
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 4 Issue 1, January 2022

(https://fcihib.journals.ekb.eg)

10

RTSIF: Real-Time Scheduling on IoT-Fog

Framework for Managing Applications in Smart

Cities

Hosam E. Refaat1, and Mohamed A. Mead2
1Dept. of Information System

hosam.refaat@ci.suez.edu.eg
2Dept. of Computer Science

mohamedmead@ci.suez.edu.eg

Faculty of Computers and Informatics

Suez Canal University, Egypt.

 The existence of smart cities and the diversity of their

applications has now become a necessity that helps in reducing

costs and managing available resources efficiently. IoT

applications help to expand and support smart cities, as it manages

and monitors devices and acquire rapidly a collection of big data

to benefit from it. Smart cities applications vary in terms of the

types of data generated, the need for quickly data analysis,

response speed, or the need for massive data storage. Fog and mist

computing models provide solutions for all these requirements, as

they can analyze and store big data and interact with IoT devices

quickly and smoothly. In this research a fault tolerant model will

be proposed to support and manage applications in smart cities.

This model relies on three tiers of computing resources (Mist, Fog,

and Cloud). The proposed model distributes processing tasks to

the edge to reduce data latency and support real-time applications

in smart cities. In addition to, the IoT tasks are classified in this

research based on their deadline and the urgency of their

execution. Also, the performance of the proposed model is

measured and compared with three scheduling models, namely;

Min-Min, Credit-Based-Scheduling (CBS) and Earliest-Feasible-

Deadline-First (EFDF). Through comprehensive simulations, the

test measurements obtain improvement in the performance

metrics.

Keywords— Cloud Computing, Fog Computing, Mist

Computing, IoT, Load balancing, Reliability.

I. INTRODUCTION

With the concept of the Internet of Things, a new era of
connecting devices over the Internet to collect, send and receive
data was raised. The architecture of IoT for receiving, storing
and analyzing data is varied, as all of these operations can be
performed on a cloud system [1, 2]. However, because IoT
applications are mostly latency-sensitive applications, the
computing that takes place in cloud computing services is
insufficient for these applications and leads to the failure of these
applications. The most successful solution is to add computing

and storage bits to be close to IoT devices. The concept of fog
computing was introduced to solve a latency problem, but at the
same time it added a burden on designing systems to use the
available resources [3]. Hence, the concept of Mist computing
was introduced to bring computing closer to IoT devices, which
increases the response speed of IoT applications [4,5]. Figure 1
illustrates these computing hierarchy that must be used to
increase the efficiency of IoT Applications. One or more task
can be generated in each request to an IoT Application or IoT

sensor triggering action. These tasks should be allocated in
computation resources. The most of the previous resources
allocation model are suffering from the un-balancing load. Also,
some of these scheduling model is based on the first deadline

mailto:hosam.refaat@ci.suez.edu.eg
mailto:mohamedmead@ci.suez.edu.eg

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

11

first, hence allocate the tasks in the idle machine without
considering the characteristics of the machine and the type of the
IoT application.

Fig. 1. IoT with Mist-Fog-Cloud colony

In this paper, IoT tasks will be divided into two main parts,
the first being non real-time tasks and the second being real-time
tasks [6, 7]. Non real-time tasks such as information mining and
storing data do not require high response speed, as they also
require large storage space in addition to high computing power.
Therefore, it is possible to rely on the cloud layer for executing
this type of IoT tasks. On the contrary, real-time tasks need a
high response speed, and this type of task can be divided into
hard real-time, soft real time and firm real time based on their
urgency [8]. Such example of this type of tasks is the Intelligent
Transportation such as Collect data from roadside sensors and
cameras.

Soft real-time tasks have a deadline without absolute values,
but at the same time there is no system failure or change in
results when a deadline is exceeded. An example of this type is
the face recognition task [9]. On the other hand, hard real-time
tasks adhere strictly to a deadline, as exceeding a deadline leads
to major problems, accidents and system failures such as the
tasks of self-driving cars. Finally, Firm Real-time Tasks are
similar to Hard Real-time Tasks, but a deadline can be allowed
to be exceeded with little probability. An example of this type
of task is video conferencing, where sending data needs a
deadline with a relatively small possibility to bypass this
deadline, which if it happens does not lead to huge problems or
failure for the system as a whole.

This paper proposes a new fault tolerance model called
“RTSIF”. This model has been proposed over Mist-Fog-Cloud
colony for serving the real time applications. The RTSIF has
three objectives. The first objective is to serve the Real time
tasks based on its type (hard, soft and firm). The second
objective is aimed to provide persistent services by building
providing fault-tolerance system. The third objective is
maintaining the workload balanced between the fog nodes.
Moreover, RTSIF maintains the resources of the mist node able
to serve the hard real-time tasks.

II. RELATED WORK

In Edge computing, data processing is done near the edge
where data is generated from IoT devices [10]. In this case,
various applications in smart cities, especially applications that
require real-time data for their operations, benefit from the
proximity of storage and processing places. In [10], an Internet-
scale repository (GigaSight) of crowd-sourced video content is
proposed. Where it relied on small data centers close to IoT
devices that send data, these centers can receive and analyze data
in real time based on the concept of fog computing.

In [11], the authors proposed a platform based on fog
computing to analyze the big data generated by IoT devices. In
this research, IoT data captured from smart homes was analyzed
by fog computing nodes that help in in-time decision making. In
[12], the researchers presented a solution to the parking problem
based on fog computing. Data is collected automatically
(number of vacant spaces and number of vehicles that want to

park) through fog nodes to give drivers real-time information
about the nearest vacant parking spot. On the same approach, the
researchers presented in [13] a system to provide updated
information in real time about the arrival and departure times of
public transport buses through fog nodes.

In [14], a real-time traffic management system based on the
cloudlet layer was introduced to reduce response time.
Information from vehicles and sensors that represent road fog
nodes are collected and analyzed on the cloudlet layer and then
sent to the cloud layer. In [15], fog and mist nodes were used to
bring computing closer to the edge of the Internet of Things
architecture, with decentralization support, which increases the
system's response speed in decision-making.

In [16], the Internet of Healthcare Things (IoHT) framework
is designed to lower healthcare costs while delivering high
quality and reliable services. This framework relied on mist, fog
and cloud layers to allocate and use resources efficiently while
processing data in real time. In this framework, sensitive data is
given priority in its transfer and processing, with policies for
data transfer based on the data source.

Given the resource consumption of IoT devices and the slow
response time of IoT applications, in [17] a framework based on
the concept of mist (a cloud near the earth's surface with lesser
density than fog) is proposed. This framework makes
computation and storage close to the edge of networks, in order
to conserve resources and speed up response time for any IoT
application.

Zoltán [18] introduces a framework that based on three
layers (IoT, fog, cloud). This model introduces different
viewpoints to serve variant disciplines. Unfortunately, this
model doesn’t cover the real time services.

III. PROPOSED MODEL

The proposed model (RTSIF) contains three tiers of computing

resources (Mist, Fog, and cloud). These three tiers and their

interactions with each other in RTSIF model is represented in

figure 2. The first tier (front-end) of the model consists of mist

devices through which users can submit their requests over

different types of communication. This front-end is also called

Mist tier. Briefly, the Mist is a solution for hard-real time IoT

applications, such as firefighting system. This tier is presenting

as interface for serving the IoT devices and user requests. The

IoT devices is connected to the mist nodes via low-latency

network connections to recompense IoT strict constraints on

their resource such as CPU, memory, and, when run, a very

complex application. Hence, the mist tier for this kind of

applications is responsible for interact with the world. The main

scenario for real time application based on two actions, the first

actions is collecting the data from the environment which is

done by the IoT sensors. In other hand, the second action is

done by the mist nodes that controlling the actors which have

an effect on environment. Moreover, this tier improves reply

time for other type of services (non-real-time, soft-real-time

and firm-real-time services) by choosing the most suitable

resources to each type of service requests.

Unfortunately, the front-end tier suffers from limited memory

and computational resources, that forces us to send the complex

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

12

tasks to the second tier which is the near-end fog nodes. The

cloud system is representing the third tier. This tier is dedicated

for the non-real time services which require massive

computations resources.

The Mist tier is specified for the hard-real time applications,

which generated tasks can be classified as “Mist-based” tasks.

Also, the Mist-based class of tasks can include lite firm-real

time applications. The lite firm-real time application required

lite processing power and storage, with a specific QoS. The lite

firm-real time tasks are allocated in the mist nodes, if the

sufficient resource is available, as defined by Equation 1.

Generally, this type of tasks generated by fault-tolerance

applications, which require persistent services, and

computation resources with a negligible delay. In another word,

to have persistent services this tasks should have a hot replica.

Fig. 2. General Overview of RTSIF system.

𝜏𝑀𝑖𝑠𝑡 = {
𝜏ℎ𝑖

 , ∀𝑖

𝜏𝑓𝑗
 , 𝜏𝑓𝑗

. 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 < 𝛼 (1)

Where, 𝜏ℎ𝑖
 and 𝜏𝑓𝑗

 is the hard-real time and firm-real time tasks

respectively. Also, α is a threshold used to determine if the task

can be allocated in mist or fog node. In another word, if the

deadline of a task is less a threshold(α), the task should be

allocated in the mist tier. Also, this threshold is summation of

the duration time of the task in fog node and the communication

overhead, as defined by Equation 2. The expected duration time

of a task in a fog node is defined by the Worst Case Execution

Time (WCET).

α = expected fog duration time + communication cost (2)

On another hand, the firm-real time, and soft-real time

application will be directed to the second tier of the system,

which is called “Fog tier”. The Fog tier resources are managed

by the orchestrator node. The orchestrator node can receive all

types of the tasks form the mist nodes. Hence, it is responsible

for allocating these tasks based on the task urgency in the

available resources with minimum delay. Also, the orchestrator

node is responsible increasing the availability of the mist layer

by providing hot replication for the persistent services. The last

type of task is non-real time that require massive computations,

which is called “Cloud-based”. As missioned before, the

proposed model is consisted of three layers. The details of

RTSIF model layer architecture is shown in Figure 3. In the

next subsection the structure of the mist tier and the fog tier will

be discussed.

Fig. 3. RTSIF System Architecture.

A. Mist Tier
Each node in the mist tier consists of two main components,

namely; Mist Service Container Listener (MSCL) and Mist

Resource Broker (MRB). MSCL is responsible for receiving

the IoT service requests. In another hand, Mist Resource Broker

is allocating the tasks in the local resources or direct it to the

next tier. The following subsections discuss the main

functionality of the mist node components.

A.1. Mist Service Container Listener (MSCL)

MSCL is responsible for receiving services request and data

from the user or IoT. The services requests are represented by

tasks which will be assigned to resources in mist, fog or cloud

system. MSCL classifies the service request, as shown in

MSCL algorithm (Algorithm 1). The MSCL algorithm insert all

of the hard real time tasks in the hard task queue, which will be

allocated in the local mist resources by the MRB. Moreover,

MSCL classified the Firm-real-time tasks according to

Equation 1 into Mist-base or Fog-Base tasks. In another word,

if the task deadline is less than the cost of accomplishing the

task in fog node in additional to the communication overhead

(as defined in Equation 2), the task is allocated in the mist

resources. If the service request is classified as Mist-Based task,

service request is directed to the Mist Resource Broker (MRB).

On the other hand, the other types of requests will also be

redirected to the Fog Orchestrator Node (FON).

Algorithm 1: MSCL Algorithm

Input

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

13

 t // new service request

Step 1: If (t.type = “hard”)

Step 2: Mist.hardQueue.Enqueue(t)

 /* insert the task in the hard realtime

queue*/

Step 3: Elseif(t.type = “Firm”)

Step 4: If(t.deadline< α)

Step 5: Mist.FirmQueue.Enqueue(t)

Step 6: Else

Step 7: Orchestrator.fogQueue.Enqueue(t)

 /*Send firm task to Orchestrator node queue */

Step 8: End if

Step 9: Else

Step 10: Orchestrator.fogQueue.Enqueue(t)

 /*Send firm task to Orchestrator node queue */

Step 11: end if

A.2. Mist Resource Broker (MRB)

MRB receives tasks via two types of queues, namely; Hard-task

and firm-real time queue. The hard-real-time task is allocated

by the algorithm 2, which provide these tasks the highest

priority in resource allocation. The second queue is the Firm-

task queue. The Firm-task queue contains the firm-real time

tasks, which have deadline is less than α. MRB provides the

hard-real time tasks the first priority in resource allocation by

the following actions. If all mist cluster VMs are busy, MRB is

preempting the heights deadline of the allocating firm-real-time

task. Most of the hard real time services required to be fault-

tolerant services, these services are called persistent services.

To speed up allocating the VM for the hard real time task, the

preemption operation must be reduced. Hence, the allocation of

Firm tasks is done under certain condition of firm resource

occupancy (Ω), as shown in Algorithm 3. Where Ω is threshold

determine the maximum number of concurrent VMs can be

allocated to firm tasks. Hence, the number of allocated VMs for

the Firm real time tasks must not exceed Ω. The firm resource

occupancy (Ω) must be rectify periodically to have best

resource usage. If there are 𝜔𝑖−1 idle VMs in period number

𝑖 − 1, Ω is increased by this number in the next period (𝑖). On

the other hand, if there are no idle VMs (𝜔𝑖−1 = 0) , Ω is

decreased by 𝑝𝑖−1 . Where, 𝑝𝑖−1 is the set of concurrent

preempting operations. The firm resource occupancy (Ω) is

corrected periodically based on the following equations.

Ω𝑖 = {
Ω𝑖−1 + 𝜔𝑖−1 , 𝜔𝑖−1 > 0

Ω𝑖−1 − 𝑀𝑎𝑥(𝑝𝑖−1) , 𝜔𝑖−1 = 0
 (3)

The following algorithms discuss process for allocating the

hard and firm real time tasks.

Algorithm 2: Hard Real Time Task Allocating algorithm

Step 1: while(HardTaskQueue ≠ 𝜑)

Step 2: 𝜏 = HardTaskQueue.equeue() // take hard task from

the queue

Step 3: V = find an idle VM

Step 4: if V = 𝜑 // there is no idle VM

Step 5: V = max∀i (𝑓𝑖 . 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒) /* where 𝑓i is firm

task in running state */

Step 6: preempt firm task that in V

Step 7: end if

Step 8: allocate 𝜏 in V

Step 9: If 𝜏 is fault-tolerance

Step 10: 𝜏’ = 𝜏 // τ’ is a replication of τ

Step 11: V’ = find an idle VM : V’∈ 𝑀′, V ∈ 𝑀 , 𝑀 ≠ 𝑀′
 //M ,M’ is physical mist node.

Step 12: if V’ = 𝜑 // there is no idle VM

Step 13: V’ = max∀i (𝑓𝑖 . 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒): 𝑓𝑖 ∈ 𝑀′,
 τ ∈ 𝑀 , 𝑀 ≠ 𝑀′
 /* 𝜏 and its replica 𝜏′ will not be allocated in

the same physical machine*/

Step 14: preempt firm task that in V’

Step 15: 𝑝𝑖−1 ++//increase preempt operations in the logs

Step 16: end if

Step 17: end if

Step 18: allocate 𝜏′ in V’

Step 19: end while

Algorithm 3: Firm Real Time Task Allocating algorithm

Step 1: while(FirmTaskQueue ≠ 𝜑)

Step 2: V = find an idle VM

Step 3: if V ≠ 𝜑 // there is no idle VM

Step 4: if (++FirmVM < Ω)

 /* where FirmVM is the number of VM

 that allocated by firm tasks */

Step 5: 𝑓 = FirmTaskQueue.equeue() /* take Firm task

 from the queue */

Step 6: allocate 𝑓 in V

Step 7: else

Step 8: wait(δ) // wait a period of time δ

Step 9: end if

Step 10: If 𝑓 is fault-tolerance

Step 11: 𝑓’ = 𝑓 // f ’ is a replication of f

Step 12: if (++FirmVM < Ω)

Step 13: allocate 𝑓′ in V’ // where V ’ ≠ V

Step 14: end if

Step 15: end while

B. Fog Orchestrator Node (FON)
As discussed before, the Mist Resource Brokers and The Mist

Service Container Listener (MSCL) forward the Soft and Non-

Real time tasks to the fog orchestration node. Additionally, the

Firm tasks can be forward to the orchestration node if mist node

is overloaded. The Fog Distributer receives these types of tasks.

Hence, Fog Distributer inserts the soft and firm real time tasks

its associated queue. The Fog Distributer contains a copy of all

IoT services and encompasses the requirements of each service

request. In another word, Fog Distributer has details of each

service requirements; such as the persistency of the service, the

VM specifications, number of VMs, priority level, data flow

between services, and dependency between the services (like

remote method invocation). Also, as increasing the work load

over the fog nodes, as the FON gives the highest priority to the

Firm tasks. Fog Distributer sends the CloudBase (Non-Real

time tasks) tasks to the cloud system. The following subsection

discusses the main modules of orchestration node.

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

14

B.1. Fog Distributer

Fog Distributer receives tasks of service requests form two

modules exists in the mist nodes, namely; Mist Service

Container Listener (MSCL) and Mist Resource Broker (MSB).

Fog Distributer inserts each task in to appropriate queue. When

Fog Distributer receives a “SofLoadFlag” from the QoS

Monitor, it directs the any new soft tasks to the cloud system,

as shown in the following algorithm.

Algorithm 4: Fog Distributer Function

Step 1: if 𝑡.type= “firm” // chick the task type

Step 2: FirmQueue.Enqueue(𝑡)

Step 3: else task.type= “soft”

Step 4: if 𝑆𝑜𝑓𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔= 0

Step 5: SoftQueue.Enqueue(𝑡)

Step 6: else // Replica of Firm task

Step 7: cloud(𝑡) //sent t to the cloud

Step 8: end if

Step 9: else // Replica of Firm task

Step 10: ReplicaQueue.Enqueue(𝑡)

Step 11: end if

B.2. Fog Allocator Balancer (FAB)

Fog Allocator Balancer (FAB) distributes the tasks in different

types of waiting queues (firm task, firm replica and soft task),

as shown in Figure 3. FAB gives the firm tasks and its replicas

tasks higher priority than soft task. Moreover, the tasks

distribution process should maintain the load balanced among

the fog nodes, as shown by the following equation.

𝑤1 ≅ 𝑤2 ≅ ⋯ ≅ 𝑤𝑛 : |max
∀𝑖

(𝑤𝑖) − min
∀𝑖

(𝑤𝑖)| ≤ 𝛿 (5)

𝛿 = max
∀𝑗

(𝑡𝑗 . 𝑒𝑥𝑝𝐸𝑥𝑒) (6)

Where 𝑤𝑖 is the expected waiting time if the task will be

allocated in fog node (i). Also, (𝑡𝑗 . 𝑒𝑥𝑝𝐸𝑥𝑒) is the expected

execution time for the task 𝑡𝑗. Equation 5 grantees a balanced

load between the fog nodes. Equation 5 means that the

maximum load different among all fog nodes must not exceeds

δ. Equation 6 defines δ, which represent the longest task

execution time. These equations mean that the maximum

difference in the waiting time between all nodes must not

exceed the execution time of firm task. Hence, FAB maintains

the workload balanced among the fog nodes by enforcing these

rules.

Furthermore, it should be considered that a fog worker node is

considered as overloaded if the waiting time exceed the cost of

sending task to the cloud system. Hence, that the maximum of

the waiting time over all fog nodes must not exceed η, which

represent the turnaround time in the cloud system as shown in

the following equation.

max
∀𝑖

(𝑤𝑖) < 𝜂 (7)

If the condition of equation 7 is exceed, the SofLoadFlag is set

by one to pause the distribution soft tasks on the fog tier. The

FAB share the resources based on the QoS ratio which

determine the ratio between the soft and firm tasks in fog node,

which is denoted by µ. Hence, the expected waiting time for a

task in a fog node can be computed by the following equation.

𝑤𝑖 = (𝜐𝑓(1 − 𝜇) + 𝜐𝑠. 𝜇)𝑁𝑖 (8)

Where 𝜐𝑠 𝑎𝑛𝑑 𝜐𝑓 is the average of the execution time for soft

and firm task respectively. Also. 𝑁𝑖 is the total number of tasks

in fog node i.

Algorithm 5: Fog Allocator Balancer (FAB) Algorithm

Step 1: while(FirmTaskQueue ≠ 𝜑) or (SoftTaskQueue ≠ 𝜑)

Step 2: r = FirmTaskQueue.size*(1-μ) // number of firm

Step 3: 𝑓ℎ = find the minimum fog load

Step 4: 𝑓𝑙 = find the maximum fog load

Step 5: for all (𝑓𝑖 ∈ 𝐹 : 𝑓𝑖 . 𝑙𝑜𝑎𝑑 < η)

// loop over light load fog nodes e

Step 6: if(𝑓ℎ − 𝑓𝑙)< δ

Step 7: distribute firm (1-μ) task

Step 8: distribute soft (μ) task

Step 9: end For

Step 10: end while

distribute firm (1-μ) task

Step 1: for all fogNode.Load < η // the load of the fog node

Step 2: if(𝑓ℎ − 𝑓𝑙)< δ

Step 3: 𝑑𝑓 =
𝑓ℎ−𝑓𝑙

𝑣𝑓

// distance between minimum and maximum

Step 4: 𝑑𝑖 =
𝑓ℎ−𝑓𝑖

𝑣𝑓

// distance between minimum and maximum

Step 5: 𝑑𝑖 . 𝑠𝑒𝑛𝑡(FirmTaskQueue.dequeue(𝑑𝑖))

// send d tasks to 𝑓𝑖 node

B.3. Replication Manager

The Replication Manager receives the tasks replications via

Firm Replication Queue. Consequently, it allocates each replica

task in different cluster form the original allocated task cluster.

In another word, if task τ’ is replication for τ, then τ’ is allocated

in V' and τ is allocated in V. Where, V and V' are two virtual

machine not hosted in the same physical machine. The

following algorithm demonstrates the main steps in allocating

replica task τ’ which is a replica for task τ.
Algorithm 6: Replication Manager algorithm

Step 1: while(FirmRepQueue ≠ 𝜑)

Step 2: 𝜏 = FirmRepQueue.equeue() // take replica task from

the queue

Step 3: if 𝑆𝑜𝑓𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔= 0

Step 4: cloud. Send(𝜏′) //send 𝜏′ to cloud

Step 5: else

Step 6: V’ = find Min load VM : V’∈ 𝑀′, V ∈ 𝑀 , 𝑀 ≠ 𝑀′
 //M ,M’ is physical mist node.

Step 7: end if

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

15

B.4. QoS Monitor

The QoS Monitor is responsible for observer all fog nodes in

the system. Equation 7 defines upper bound of the waiting list

in each fog worker node in the model. In case of a node load

exceed the cost of the η, the other node of the system has load

closed to η, as defined by Equation 5. At this case the system

forward the new received message to the cloud system until

period of time 𝛿, which is defined by Equation 6. After δ period

of time the system all fog worker node can accept at least one

additional task. Hence, the SofLoadFlag will be reset by zero.

IV. SIMULATION SETUP AND EXPECTED RESULTS

This section measures the Achievability of the RTSIF model.

First of all, the technical details of the test environment

parameters are described in Subsection IV.A. The evaluation of

RTSIF performance is achieved in a two dimensions. The first

dimension is concerning in the evaluation of the RTSIF system

performance using all type of tasks, which is shown in

Subsection (IV.B). The performance measurement is based on

three parameters; the average of turnaround time, the average of

waiting time and the throughput. Finally, the second dimension

evaluates the persistency of the model for the real-time services

by evaluating the number of failed tasks in the compared

algorithms, which is shown in Subsection (IV.C).

IV.A) Simulation Tool (CloudSim)

WorkflowSim [19] is a simulation program designed as a

development of CloudSim [20], which was used to evaluate the

model proposed in this paper. In order to assess the test results,

the WorkflowSim is used to simulate the compared scheduling

models. The WorkflowSim is an open source workflow

simulator which is an extension of the CloudSim [20]. The

simulation evaluation is done by using the homogeneous

characteristics in the Fog and Mist nodes. Fog and Mist nodes

has the same characteristics of the VMs in the Amazon EC2.

Hence, each task is executed on a T2. Micro instance of

Amazon EC2, which is available for free. Fog-mist colony is

constructed of 100 fog nodes, in addition to 50 mist nodes. The

proposed RTSIF model was compared to three other models,

namely Min-Min Algorithm, Credit Based Scheduling (CBS)

Algorithm [21], and Earliest Feasible Deadline First (EFDF)

[22]. Finally, to perform IoT tasks on these nodes, Windows 10

operating system, Core i5 processor at 2.3 GHz and NetBeans

IDE 7.2.1 were used.

IV.B) performance measurement

This test composed of three experiments. The first experiment

assesses the growing of turnaround time as increasing the

number of tasks. The effect of alteration of workload on the

waiting time is measured in the second experiment. Finally, the

third experiment measures the throughput of the compared

models.

Turnaround time performance test: the turnaround time for a

task is the time taken to fulfill a service request. Figure 4.A

shows the performance measurement based on the turnaround

time parameter. The performance test is done using variant

workload starts from one thousand tasks up to ten thousand

tasks. The ratio of all types of real time tasks are 30% over all

integrated service requests. Noticeably, the Mini-Mini bars are

increased rapidly as the workload is increased. The poorest

performance of the Mini-Mini turnaround time is caused

priority of the short tasks. In another word, the high priority that

given to small tasks size causes starving in the long tasks.

For CBS, it approximates the performance of the

proposed model RTSIF in the case of a small workload of the

system. The CBS model allocates tasks based on their priority,

while the RTSIF model allocates tasks based on several levels

of priority. RTSIF also has the advantage of focusing on

urgency of task taking into account load balance constraints

The waiting time performance test: The second experiment

measures the waiting time in each model, as shown in Figure

4.B. In this test the waiting time assessment is done by taking

the average of the waiting time. The waiting time values of the

compared models are obtained in Figure 4.B. The Mini-Min has

the worst waiting time with reason that the shortest task will

allocated first. On another hand, the long tasks will be

postponed or starved until the short tasks is served. Also, the

proposed model has performance enhancement since it

allocates each task based on its type and the available resources

under the load balancing conditions.

The throughput performance test: the experiment, that shown

in Figure 4.C, achieves the throughput comparison between the

competitive models. The RTSIF has the heights throughput is

attributable to the load balancing in each tier of the model. Also,

the resources are chosen for each task based on the resource

availability and the urgency level of the tasks. The litter

difference between the competitive models at the low workload

be ascribed to the abundance of resources.

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

16

Fig. 4. Performance Comparison using all type of tasks

 IV.C) System Persistency measurement

This section measures the persistency of the services in the

compared models by measuring the number of failed tasks in

each type of real services. Each of value of this test is the

average of ten trials. Figures 5 (A, B and C) show the number

of failed tasks by increasing the workload. In these figures we

notice that; the number of failed tasks in RTSIF has

insignificant values. The impressive performance for the

RTSIF is attributed to the load balancing between the cluster

node in each tier in the system. Moreover, the resource

allocation process in RTSIF is based on two factors; the first

factor is the urgency of the tasks which represent the raise

priority of tasks. The second factor in RTSIF resource

allocation strategy is property of the resources. Since the CBS

is prioritizing the tasks in the resource allocation process, hence

the CBS curve has tasks failure less than the Mini-Mini and

EFDF curves. Unfortunately, CBS algorithm doesn’t give

consideration for the system failure or the level of the resources

(mist, fog or cloud). Also, the resource allocation process in

Mini -Mini algorithm is based only the size criteria, which is

not suitable for real time systems. In another hand, the EFDF

algorithm is based only the deadline, which neglecting the

urgency of the task.

Fig. 5. Persistency measurement for real time tasks

V. CONCLUSION AND FUTURE WORK

In this paper, a model (MLITS) based on Cloud-Fog-Mist
architecture is proposed. This model handles and schedules IoT
tasks based on their urgency. Several algorithms are introduced
inside this model to manage load balance through cloud-fog-
mist architecture. Effectively allocating resources with the fault
tolerance mechanism for cloud-fog-mist layers was the main
goal of the proposed model. The focus was on making the mist
layer always available to serve hard tasks that need immediate
processing and cannot be delayed, such as the tasks of self-
driving cars. Several experiments were conducted to test the
proposed model in this research, where all kinds of IoT tasks
were addressed. Comparisons between the proposed model and
several others are made to compare turnaround, waiting time as
well as throughput and persistency. The results showed that the
proposed model outperformed all the models that were
compared

REFERENCES

[1] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer and Shahid Khan.
(2012). ”Future Internet: The Internet of Things Architecture, Possible
Applications and Key Challenges,” in Proceedings of Frontiers of
Information Technology (FIT), pp. 257-260

[2] J. Zheng, D. Simplot-Ryl, C. Bisdikian, and H. Mouftah. (2011). “The
Internet of Things,” in IEEE Communications Magazine, Volume:49 ,
Issue: 11, pp:30-31.

Informatics Bulletin, Helwan University, Vol 4 Issue 1, January 2022

17

[3] Jalowiczor, J.; Rozhon, J. Voznak, M. (2021). “Study of the Efficiency of
Fog Computing in an Optimized LoRaWAN Cloud Architecture.
Sensors”, 21(9), 3159. https://doi.org/10.3390/s21093159

[4] Mihai, Viorel et al. (2018) “WSN and Fog Computing Integration for
Intelligent Data Processing.” 10th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI). 2018, pp: 1-4.

[5] Asif-Ur-Rahman, Md. et al. (2019). “Toward a Heterogeneous Mist, Fog,
and Cloud-Based Framework for the Internet of Healthcare Things.”
IEEE Internet of Things Journal 6, pp 4049-4062.

[6] Verma, P., & Sood, S. (2018). Fog Assisted-IoT Enabled Patient Health
Monitoring in Smart Homes. IEEE Internet of Things Journal, 5, 1789-
1796.

[7] Georgios L, Stavrinides, and Helen D. Karatza. (2018) "A hybrid
approach to scheduling real-time IoT workflows in fog and cloud
environments", Springer Science+Business Media, LLC, part of Springer
Nature, 1-17.

[8] Chen, C.Y. (2018). Hasan, M.; Mohan, S. Securing real-time internet-of-
things. Sensors, 18, 4356.

[9] Mohammadi, A.; Akl, S.G. (2005). Scheduling Algorithms for Real-Time
Systems; Technical Report; School of Computing Queens University:
Kingston, ON, Canada.

[10] Satyanarayanan, M.; Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.;
Hu, W.; Amos, B. (2015). Edge Analytics in the Internet of Things. IEEE
Pervasive Compute. 14, 24–31.

[11] Yassine, A.; Singh, S.; Hossain, M.S.; Muhammad, G. (2019). IoT big
data analytics for smart homes with fog and cloud computing. Future
Gener. Comput. Syst. 91, 563–573.

[12] Tang, C.; Wei, X.; Zhu, C.; Chen, W.; Rodrigues, J.J. (2018).Towards
smart parking based on fog computing. IEEE Access . 6, 70172–70185.

[13] Munir, A.; Kansakar, P.; Khan, S.U.(2017). IFCIoT - Integrated Fog
Cloud IoT—A novel architectural paradigm for the future Internet of
Things. IEEE Consum. Electron. Mag. 6, 74–82.

[14] Ning, Z.; Huang, J.; Wang, X. (2019). Vehicular Fog Computing:
Enabling Real-Time Traffic Management for Smart Cities. IEEE Wirel.
Commun. 26, 87–93

[15] Yogi, M.K., Chandrasekhar, K., & Kumar, G. (2017). Mist Computing:
Principles, Trends and Future Direction. ArXiv, abs/1709.06927, pp:19-
21.

[16] Asif-Ur-Rahman, M., Afsana, F., Mahmud, M., Kaiser, M., Ahmed,
M.R., Kaiwartya, O., & James-Taylor. (2019). A. Toward a
Heterogeneous Mist, Fog, and Cloud-Based Framework for the Internet
of Healthcare Things. IEEE Internet of Things Journal. 6, 4049-4062.

[17] Arkian, H., Diyanat, A., & Pourkhalili, A. (2017). MIST: Fog-based data
analytics scheme with cost-efficient resource provisioning for IoT
crowdsensing applications. J. Netw. Comput. Appl., 82, 152-165.

[18] Mann, Zoltan. (2021). Notions of architecture in fog computing.
Computing. 103. 1-23. 10.1007/s00607-020-00848-z.

[19] W. Chen and E. Deelman, (2012). ―Workflowsim: A toolkit for
simulating scientific workflows in distributed environments, in 2012
IEEE 8th International Conference on E-Science, ser. eScience, pp. 1–8.
[Online]. Available:https://github.com/WorkflowSim

[20] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, (2011). ―CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms, Software: Practice and Experience, vol. 41, no. 1.

[21] A. Thomasa, Krishnalal Ga, Jagathy Raj V Pb, (2014). “Credit Based
Scheduling Agorithm in Cloud Computing Environment”, ICICT pp. 913
– 920.

[22] Jagbeer Singh, Bichitrananda Patra, Satyendra Prasad Singh. (2011). "An
Algorithm to Reduce the Time Complexity of Earliest Deadline First
Scheduling Algorithm in Real-Time System" (IJACSA) International
Journal of Advanced Computer Science and Applications, February,
pp.31-37.

Hosam E Refaat: has graduated from the Faculty of
Science, Assuit university, Egypt, in 1998. In
October 2006, he finished his Master degree in the
field of distributed systems from the faculty of
Science, Cairo University, Egypt. Currently, he is a
lecturer in Faculty of Computers & Informatics,
Suez Canal University, Ismailia, Egypt. His current
research interests are Parallel Systems, Cloud
Computing, Edige Computing, and Datamining.

https://doi.org/10.3390/s21093159

