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Abstract— Software vulnerabilities are security flaws, defects, 

or weaknesses in software architecture, design, or implementation. 

With the explosion of open source code available for analysis, there 

is a chance to learn about bug patterns that can lead to security 

vulnerabilities to assist in the discovery of vulnerabilities. Recent 

advances in deep learning in natural language processing, speech 

recognition, and image processing have demonstrated the great 

potential of neural models to understand natural language. This 

has encouraged researchers in the cybersecurity sector and 

software engineering to utilize deep learning to learn and 

understand vulnerable code patterns and semantics that indicate 

vulnerable code properties. In this paper, we review and analyze 

the recent state-of-the-art research adopting machine learning and 

deep learning techniques to detect software vulnerabilities, aiming 

to investigate how to leverage neural techniques for learning and 

understanding code semantics to facilitate vulnerability detection. 

From this paper's results, 12 primary studies were found from the 

search processes. 7 out of them were published in IEEE, 2 were 

published in ACM, 2 were published in Springer and the rest of 

them were published in different conferences and journals. Most 

primary studies worked on NVD and SARD datasets, and others 

used open-source projects. Results show that machine learning 

and deep learning techniques give promising results in the 

automatic detection of vulnerabilities, but there are still some gaps 

in existing models that need to be addressed in future research. 

 
Index Terms—Software vulnerabilities, vulnerability detection 

, machine learning, deep learning, program analysis. 

 

I. INTRODUCTION 

ith the rapid advancement of information technology, 

software is becoming increasingly vital in a wide range 

of fields around the world. Simultaneously, possible 

software security vulnerabilities are rising as a global 

challenge. One of the main reasons for security issues is 

software vulnerabilities. Recent history is full of examples, 

e.g., the infamous Heartbleed vulnerability was triggered by  

two missing lines of code [1]. Because of the widespread 

usage of open-source software and code reuse, these flaws are  

frequently caused by programming errors and can quickly 

propagate. 

Vulnerabilities remain a big issue in spite of academic and 

industry attempts to improve software quality. This is 

demonstrated by the fact that numerous vulnerabilities are 

reported each year in the Common Vulnerabilities and 

Exposures (CVE) [2]. 

According to the Common Vulnerabilities and Exposures 

(CVE) organization's statistics and the National Vulnerability 

Database (NVD) Report [3], The number of vulnerabilities 

recorded in a single year has never been higher than in 2020 

(18,103). It can be seen from Figure 1 that the number of 

vulnerabilities has reached its peak in the past three years. 

 

 
Fig. 1.  CVE number by year: 1988-2020 

 

 
Fig. 2. CVEs reported by year: 2010 vs. 2020 

 

Figure 2 depicts the rate of change, as demonstrated by the 

fact that in 2020 (10,342) there were more critical and high 
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severity vulnerabilities than in 2010. (4,639, including low, 

medium, high, and critical). 

 

Resolving vulnerabilities discovered after software 

release is much more expensive than fixing them during 

development. Knowing that there are three types of code 

analysis approaches for detecting vulnerabilities: static, 

dynamic, and hybrid. Static techniques that depend on the 

source code without executing it, such as rule-based 

analysis, symbolic execution [4], and code similarity 

detection. Hence false-positives vulnerabilities may be 

reported. However, this method often struggles to reveal 

vulnerabilities that can occur during runtime. Dynamic 

methods focused on vulnerability detection that occurs 

during program execution. Dynamic analysis cannot 

analyze the behavior of a program as a whole because there 

is often an infinite amount of input and execution state, as 

taint analysis and fuzzing. They have low-code coverage 

since it's feasible to miss some vulnerabilities in invisible 

program states. Hybrid techniques combine static and 

dynamic analysis techniques to overcome the 

aforementioned shortcomings. 

 

The structure of this article is as follows: Second 

section presents the used research methodology. The third 

section provides some background knowledge of different 

definitions of software vulnerability summarized from 

previous studies. Then, the related work of prior studies for 

vulnerability detection is discussed. Section four discusses 

machine learning-based vulnerability detection techniques. 

Section five discusses vulnerability detection techniques 

based on deep learning. Section six reviews and analyzes 

the state-of-the-art studies according to used techniques, 

datasets, and limitations. The results of the study are 

discussed in section seven. Finally, the last section 

concludes this paper and provides future work 

recommendations.  

II. RESEARCH METHODOLOGY 

 

To study software vulnerability detection models, the 

systematic literature review (SLR) methodology is 

followed. To answer the review questions below, the SLR 

includes reviewing, investigating, and evaluating the 

existing research work. 

A. Review Questions (RQs) 

Research questions are presented here to assess and 

review the primary studies. 
 

RQ1: What data sets were utilized to detect software 

vulnerabilities? 

RQ2: Which machine learning techniques have been 

used for software vulnerabilities detection? 

RQ3: What level of granularity is used to extract 

features? 

RQ4: What feature extraction methods are used? 

RQ5: What are the evaluation metrics used for 

vulnerabilities detection models? 

 

B. Review Protocol 

 

The procedure of the study search consisted of selecting 

digital sources, constructing a search string, doing an initial 

search, and then retrieving a collection of primary studies  

from digital sources. 
 

Digital Sources Selection 

 
Many searches were conducted to locate and select the most 

relevant research papers relative to the research questions. The 

following are the used online sources: 
 

 IEEE Xplore 

 Springer Link 

 ACM 

 Other journals & conferences  

Search Strings Construction 

 

After selecting the sources, the search string needs to be 

constructed to perform a comprehensive search to select the 

most relevant search studies to the topic as follows:  
 

 (Vulnerability OR Software Vulnerability) AND 

(Detection OR Automatic Detection OR Discovery) 

AND (Machine Learning OR Deep Learning OR 

Deep Neural Networks) 

 (Automatic AND Vulnerability AND Detection OR 

Discovery) OR (Automatically AND Detect AND 

Vulnerabilities) OR (Automated AND Vulnerability 

AND Detection) AND (Machine Learning OR Deep 

Learning) 

Inclusion and Exclusion Criteria 
 

Search strings are used to retrieve all available research papers 

in the digital sources mentioned above. In order to select the 

primary studies from the initial search result, inclusion and 

exclusion criteria were designed. 
 

Inclusion criteria: 

 the text is written in the English language. 

 relevant to the detection of software vulnerabilities. 

 a paper that has been published in a journal or at a 

conference. 

 publications that have been peer-reviewed. 

Exclusion criteria: 

 research studies that are irrelevant to the search 

string. 

 without any empirical research or results. 

 outdated search papers. 
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 the structure of the study is disorganized. 

 

Using the search strings, we acquired a huge number of papers 

as preliminary studies from digital sources. Then, using the 

above-mentioned exclusion and inclusion criteria, we chose 

the primary studies based on the title, abstract, and keywords. 

III. BACKGROUND 

 

A. Software Vulnerability: Different definitions 

Software security vulnerabilities (short for vulnerabilities), 

also known as security defects [5], security bugs [6], and 

software weaknesses [7], are described by the Mitre 

organization in charge of the Common Vulnerability and 

Exposures (CVE) dictionary as a: 
 “A flaw in the computational logic, such as code, is identified 

in software and hardware components that, when exploited, 

has a detrimental influence on confidentiality, integrity, or 

availability.” [2]. Among various vulnerabilities, code-based 

vulnerabilities are the reason for most exploits. [8] (Software, 

data, or commands that may cause a violation of security 

policy [9]). 

“An instance of an error in the specification, development, or 

configuration of software that allows its execution to violate a 

security policy” is what a software vulnerability is [9]. 

National Institute of Standards and Technology (NIST):  

“A threat source could exploit or cause a weakness in an 

information system, system security procedures, internal 

controls, or implementation.”. 
 

B. Prior studies related to vulnerability detection. 

 

Vulnerability detection is a technique for detecting flaws in 

the software. Traditional vulnerability detection methods rely 

on human involvement and are prone to false positives and 

negatives [10] [11]. It requires a significant amount of time 

and effort from domain experts to generate handcrafted 

features to identify vulnerable code. These handcrafted 

features frequently fail to capture program semantic and 

structural information. 

 

There are two methods for source code-based static 

vulnerability detection: code similarity-based and pattern-

based. Code similarity-based detectors can only detect 

vulnerabilities incurred by code cloning as VUDDY [12] and 

VulPecker [13]. 

 
VUDDY and VulPecker both have high false-negative rates of 

18.2 % and 38 %, respectively. 

 

There are three steps to the code similarity-based technique. 

Breaking down a program into code portions is the first step. 

Tokens, trees, and graphs are instances of code snippets that are 

abstractly represented in the second stage. The third step is to 

determine the similarity between code snippets using the 

abstract representations established in the previous phase. 

 
Pattern-based methods, which can be further subdivided into 

rule-based and machine learning-based methods. 

 

In rule-based methods, vulnerability detection is dependent on 

rules that are usually generated manually by human experts. 

(E.g., Flawfinder [14], RATS [15], Checkmarx [16]). These 

tools often have high false-positive rates and/or high false-

negative rates [17]. 

 
Thus, it's important to combine program analysis technologies 

with machine learning to help software security research 

enhance automated vulnerability detection is being developed. 

IV. MACHINE LEARNING-BASED VULNERABILITY DETECTION 

 

One of the key research directions is to develop intelligent 

vulnerability detection techniques that act on source code. The 

following three sub-categories can be found: vulnerability 

detection methods based on software metrics [18] [19] [20] 

[21], anomaly detection technique for detecting vulnerabilities 

by looking for abnormal patterns [22], and vulnerable pattern 

learning [23]. 

 

The intelligent vulnerability detection approaches make use of 

software syntax and semantic information to enhance 

detection performance. 

V. DEEP LEARNING-BASED VULNERABILITY DETECTION 

 

In the past few years, deep learning has received a lot of 

attention. Deep learning is a subset of machine 

learning in artificial intelligence (AI) which mimics the human 

brain's neuronal network. Deep learning models build a 

network that resembles the nervous system in the human body. 

It imitates the thought mechanism of humans. Deep learning is 

a network of nodes, each of which functions as a neuron. 

Deep learning has recently sparked a surge of interest in the 

field of software engineering. In recent studies, deep learning 

technology was used to investigate automated intelligent 

software security analysis. To extract features, the researchers 

used techniques inspired by previous DL applications, such as 

automated language processing. 

 
A Deep Neural Network (DNN) consists of an input layer, an 

output layer, and some hidden layers between them. This 

network is capable of handling not only unstructured and 

unlabeled data, but also non-linearity. One of the most 

significant benefits of using neural networks is their ability to 

learn features on their own. [24]. 
 
It’s crucial to highlight that deep learning techniques have 

been widely used to discover software weaknesses. It is 

applied to the fields of the prediction of defects [25] [26] [27] 

[28] [29], finding erroneous source code [30], program 

analysis [31] [32] [33], code clone detection [34], , 
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recognizing functions in binaries [32] and recently it has been 

used in software security vulnerability detection [24] [35] [36] 

[37] successfully. 

VI. STATE-OF-THE-ART STUDIES 

 

In this section, we review and analyze the state-of-the-art 

studies in vulnerability detection using machine learning and 

deep learning where research questions are tackled: 

 

Guanjun et al. [37] Proposed POSTER, an approach for 

function-level vulnerability detection on cross-project 

domains. They used Abstract Syntax Tree (AST) for function 

representation. To capture the features in a function, they used 

Bidirectional Long Short-Term Memory (BLSTM). 

Runhao et al. [38] Presented an approach for detecting 

vulnerabilities using Bidirectional Long Short-Term Memory 

(BLSTM) based on the extraction of semantics features of 

function names from the intermediate representation of source 

code to distinguish between vulnerable and secure functions. 

They worked on CVE entries reported from 2008 to 2018 and 

selected eligible function names from vulnerabilities 

information. The approach is able to detect multiple kinds of 

vulnerabilities and reduced the false-positive rate. 

 
Rebecca et al. [39] Proposed a system for vulnerability 

detection based on machine learning using the function-

granularity level. They developed a special lexer 

representation intended to capture the relevant meaning of 

critical tokens from the raw source code of each function. 

They used a labeled dataset by static analysis tools which are 

collected from several open-source projects and Assurance 

Reference Dataset (SARD) [40] and they used Ensemble 

learning on neural representations based on Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) to extract valuable features. 

 
Zhen et al. [35] Presented VulDeePecker, which is classified as 

a pattern-based method for detecting vulnerabilities. 

VulDeePecker is the first system showing the feasibility of 

utilizing deep learning to discover vulnerabilities at the 

granularity level of API function calls. To represent the 

program, it uses code gadgets. At the beginning, the program is 

converted to intermediate representation to sustain the 

dependency between program elements and finally, this 

intermediate representation is converted to vectors which are 

the deep neural network's required input. The results showed 

that VulDeePecker achieved significantly fewer false-negative 

rates than other methods. VulDeePecker dataset is derived from 

both the National Vulnerability Database (NVD) [41] and the 

Software Assurance Reference Dataset (SARD) [40] and it is 

available at [42]. Although the code gadget paradigm allows for 

data and control dependencies, it's worth mentioning that 

VulDeePecker only provides data flow analysis but can’t 

support control flow analysis. 

 

Deqing et al. [36] Presented µVulDeePecker, the first system 

based on deep learning to find vulnerabilities in multiclass 

which extends VulDeePecker [35] work. µVulDeePecker 

accommodates not only data dependence but also control 

dependence which leads to higher effectiveness in multiclass 

vulnerability detection. µVulDeePecker dataset is derived 

from both SARD [40] and NVD [41]. 
 

Zhen et al. [43] Proposed SySeVR, the first system that used 

deep learning for vulnerability detection in the source code of 

the program in the slice-granularity level which is finer than 

presented in VulDeePecker. The focus of the research is to 

obtain a representation of the program that can contain both 

the syntax and semantic information related to the 

vulnerability. SySeVR dataset is derived from both NVD [41] 

and SARD [40] and it is available at [44]. SySeVR overcomes 

the weaknesses of VulDeePecker mentioned above by 

working on semantic information caused by data and control 

dependence. 

 
Zeki et al. [45] Proposed a machine learning-based model for 

predicting vulnerabilities from the program code by using 

Multi-Layer Perceptron (MLP) algorithm and based on 

Abstract Syntax Tree (AST) for source code representation to 

extract the features to be able to perform intelligent analysis 

and distinguish between vulnerable and invulnerable code 

fragments. The code fragment is function-granularity level. 

Resulted AST of the source code fragment is converted into a 

numerical array representation to keep the syntactic and 

semantic relations of the source code fragments. The used 

dataset in this study is collected from several open-source 

projects and NVD [41]. 

 

Some of the prior studies in the field of vulnerability detection 

tried to evaluate theories that are a correlation between 

software characteristics: complexity, coupling, etc. [19] [46] 

[47] [18]. Mohammed et al. [20] Aim to use code metrics as 

features to detect software vulnerabilities based on deep 

learning with a fine granularity level. The findings showed 

that code metrics are good, but not ideal to be used as features 

in DL-based vulnerability detection. This approach is applied 

only for one type of vulnerabilities 

 
Zhen et al. [48] Propose VulDeeLocator, the first deep 

learning-based vulnerability detector from source code that 

can achieve a high vulnerability locating precision and high 

detection capability as they introduced the notion of 

granularity refinement to locate the vulnerable lines of code 

using Bidirectional Recurrent Neural Network (BRNN). In 

comparison to the state-of-the-art detector [43],  
VulDeeLocator improved the vulnerability detection F1-

measure, false-positive rate, and false-negative rate by 9.8 %, 

7.9 %, and 8.2 %, respectively, as well as the vulnerability 

locating precision by 4.2X. VulDeeLocator dataset is 

combined from both (NVD) and (SARD) datasets and its 

dataset is available at [49]. 

 

Ning et al. [50] Presented VulHunter, a system to detect 

vulnerabilities based on bytecode using deep learning. 

VulHunter is the first system to detect vulnerabilities in source 

code using bytecode features. They worked only on two types 

of vulnerabilities: SQL injection and Cross-Site Scripting. 
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VulHunter outperformed prior approaches in terms of false-

positive rate and false-negative rate. VulHunter calculates the 

resemblance between the target software and the vulnerability 

template, unlike earlier studies that directly decide if the target 

software contains vulnerabilities. However, they are incapable 

of detecting complex vulnerabilities. 

 

Guanjun et al. [51] Suggest a vulnerability detection 

benchmarking framework. This system provides six common 

neural network models as well as two distinct code embedding 

approaches, allowing for one-click vulnerability detection 

model creation and testing. The used dataset is collected from 

SARD and real-world vulnerability ground truth dataset 

containing manually labeled vulnerable functions as they are 

working on the function granularity level. 

VII. RESULTS 

 

In this study, we reviewed 12 primary research papers on 

vulnerability detection using both machine learning and deep 

learning techniques that were published from 2017 to 2021.  

Table 1 provides a summary of these studies, which covers the 

below points: 

A. Datasets 

A dataset is a collection of data that is usually related to a 

specific field of study. Seven of the state-of-the-art studies we 

discussed worked on the National Vulnerability Database 

(NVD) dataset [41] in combination with the Software 

Assurance Reference Dataset (SARD) [40], whereas the rest 

relied on either one of them only or open-source projects. 

NVD is a repository of all Common Vulnerabilities and 

Exposures (CVE) [2] records which reached 156468 records. 

SARD is a group of known security weaknesses identified as 

to test cases and test suites. Both datasets have an issue that 

their data may not be representative of real-world software 

products which affect the performance results of many studies. 

Dataset imbalance is a prevalent issue in the majority of the 

reviewed research that results in certain biases in the results. 

 

B. Machine learning techniques 

In the literature, various machine learning and deep learning 

algorithms for vulnerability detection have been introduced. 

The Multi-Layer Perceptron (MLP), Convolutional Neural 

Network (CNN), and Recurrent Neural Network (RNN) were 

used in the majority of the primary studies. Long Short-Term 

Memory (LSTM) and Bidirectional Long Short-Term Memory 

(BLSTM) are examples of applied RNN algorithms. 

 

C. Evaluation Metrics 

Vulnerability detection models should be assessed to see 

how effective and efficient they are. The primary studies that 

reviewed were using a variety of methodologies to assess the 

efficacy of their proposed technique. Precision, recall, false-

positive rate, false-negative rate, and others are all examples 

of measurements. In the primary studies, both false-positive 

rates and false-negative rates were commonly applied. 

The first evaluation metric is precision that measures how 

many results are relevant? Using the below formula: 
Precision = true positives / (true positives + false positives). 

The second widely utilized evaluation metric for  

detecting vulnerabilities is recall, which is defined 

as the percentage of all discovered positives  

(total relevant results) that were accurately predicted 

using the below formula: 

Recall = true positives / (true positives + false negatives). 

When the detection model predicts a security vulnerability that 

doesn't exist, it's called a false positive which is the third most 

commonly used evaluation metric. A false negative is the 

polar opposite of the FP, implying that there is no 

vulnerability when, in reality, there is,  

which is the fourth most commonly used evaluation metric. 

 

D. Granularity level 

Because it's important to determine not only whether the 

software is vulnerable or not, but also to pinpoint where the 

vulnerabilities are located. Several reviewed works used 

function granularity for vulnerability detection [37] [38] [45] 

[59] and they have identified the reliance on it as a drawback 

as it is unsatisfactory and inaccurate. Other studies to work on 

finer granularity as code slice [20] [35] [43] [50]. As a result, 

pinpointing the exact position of vulnerabilities inside the 

functions becomes more challenging. 

 

E. Feature-Extraction Approach 

By applying Machine learning-based techniques to detect 

vulnerabilities, features can be developed automatically [35] 

[36] [37], eliminating the need for human experts to manually 

define the features, which frequently overlooks many 

vulnerabilities. In addition to one of the primary studies used 

code metrics for defining code characteristics [20]. 

 

F. Challenges and Issues 

The most common challenges and problems of reviewed 

papers are explained as follows: 

 

1) Type of vulnerabilities 

Studies experiments focus on a few types of vulnerability 

syntax characteristics based on the used datasets which affect 

the overall coverage as the datasets might not have been 

reflective of real-world software products. For instance, 

Mohammed et al. [20] worked on only one kind of 

vulnerability, and Zhen et al. [43] focused on four kinds. Zhen 

et al. [35] Worked on function calls only. More 

comprehensive vulnerability syntactic characteristics will need 

to be identified in future research. 

 

2) Dataset labelling 

Some studies used a static analyzer for labeling the dataset 

[59] and others added it manually, which result in a mislabeled 

dataset and affected the result accuracy. These studies 

highlighted that as a limitation, and it is necessary to improve 

the labeling strategy for reliable results. 

 

https://cve.mitre.org/cve/
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3) Single model 

Experiments in state-of-the-art studies focus on employing a 

single model to discover several types of vulnerabilities. 

 

4) Vulnerability localization 

For detecting vulnerabilities, the reviewed studies used 

function and slice level detection, which might need to be 

enhanced to pin down the location more precisely where a 

vulnerability resides. 

 

5) Model Selection 

For the same data, different deep learning models have  

varying learning capacities, therefore determining which  

model is best for learning feature data and dealing with  

software security defects require more research. 

 

6) Programming language 

Almost all the research studies use the same programming 

language which is C/C++ to detect vulnerability in data sets. 

Many papers have mentioned that as a shortcoming that 

should be investigated more in the future to use other 

programming languages. 

 

Figure 3 presents the classification of studies over various 

digital sources. 

 
Fig. 3. Primary studies classification 

 

Following the answers to research questions listed earlier in 

Section 2.1. RQ1 is investigating the datasets that are used by 

researchers to train and test the vulnerability detection models 

in their studies. Most primary studies used Software 

Assurance Reference Dataset (SARD) [52] and National 

Vulnerability Database (NVD) [41] which are public and free 

access datasets. RQ2 concerns machine learning techniques, 

which are frequently used to build vulnerability detection 

models and the result shows that three techniques are 

significantly used in the automated detection of 

vulnerabilities. The first one is a machine learning technique 

Multi-Layer Perceptron (MLP) and the other two techniques 

are deep learning neural networks techniques Convolutional 

Neural Network (CNN) and Recurrent Neural Network 

(RNN). Other kinds of neural networks that could be used for 

vulnerability detection need to be applied. RQ3 is related to 

the granularity level of source code to represent the program 

that is used to extract the features of the vulnerabilities. Some 

primary studies worked on function level and the others tried 

to work with finer granularity level to pin down the precise 

location of the vulnerabilities using slice level. The result for 

RQ4 which analyses the feature extraction method used, and 

by using the automatic analysis of deep learning and machine 

learning methods for the detection of vulnerabilities the 

features are extracted automatically. RQ5 is about the applied 

evaluation metrics to evaluate vulnerability detection models, 

which are false-positive rate, false-negative rate, precision, 

recall, and F1 Score. 

VIII. CONCLUSION AND FUTURE WORK 

Machine Learning and deep learning technologies have 

paved the way for researchers to investigate possible software 

security flaws, and several automated methods have been 

proposed as a result. Recently, automatic detection of security 

vulnerabilities has become an important research area. In this 

study, we reviewed and analyzed the recent existing studies of 

software vulnerability detection based on deep learning and 

machine learning techniques. We worked on 12 primary 

studies between 2017 and 2021. Additionally, the SLR 

summarizes these primary studies based on the used datasets, 

ML or DL techniques, granularity level, feature extraction 

approach, and evaluation metrics. The key findings are 

summarized as follows: 

 Most primary studies worked on NVD and SARD 

datasets, and others used open-source programs. 

 CNN, RNN, and MLP were the most commonly 

used ML and DL techniques for vulnerability 

detection in primary studies 

 Most primary studies were working on the slice 

level of granularity, and others worked on the 

function level. 

 Vulnerable code features could be extracted 

automatically without the need for human experts 

when applying deep learning and machine 

learning techniques. 

 Precision, recall, false-positive rate, and false- 

negative were the most commonly used evaluation 

metrics in the primary studies. 

 
All previously discussed deep learning and machine learning 

models for detecting software vulnerabilities have some gaps 

that require further improvements in future studies as follows: 

 Most of the above-mentioned studies’ experiments 

focus only on one or a few kinds of vulnerability 

syntax characteristics 

 Datasets in some studies are not real-

world software and are not sufficient in some  

other studies which affect the result. 

 Algorithms used for generating syntactic and 

semantic information for vulnerability detection 

needs more improvement to provide more 

information. 

 Applying a single model to detect multiple kinds 

of vulnerabilities. 

 

https://www.hindawi.com/journals/scn/2020/8858010/fig1/
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TABLE I 

A SUMMARY OF STATE-OF-THE-ART STUDIES 

      

REFERENCE USED 

DATASETS 

SOURCE 

NAME 

ML/DL 

TECHNIQUES 

EVALUATION 

METRICS 

GRANULARITY 

LEVEL 

FEATURE-

EXTRACTION  

APPROACH 

CHALLENGES  

AND ISSUES 

(Rebecca et al., 

2018) [59] 

Debian, The 

Juliet 

Test Suite 

programs, and 

open source 

projects from 

GitHub 

IEEE 

Xplore 

CNN, 

RNN, 

RF 

Precision, recall 

, and false-

positive rate 

Function-level Automatically 

learned features 

Dataset labels and 

Vulnerability 

detection 

localization 

(Zeki et al., 2020) 

[45] 

Open-source 

projects and 

NVD 

IEEE 

Xplore 

MLP Precision, 

recall, and F1 

Score 

Function-level Automatically 

learned features 

Vulnerability 

detection 

localization 

(Zhen et al., 2021) 

[43] 

NVD, 

SARD 

IEEE 

Xplore 

RNN, 

CNN, 

DBN 

False-positive 

rate, false- 

negative rate, 

and precision 

Slice-level Automatically 

learned features 

Vulnerability 

syntax 

characteristics, 

dataset, 

programing 

language, and 

single model 

(Mohammed et 

al., 2020) [20] 

SeVC  

and SyVC 

Dataset 

IEEE 

Xplore 

MLP, 

RNN 

False-positive 

rate, false- 

negative rate, 

and precision 

Slice-level Code Metrics Types of 

vulnerabilities, 

code metrics and 

model architecture 

(Zhen et al., 2018) 

[35] 

NVD, 

SARD 

Other 

conference 

RNN False-positive 

rate, false-

negative rate,  

and precision 

Slice-level Automatically 

learned features 

Types of 

vulnerabilities, 

control 

flow analysis, and 

Programing 

language 

(Deqing et al., 

2019) [36] 

NVD, 

SARD 

IEEE 

Xplore 

RNN False-positive 

rate, false-

negative rate, 

and F1 Score 

Slice-level Automatically 

learned features 

Types of 

vulnerabilities, 

Vulnerability 

detection 

localization, and 

Programing 

language 

(Guanjun et al., 

2017) [37] 

Open-source 

projects 

ACM RNN recall Function-level Automatically 

learned features 

Dataset size, 

vulnerability 

detection 

localization, and 

(Guanjun et al., 

2020) [51] 

SARD Springer 

Link 

CNN, 

RNN, 

DNN 

Precision, recall Function-level Automatically 

learned features 

dataset labels 

(Zhen et al., 2021) 

[48] 

NVD, 

SARD 

IEEE 

Xplore 

BRNN false positive 

rate, false 

negative 

rate,Precision,F

1 Score 

Slice-level Automatically 

learned features 

Dataset and 

Programing 

language 

(Ning et al., 2020) 

[50] 

NVD, 

SARD 

Springer 

Link 

RNN false positive 

rate, false 

negative 

rate,Precision,re

call,F1 Score 

Slice-level Automatically 

learned features 

DL Model and 

complex 

vulnerabilities 

(Runhao et al., 

2019) [38] 

NVD, 

Open source 

programs 

IEEE 

Xplore 

RNN F2-score, false- 

positive 

rate, recall, and 

precision 

Function-level Automatically 

learned features 

Inaccurate and 

false results 

(Xiao et al., 2021) 

[56] 

NVD, 

SARD 

ACM GNN False-positive 

rate, false- 

negative rate, 

and F1 Score 

Slice-level Automatically 

learned features 

Dataset and 

programing 

language 
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