

IEEE

Xplore

RNN False-positive

rate, false-

negative rate,

and F1 Score

Slice-level Automatically

learned features

Types of

vulnerabilities,

Vulnerability

detection

localization, and

Programing

language

(Guanjun et al.,

2017) [37]

Open-source

projects

ACM RNN recall Function-level Automatically

learned features

Dataset size,

vulnerability

detection

localization, and

(Guanjun et al.,

2020) [51]

SARD Springer

Link

CNN,

RNN,

DNN

Precision, recall Function-level Automatically

learned features

dataset labels

(Zhen et al., 2021)

[48]

NVD,

SARD

IEEE

Xplore

BRNN false positive

rate, false

negative

rate,Precision,F

1 Score

Slice-level Automatically

learned features

Dataset and

Programing

language

(Ning et al., 2020)

[50]

NVD,

SARD

Springer

Link

RNN false positive

rate, false

negative

rate,Precision,re

call,F1 Score

Slice-level Automatically

learned features

DL Model and

complex

vulnerabilities

(Runhao et al.,

2019) [38]

NVD,

Open source

programs

IEEE

Xplore

RNN F2-score, false-

positive

rate, recall, and

precision

Function-level Automatically

learned features

Inaccurate and

false results

(Xiao et al., 2021)

[56]

NVD,

SARD

ACM GNN False-positive

rate, false-

negative rate,

and F1 Score

Slice-level Automatically

learned features

Dataset and

programing

language

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

8

REFERENCES

[1] C. Williams, "Anatomy of OpenSSL’s Heartbleed: Just four bytes

trigger horror bug," April 2014. [Online]. Available:

https://www.theregister.com/2014/04/09/heartbleed_explained/.

[2] "CVE website," [Online]. Available: https://cve.mitre.org.

[3] "A Redscan report , ‘NIST security vulnerability trends in 2020: an

analysis’," [Online]. Available:

https://www.redscan.com/media/Redscan_NIST-Vulnerability-

Analysis-2020_v1.0.pdf.

[4] D. A. Ramos and D. Engler, "Under-constrained symbolic execution:

Correctness checking for real code," in Proc. USENIX Secur. Symp.,

2015.

[5] C. D. Sestili, W. Snavely and N. M. VanHoudnos, "Towards security

defect prediction with AI," 2018.

[6] D. Votipka, R. Stevens, E. Redmiles, J. Hu and M. Mazurek, "Hackers

vs. Testers: A comparison of software vulnerability discovery

processes," IEEE Symp. Secur. Privacy (SP), p. 374–391, 2018.

[7] Y. J. Lee, S.-H. Choi, C. Kim and K.-W. Park, "Learning binary code

with deep learning to detect software weakness," in Proc. KSII 9th Int.

Conf. Internet Symp. (ICONI), 2017.

[8] G. McGraw, "Automated code review tools for security," IEEE

Computer, 2008 .

[9] I. V. Krsul, "Software vulnerability analysis," no. PhD dissertation,

Purdue University, West Lafayette., 1998.

[10] B. Johnson, Y. Song, E. Murphy-Hill and R. Bowdidge, "Why don’t

software developers use static analysis tools to find bugs?," in in

Proceedings of the 2013 International Conference on Software

Engineering, 2013.

[11] B. Liu, L. Shi, Z. Cai and M. Li, "Software Vulnerability Discovery

Techniques: A Survey," in 2012 Fourth International Conference on

Multimedia Information Networking and Security, 2013.

[12] S. Kim, S. Woo, H. Lee and H. Oh, "VUDDY: A scalable approach

for vulnerable code clone discovery," in Proceedings of the 38th IEEE

Symposium on Security and Privacy, 2017.

[13] Z. Li, D. Zou, S. Xu and H. Jin, "VulPecker: An automated

vulnerability detection system based on code similarity analysis," in

Proceedings of the 32nd Annual Conference on Computer Security

Applications. ACM, p. 201–213, 2016.

[14] "FlawFinder," 2018. [Online]. Available:

http://www.dwheeler.com/flawfinder.

[15] "Rough Audit Tool for Security," 2014. [Online]. Available:

https://code.google.com/.

[16] "Checkmarx," 2018. [Online]. Available:

https://www.checkmarx.com/.

[17] F. Yamaguchi, "Pattern-based vulnerability discovery," Ph.D.

dissertation, University of G¨ottingen, 2015.

[18] M. Zagane and M. K. Abdi, "Evaluating and comparing size,

complexity and coupling metrics as Web applications vulnerabilities

predictors," Int. J. Inf. Technol. Comput. Sci, vol. 11, pp. 35-42, 2019.

[19] I. Chowdhury and M. Zulkernine, "Can complexity, coupling, and

cohesion metrics be used as early indicators of vulnerabilities?," Proc.

ACM Symp. Appl. Comput. (SAC), p. 1963, 2010.

[20] M. Zagane, M. K. Abdi and M. Alenezi, "Deep Learning for Software

Vulnerabilities Detection Using Code Metrics," IEEE Access , vol. 8,

pp. 74562 - 74570, 17 April 2020.

[21] H. Alves, B. Fonseca and N. Antunes, "Experimenting machine

learning techniques to predict vulnerabilities," In Dependable

Computing (LADC), pp. 151-156, 2016.

[22] F. Yamaguchi, A. Maier, H. Gascon and K. Rieck, "Automatic

Inference of Search Patterns for Taint-Style Vulnerabilities," IEEE

Symposium on Security and Privacy, 2015.

[23] S. M. Ghaffarian and H. R. Shahriari, "Software Vulnerability

Analysis and Discovery Using Machine-Learning and Data-Mining

Techniques: A Survey," ACM Computing Surveys, 2017.

[24] C. Catal, A. Akbulut, S. Karakatič, M. Pavlinek and V. Podgorelec,

"Can we predict software vulnerability with deep neural network?,"

2016.

[25] X. Yang, D. Lo, X. Xia, Y. Zhang and J. Sun, "Deep learning for just-

in-time defect prediction," in Proceedings of IEEE International

Conference on Software Quality, Reliability and Security,Vancouver,

BC, Canada, p. 17–26, 2015.

[26] T. L. a. L. T. S. Wang, "Automatically Learning Semantic Features for

Defect Prediction," in 2016 IEEE/ACM 38th International Conference

on Software Engineering (ICSE), 2017.

[27] C. Manjula and L. Florence, "Deep neural network based hybrid

approach for software defect," Cluster Comput 22, p. 9847–9863,

2018.

[28] J. Li, P. He, J. Zhu and M. R. Lyu, "Software Defect Prediction via

Convolutional Neural Network," in International Conference on

Software Quality, Reliability and Security (QRS), Prague, Czech

Republic, 2017.

[29] S. Wang, T. Liu and L. Tan, "Automatically Learning Semantic

Features for Defect Prediction," in 2016 IEEE/ACM 38th International

Conference on Software Engineering (ICSE), 2017.

[30] X. Huo, M. Li and Z.-H. Zhou, "Learning unified features from natural

and programming languages for locating buggy source code," in

Proceedings of the 25th International Joint Conference on Artificial

Intelligence, New York, USA, p. 1606–1612, 2016.

[31] M. White, C. Vendome, M. Linares-Vasquez and D. Poshyvanyk,

"Toward deep learning software repositories," Mining Software

Repositories, p. pp. 334–345, 2015.

[32] C. R. Shin, D. Song and R. Moazzezi, "Recognizing functions in

binaries with neural networks," in 2015, Washington , D.C., USA,

Proceedings of the 24th USENIX Security Symposium.

[33] C. L. Q. F. H. Y. L. S. a. D. S. X. Xu, "Neural network-based graph

embedding for cross-platform binary code similarity detection," ACM

SIGSAC Conference on Computer and Communications Security, p.

pp. 363–376, 2017.

[34] M. White, M. Tufano, C. Vendome and D. Poshyvanyk, "Deep

learning code fragments for code clone detection," in Proceedings of

the 31st IEEE/ACM International Conference on Automated Software

Engineering, Singapore, 2016.

[35] Z. Li, D. Zou, S. Xu and X. Ou, "VulDeePecker: A deep learning-

based system for vulnerability detection," in Proceedings of the 25th

Annual Network and Distributed System Security Symposium

(NDSS’18), 2018.

[36] D. Zou, S. Wang, S. Xu, Z. Li and H. Jin, "μVulDeePecker: A deep

learning-based system for multiclass vulnerability detection," IEEE

Trans. Dependable Sec. Comput., p. 1–1, 2019.

[37] G. Lin, J. Zhang, W. Luo and L. Pan, "POSTER: Vulnerability

discovery with function representation learning from unlabeled

projects," in Proceedings of 2017 ACM SIGSAC Conference on

Computer and Communications Security, Dallas, TX, USA, p. 2539–

2541, 2017.

[38] R. Li, C. Feng, X. Zhang and C. Tang, "A Lightweight Assisted

Vulnerability Discovery Method Using Deep Neural Networks," IEEE

Access, vol. 7, pp. 80079 - 80092, June 2019.

[39] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P.

Ellingwood and M. McConley, "`Automated vulnerability detection in

source code using deep representation learning,''," in 2018 17th IEEE

International Conference on Machine Learning and Applications

(ICMLA), Dec. 2018.

[40] "Software Assurance Reference Dataset," 2018. [Online]. Available:

https://samate.nist.gov/SRD/index.php.

[41] "NVD," [Online]. Available: https://nvd.nist.gov/.

[42] "VulDeePecker Dataset," [Online]. Available:

https://github.com/CGCL-codes/VulDeePecker.

[43] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu and Z. Chen, "SySeVR: A

Framework for Using Deep Learning to Detect Software

Vulnerabilities," IEEE Transactions on Dependable and Secure

Computing (Early Access), pp. 1 - 1, 13 January 2021.

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

9

[44] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu and Z. Chen, "SeVC and SyVC

Dataset. [Online].," 2018. [Online]. Available: Available:

https://github.com/SySeVR/SySeVR/.

[45] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak and L.

Karaçay, "Vulnerability Prediction From Source Code Using Machine

Learning," IEEE Access, vol. 8, pp. 150672 - 150684, 2020.

[46] Y. Shin, A. Meneely, L. Williams and J. A. Osborne, "Evaluating

complexity,code churn, and developer activity metrics as indicators of

software vulnerabilities,," IEEE Trans. Softw. Eng., vol. 37, pp. 772-

787, 2011.

[47] L. Williams and Y. Shin, "An empirical model to predict security

vulnerabilities using code complexity metrics," Proc. 2nd ACM-IEEE

Int. Symp. Empirical Softw. Eng. Meas. (ESEM), p. 315, 2008.

[48] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu and H. Jin, "VulDeeLocator: A

Deep Learning-based Fine-grained Vulnerability Detector," IEEE

Transactions on Dependable and Secure Computing (Early Access),

pp. 1 - 1, 2021.

[49] "VulDeeLocator Dataset," [Online]. Available:

https://github.com/VulDeeLocator/VulDeeLocator.

[50] N. Guo, X. Li, H. Yin, Y. Gao, J. Zhou, X. Luo, Q. Shen and Z. Xu,

"VulHunter: An Automated Vulnerability Detection System Based on

Deep Learning and Bytecode," Information and Communications

Security, pp. 199-218, 2020.

[51] G. Lin, W. Xiao, J. Zhang, Y. Xiang, J. Zhou, X. Luo, Q. Shen and Z.

Xu, "Deep Learning-Based Vulnerable Function Detection: A

Benchmark," Information and Communications Security, pp. 219-232,

2020.

[52] "Software Assurance Reference Dataset," [Online]. Available:

https://samate.nist.gov/SRD/index.php.

[53] "Wikipedia. [n.d.]. SandWorm," 15 August 2019 . [Online]. Available:

https://www.cvedetails.com/cve/CVE-2014-4114.

[54] "Wikipedia. [n.d.]. DirtyCow," 15 August 2019 . [Online]. Available:

https://en.wikipedia.org/wiki/Dirty_COW.

[55] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification

with deep convolutional neural networks," in Advances in Neural

Information Processing Systems,, p. 1097–1105, 2012.

[56] X. Cheng, H. Wang, J. Hua, G. Xu and Y. Sui, "DeepWukong:

Statically Detecting Software Vulnerabilities Using Deep Graph

Neural Network," ACM Transactions on Software Engineering and

Methodology, vol. 30, p. 1–33, 2021.

[57] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A.

Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath and B. Kingsbury,

"Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups," IEEE Signal Processing

Magazine, vol. 29, p. 82–97, 2012.

[58] Y. Shin and L. Williams, "Can traditional fault prediction models be

used for vulnerability prediction?," Empirical Software Engineering,

vol. 18, p. 25–59, 2013.

[59] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P.

Ellingwood and M. McConley, "`Automated vulnerability detection in

source code using deep representation learning,''," in 2018 17th IEEE

International Conference on Machine Learning and Applications

(ICMLA), Dec. 2018.

