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ABSTRACT  

Gears are critical components of industrial equipment, where gear failure results 

machinery failure and that consider as a significant reduction in productivity. It is 

always critical to keep track of the machine's health in time. Consequently, researchers 

have been working on developing methods for identifying and diagnosing gear problems. 

The purpose of this paper is focused to provide a review of a variety of diagnosis 

techniques that have been shown to be successful when applied to rotating machinery 

such as gears, as well as to highlight fault detection and identification techniques that are 

primarily based on vibration analysis. fluctuations from these standards generate 

distinctive vibration signals whose help in monitoring the gearbox malfunctions. The 

main sources of these fluctuations are crack tooth, chipped tooth, missing tooth, the 

surface wear during heat treatment or gearbox assembly, and the geometrical errors, 

resulting from the gear cutting process and wear. In conclusions, a brief explanation of 

a novel method of diagnosis based on hybrid artificial intelligence approaches that 

incorporate neural networks, fuzzy sets, expert systems, and fault detection is provided. 
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INTRODUCTION 

Identifying components that are problematic throughout the manufacturing process is 

difficult in the present modern manufacturing world. The most essential transmission 

component, the gear, would be worn out if used continuously. Because of its relevance in 

any industry, monitoring the operating state of a gearbox or gear system is a crucial job, 

[1]. The oscillations and its sound   produced by all machines with moving parts are 

distinct, and each machine has a unique vibration signature that is related to the 

machine's construction and current state. When the state of the machine changes, the 

vibration signature changes as well, and this change can be utilized to detect developing 

faults before they become critical. This is the main principles of condition monitoring 

methods. Condition monitoring can help to save money by increasing maintenance 

efficiency and lowering the risk of serious accidents through the prevention of 

breakdown, [2, 3]. 

 

Gear transmissions system is one of the most common in rotating machinery, which are 

used to transmit torque between shafts. Failure in gears could affect the overall operation 

of the machine, [4]. The monitoring is carried out for several purposes to characterize 

the emitted sound, diagnose faults in running machinery's gearboxes and check 
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correctness of gearbox assembly after manufacturing for identifying problems if any, 

before clearing it for use in any vehicle or machine, [5, 6]. Also, the effect of bearing 

defects on vibration is modeled using simulation method, [7]. The term of condition 

monitoring refers to the practice of utilizing advanced technologies to ascertain the state 

of equipment and to predict potential failure. These technologies include, but are not 

limited to, visual inspection, temperature monitoring, acoustic emission analysis, noise 

analysis, oil analysis, wear debris analysis, motor current signature analysis and 

vibration measurement and analysis, [8]. 

 

NECESSITY TO DETECT AND IDENTIFY OF MACHINE FAULTS 

Diagnosis and monitoring of transmission system fault can be consider as any fluctuation 

in a machinery component which causes a malfunction and the system becomes  

incapable to accomplish its task, [9]. Diagnosis of an antifriction bearing malfunction is 

a major factor in transmission system validity condition, especially the fault must be 

discovered in its initial stages, [10, 11]. The localized and distributed defects are likely to 

be produced from manufacturing processes and abrasive debris. The rotary system 

subjected to resonance frequency, was investigated using a sinusoidal function basis at 

the first vibration mode. It was found that, the envelope detection method could be a 

perfect way to perform the bearing defect diagnosis, [12]. A mathematical model was 

established to detect the defect on the bearing. The results showed that, the amplitude 

level of vibration signals was produced from outer race defect is more than that for the 

inner race defect [13]. FE Dynamic model considers a suitable method used to diagnosis the 

bearing defects of different sizes in the bearing, [14]. 

 

Gear faults typically occur in the teeth of a gear mechanism due to surface wear, fatigue, 

cracks, or pitting. Most gear Fault diagnosis and detection techniques which based on 

signal response methods via acoustic emission transducers and vibration sensors has 

been widely investigated, [15, 16]. A new approach used to detect the faults based on 

acoustic emission and vibration signals was developed, [17]. It can be indicated from the 

results that the proposed methods were adequate under various operating conditions, 

applied loads and fluctuating speeds. A model-based gear fault detection method is 

preferable to identify the gear defects using transmission error. A parametric model of 

a gear model was established to estimate the transmission error, [18]. Finite element 

analysis via ABAQUS is created to estimate the influence of shaft misalignment and 

backlash on the stress generated on the spur gear, [19]. Malfunction belt drive system 

monitor and detect using vibration analysis techniques, [20]. The belt drive experimental 

equipment was performed to obtain realistic vibration signals under different operating 

conditions. The pulley-belt system faults like unbalance, misalignment and mis-cogs, that 

dedicated by vibration analysis technique, [21, 22]. The unstable belt transmission was 

studied via the perturbation solution under assumptions of the forces applied is the same 

on the stick-slip regions. It can be observed that the results showed a good agreement 

with numerical solutions, [23, 24]. The results of statistical parameters explained the 

effect of each type of faults comparing with the ideal system conditions. A numeric model 

of the belt drive system is established using ABAQUS to study the system transmission 

error under unsteady operating conditions, [25, 26]. 

 

3. GEAR AND GEAR FAULT 

The motion and power transmitted by gears is kinematically equivalent to that 

transmitted by frictional wheels or discs. A gear drive is performed, when the distance 

between the driver and the driven shafts is very small. In precision machines, in which 

low slipping effect leads to reduce the velocity ratio of the system. Perfect gear meshing 

and ideal installing of gears do not produce vibration signals. fluctuations from these 

standards generate distinctive vibration signals whose help in monitoring the gearbox 

malfunctions. The main sources of these fluctuations are crack tooth, chipped tooth, 
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missing tooth, the surface wear during heat treatment or gearbox assembly, and the 

geometrical errors, resulting from the gear cutting process and wear. Figure 1 illustrates 

some of the gear faults. 

 

 
 

Fig.1. The fault gears. (a) tooth deflection, (b) chipped tooth, (c) pitting tooth, (d) crack 

tooth, (e) missing tooth (f) surface wear. 

 

4. CONDITION MONITORING TECHNIQUES 

Each component of the power transmission has a distinct vibration signature related to 

machine performance and condition. Any change in the state of this component also 

changes the vibration signature, which makes the vibration response an indication of 

equipment monitoring. This is the foundation upon which condition monitoring methods 

are built. Condition monitoring techniques can save time and money through scheduling 

the maintenance, reduce the accidents risk, prevent a breakdown and extend 

equipment’s lifespan, [2, 27]. 

 

4.1 Visual inspection 
Traditionally, optical/visual inspection has been used as one of the basic tools in detecting 

deterioration and damage exhibited on the surface as well as the inner integrity of the 

shaft member. Optical procedures are most frequently used for visual inspection by 

maintenance staff. However, given that human eyes have limited capabilities, it is 

difficult to detect damage on-site, even for skilled technicians. Complete machine 

shutdown and disassembly is often required, [28]. Another disadvantage of scheduled 

maintenance, or predictive maintenance, is that it tends to replace machines that may 

continue to function for several years, [29]. Sometimes, in order to double-check results, 

samples of the structures are extracted and tested in a laboratory to detect if the 

inspection was accurate. In the meantime, the use of X-ray and thermal imaging 

procedures has been successful in some smaller shafts. But the applications of these 

procedures are extremely limited, and the costs of putting them in place on the ground 

are prohibitively expensive to implement, [30]. 

 

4.2. Acoustic emission analysis 

Acoustic emission is the phenomenon of transient elastic wave generation due to a rapid 

release of strain energy caused by a structural alteration in a solid material. Generally 

these structural alterations are the result of mechanical or thermal stress that has been 

applied either internally or externally, [31]. Gear defects can be detected using a process 

called AE analysis, which requires the transmission signal path to be as short as possible. 

This minimizes interferences between mesh of gears signal and other machine parts and 

emphasizes on useful information about faults. At a gear wheel test bench, to detect and 
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locate the source of a defect, acoustic emission sensors were placed on the gearbox casing 

and on the ends of the rotating shafts in order to detect defects at an early stage. Because 

of the meshing gear and other embedded components, measuring only the number and 

intensity of emissions is insufficient. In order to make sure an accurate assessment of the 

short-time excitations in the frequency domain, we must do additional analysis by using 

wavelet techniques, [32]. Acoustic emission (AE) has long been recognized as a highly 

effective method for non-destructive monitoring and damage detection. While 

traditional AE monitoring techniques such as ultrasound are capable of accurately 

locating incipient damage in structural members, their application to rotating structures 

has been limited due to the requirement for a large number of connecting wires to be 

attached to the rotating shaft, [33]. 

 

4.3. Oil-debris Monitoring 

Another commonly used condition monitoring-based approach for fault prediction is the 

oil-debris monitoring method. Transmission failures, such as gear and bearing failures, 

generate a significant amount of wear debris in the oil lubrication system. When damage 

begins to occur, the amount of debris measured by an oil debris monitor will increase, 

[34]. Typically, a machine's wear process is the result of several distinct, concurrent wear 

mechanisms, each of which has its own unique effect on the machine's operating 

environment and the changes that occur in it. The wear and the dynamic forces could 

cause the machine parts to break or upset the machine's operation if the unfavorable 

operating conditions persist. To control the wear process, an early detection system must 

be used as well as a system to monitor the size, amount, and appearance of wear debris 

particles in the machine's lubricating oil, [35, 36]. A variety of on-line methods are 

available for oil debris monitoring, [37, 38]. Some of the principles of the various methods 

are Ferrography, [39, 40], ultrasonic, [41], and X-ray fluorescence (XRF), [42]. 

 

4.4. Temperature Monitoring 

Temperature monitoring is comprised of the measurement of the operational 

temperature as well as the temperature of component surface temperatures. It is possible 

to think of monitoring operational temperature as a subset of the operational variables 

for performance , [43]. The monitoring of component temperature has been found to be 

related to wear occurring in machine elements where lubrication is either insufficient or 

absent. The techniques for monitoring temperature of machine components can include 

the use of optical pyrometers, thermocouples, thermography, and resistance 

thermometers, [44]. 

 

4.5. Noise Analysis 

For the purpose of condition monitoring, noise signals are used. This is because noise 

signals measured in regions close to the external surface of machines can contain 

important information about the internal processes of the machine, as well as valuable 

information about the machine's operating condition. Machine noise typically has 

specific spectral characteristics when machines are working well. The frequency spectra 

change as faults begin to develop. Every frequency component can be traced to a specific 

machine component. This is the base for noise measurement and analysis in condition 

monitoring. It is sometimes the case that a particular signal is surrounded by other 

signals, and the resulting time-series or spectral analysis does not pick it up. When it 

comes to this particular scenario, specialized signal techniques are required, [8]. 

 

4.6. Motor current signature analysis 
Motor current signature analysis (MCSA) is a novel diagnostic technique used to 

monitor the condition of mechanical equipment powered by electric motors such as 

(pumps, motor-operated valves, compressors, and processing machinery). The MCSA 
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process uses a set of measurements to identify, characterize, and track minute-to-minute 

changes in the condition of mechanical equipment in order to diagnose any equipment 

problems. It detects the rapid changes in the amount of noise in the power current 

flowing to the motor that powers the equipment. Because the motor is a transducer, it 

translates mechanical loads, which vary in terms of their size, time frame, and load 

intensity, into electrical variations in the current generated in the motor windings. 

Detection of the motor current noise signature, amplification of the noise signature, and 

further processing as needed are performed to examine the time-domain and frequency-

domain (spectral) characteristics of the noise signature. Finds that by using Fast Fourier 

transformation, it is possible to analyze the motor current and voltage signals and still 

keep the motor running without disturbing its operation, [45]. Neural network has also 

been used to study motor current data for the diagnosis of a planetary gearbox defect. 

Data relevant to the motor current spectrum was extracted and used to train a deep 

neural network for the diagnosis of a planetary gearbox defect, all of this will be 

discussed briefly at the end of the paper, [46]. 

 
Table 1. Condition monitoring indicators of gear fault detection 

Condition Indicators Faults References 

Visual inspection Non-circular gear, tooth profile error [28]–[30][47] 

AE analysis General fault progression primitively [31], [32][48] 

Oil-debris 1onitoring Wear, breakage [34]–[42]  

Temperature Monitoring Wear, Lubrication [44][49] 

Noise Analysis Erroneous operating conditions [8][33] 

MC signature analysis Fluctuation in gear load, predict a model built [45], [46][50], [51] 

 

VIBRATION ANALYSIS  

Vibration analysis is a superior method for diagnosing faults in rotating components by 

comparing the vibration signal to other variables such as wear, sound, and temperature, 

[1]. The concept of source-path-receiver is fundamental to an understanding of 

vibrations, [52]. A machine's oscillatory motion is a response to exciting forces that may 

originate internally or externally to the machinery unit. Internal sources include rotor 

imbalance, coupling or bearing misalignment, and worn or damaged mating components 

such as gears, all of these are examples of material or alignment defects that can be 

corrected to reduce the amplitude of the forces generated. External sources include load 

variations, flow conditions, and vibration of adjacent structures or equipment, all of 

these are examples of issues that cannot be attributed to a physical defect in the 

machinery unit. The transmission of forces from their sources occurs in one of two ways 

that are of primary interest to the vibration analyst: mechanical transmission of forces 

between components, or acoustic emissions emanating from each component set into 

vibratory motion. 

 

Mechanical and acoustic signals are the two fundamental types of signals that can be 

measured and analyzed, and they correspond to the two general fields that have 

developed. Although the instrumentation employed for each of these two signal types is 

different, the fundamentals of the signal analyses follow a similar path. There is no need 

to shut down the rotating machinery when performing the signals analysis procedures 

described above, and the results of the signals analysis procedures can be used as an on-

line diagnostic and trend monitoring tool. The study and development of measurement 

and analysis techniques for vibration signal analysis is a logical choice for a field to 

investigate and develop in order to serve as natural extensions of those fundamental 

human senses that are inherently more responsive to and thus more informative about 

the condition of machinery, [53]. These methods can be classified into time domain 

analysis and frequency domain analysis. The three main stages of the vibration-based 

fault detection process can be explained as follows, [54 – 56]: 
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▪ Data acquisition (data space): vibration signal data collection performed 

through experiments or theoretically using dynamic models and simulation. 

▪ Data processing (feature space): vibration signal data processing for feature 

extraction. 

▪ Failure pattern recognition (fault space): analysis of the extracted features for 

assessment of the machine condition. 

  5.1. Time domain analysis 

5.1.1. Waveform analysis 

The time domain was used for almost all vibration analysis before spectral analyzers 

became commercially available. It was often possible to detect changes in the vibration 

signature caused by faults by studying the time domain waveform with equipment such 

as oscilloscopes. However, a very difficult task to diagnose faults. Determining the 

change required measuring the repetition frequency of a particular component with the 

aid of the time difference detected between feature points, [57]. 

 

5.1.2. Time domain signal metrics 

Although detailed study of the time domain waveform is no longer widely used, several 

simple signal metrics based on the time domain waveform continue to be widely used in 

mechanical fault detection. These simple signal metrics are referred to as feature 

extraction. These features are referred to as time domain features because they are 

characteristics of the actual time domain signal. Additionally, performing analysis on the 

acquired raw data requires a significant amount of computational time since it involves 

processing a large amount of data. The computational time can be reduced by utilizing 

the features extracted from the time-domain signal, [4]. Statistical features extraction 

like mean, peak value, root mean square value, crest factor value, kurtosis value, etc. are 

extracted to describe the characteristics of the time waveform in the time-domain 

analysis, [54]. 

5.1.2.1. Peak 

The peak level of the signal is defined as: half the difference between the maximum and 

minimum vibration levels: 

Peak = 
𝟏

𝟐
 (max (𝒙(𝒕)) - min (𝒙(𝒕))) 

The peak level is not solid in detecting faults continuously operating systems because it's 

not statistical quantity, [57 - 59]. 

 

5.1.2.2. Root Mean Square (RMS) 

Root Mean Squared (RMS) method is the simplest and most straightforward way to find 

and measure faults in the time domain. This tool is helpful in keeping track on general 

noise levels. Unbalanced rotating elements can also be detected by means of this value. 

The root mean squared, also known as a quadratic mean, is a statistical measure of the 

magnitude of a varying quantity. RMS was originally developed to describe the 

temperature of a resistor when it was subjected to sine wave alternative current. In the 

vibration signature, the root mean squared value of the signal is a time analysis feature 

that is a measure of the power continent. It is particularly useful in the case of sinusoidal 

waves. RMS of a sine wave can be defined as 0.707 times the amplitude of the signal. 

RMS of a signal sample can be calculated as the square root of the average of the sum of 

the squares of the signal samples, [60 - 61]. 

RMS = √
𝟏

𝑵
[∑ (𝒙𝒊)𝟐]

𝑵
𝒊=𝟏  

Where, x is the original sample time signal, N is the number of samples taken and i is the 

sample index. 

 

5.1.2.3. Crest Factor 

The crest factor is defined as the ratio of the peak value to the RMS of the signal: 
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Crest Factor = 
𝑷𝒆𝒂𝒌

𝑹𝑴𝑺
 

This measurement technique gives more accurate results than RMS when it comes to 

detecting faults with rotating machinery. Impulsive vibration sources can change the 

signal pattern, and this value is used to detect these changes. The crest factor value 

increases as the number of peaks in the time series signal increases, as is the case with 

impulsive vibration sources such as a gear tooth breaking. This method is not regarded 

as a particularly delicate one. It is vital to understand that when a gear tooth is damaged, 

the RMS value of the damaged gear does not increase during one revolution, but the 

peak value will increase, [7, 62]. So, crest factor will also increase but as damage becomes 

severe, RMS value will also increase with increase in peak value, in that case crest factor 

value will decrease. This feature's uniqueness enables it to detect very minor surface 

damage. 
 

5.1.2.4. Kurtosis 

This technique provides a measure of the size of the tails of distribution. It can be used 

to identify significant peaks in a signal, [63]. The kurtosis can be defined as the fourth 

normalized moment of the signal. The fourth moment is normalized using the variance's 

square, [64]. It is useful measurement of the peakedness of a signal, [65]. As gear wears 

or breaks, this feature should indicate an error as the level of vibration increases, [66]. 

Simply, kurtosis is a statistical measure of the number of peaks in a signal's amplitude. 

When a signal contains more peaks, the kurtosis value increases.  

 

A Gaussian noise signal has a kurtosis value close to three. If the gearbox is in good 

condition, it will have a Gaussian distribution and will have a kurtosis of approximately 

three. It should be noted that researchers subtract three from the calculated value and 

they end up with a value of near zero for a healthy gearbox. Kurtosis equation is given 

by, 

Kurtosis = 
𝑵∑ (𝒙𝒊−�̅�)

𝟒𝑵
𝒊=𝟏

[∑ (𝒙𝒊−�̅�)𝟐]
𝑵
𝒊=𝟏

𝟐 

5.2. Frequency domain analysis 

Every signal in the real world can be broken down into a number of unique sine waves 

as illustrates in Fig. 2. Every sine wave that is separated from the signal appears as a 

vertical line in the frequency domain. A wave's amplitude is represented by the height, 

and the frequency is represented by the position. The vibration is completely defined by 

the frequency domain. Frequency domain analysis not only detects faults in rotating 

machinery, but it also identifies the cause of the fault, [67]. 

 
Fig. 2. Combination of unique sine waves 

Figure 2. shows a view of the three-dimensional graph along the time axis, here, we have 

amplitude versus frequency axes. This is referred to as the frequency domain. Each sine 

wave that we extracted from the input is represented by a vertical line. Its height 

indicates its amplitude, while its position indicates its frequency. It can be known that 

each line represents a sine wave, and thus our input signal has been uniquely 

characterized in the frequency domain.  This frequency domain representation of our 
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signal is called the spectrum of the signal, [68]. This frequency domain representation of 

our signal is called the spectrum of the signal. Each sine wave line of the spectrum is 

called a component of the total signal. To analyze the frequency distribution of vibration 

waveforms, the time domain signal must be transformed into the frequency domain using 

the Fast Fourier Transform (FFT), [69]. 

 
Fig. 3. Fourier Transformation of time domain signal to frequency domain. 

 

5.2.1. Spectral analysis 

Spectral (or frequency) analysis is a term that refers to the examination of a signal's 

frequency domain representation. The most frequently used vibration analysis technique 

for condition monitoring in geared transmission systems is spectral analysis, which has 

proven to be an invaluable tool for detecting and diagnosing faults in simple rotating 

machinery  [70]. While the overall vibration level is a measure of the vibration produced 

across a broad band of frequencies, the spectrum is a measure of the vibrations produced 

across many discrete contiguous narrow frequency bands. The fundamental operation 

shared by all spectral analysis techniques is the conversion of the vibration signal's time 

domain representation to a frequency domain representation. This can be achieved by 

the use of narrow band filters or, more recently, through the use of digitized data and 

the discrete Fourier Transform (DFT)  [71]. The vibration level at each 'frequency' 

represents the vibration over a narrow frequency band centered at the designated 

'frequency', with a bandwidth determined by the conversion process employed. 

 

5.2.2. Conversion to the frequency domain 

Most modern spectrum analyzers use the Fast Fourier Transform (FFT), [72], which is 

an efficient algorithm for performing a Discrete Fourier Transform (DFT) of discrete 

sampled data, [73]. The Fast Fourier Transform (FFT) resolves a time waveform into its 

sinusoidal components. The FFT takes a block of time-domain data and returns the 

frequency spectrum of the data. The FFT is a digital implementation of the Fourier 

transform. Thus, the FFT does not yield a continuous spectrum. Instead, the FFT returns 

a discrete spectrum, in which the frequency content of the waveform is resolved into a 

finite number of frequency lines, or bins. 

 

ADVANCED SIGNAL PROCESSING TECHNIQUES 

Micro technology and artificial intelligence advancements have accelerated the trend 

toward more comprehensive onboard diagnostics. Recent systems have incorporated 

artificial intelligence techniques to bolster diagnostics systems robustness. Four artificial 

techniques have been widely applied as expert system, neural networks, [74] fuzzy logic, 

and model-based systems, [75].  The vibration signal is one of the most frequently used 

signals in the diagnosis of mechanical faults. fault-sensitive features are selected and 

extracted from raw signal through signal processing technology and dimension reduction 

strategies, such as Fourier spectral analysis [76 - 77]. In the step of fault classification, 
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health conditions are diagnosed based on the extracted features through intelligent 

classification techniques, such as neural networks (NN), support vector machine (SVM) 

[78] and self-organizing map (SOM), [79 - 80]. 

 
Table 2. Vibration analysis indicators of gear fault detection 

Condition Indicators Faults References 

Time domain analysis 

Waveform analysis Gear-damaged, fault types  [57], [58][59] 

TD signal metrics General fault progression [4], [54][81] 

Peak Unbalanced rotating elements [57], [58][82] 

RMS Localized fault, surface damage [14], [25], [60], [61] [83]–[85]  

Crest Factor Impulsive vibration due to tooth 

break 

[7], [62][82] 

Kurtosis Breakage, wear, misalignment [25], [63]–[66] [86] 

Frequency domain analysis 

Spectral analysis Misalignment, localized fault [70], [71][87], [88] 

Conversion to the FD Scuffing, pitting [72], [73] 

Advanced Signal Processing Techniques 

Neural networks Tooth wear, tooth breakage [74][89]–[91] 

Model-based systems Tooth crack [75][92]–[94] 

Fourier spectral 

analysis 

Effectively extract the weak fault 

signal 
[76], [77][95] 

Support vector machine  Classifying the faults [78][95]–[97] 

Self-organizing map  More accurate diagnosis of fault, 

pitting 
[79], [80][98], [99] 

 

CONCLUSIONS  

The purpose of this work is to summarize recent research and developments in the 

detecting techniques for diagnosing and monitoring gearbox faults. The study of such 

attribute defects has gained in importance as people have become more aware of the high 

cost of quality. From the previous study, there are traditional conditions monitoring 

techniques such as visual inspection, acoustic emission analysis, oil-debris monitoring, 

temperature monitoring and motor current signature analysis. There are also methods 

that are currently used such as Vibration analysis and its use in artificial intelligence 

applications. This study subjected that vibration monitoring is the most advantageous 

technique due to its reliability and sensitivity to fault severity. Additionally, it provides 

clear indications of the gearbox's condition. Consequently, the level of vibrations and the 

frequency at which they occur can be used to determine the precise location and possibly 

severity of a defect. It can be concluded that the ease with which the vibration analysis 

technique can be applied makes it the most widely used technique. 
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