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Abstract 

Recently synthesized dialkoxybenzamide derivatives, structurally analogous to Roflumilast with more selectivity 

against phosphodiesterase 4B, were highlighted in the present work. To find optimum chromatographic conditions for the 

elution of these compounds, a central composite experimental design was carried out by varying the stationary phase type as a 

categorical factor and mobile phase composition including the percentage of acetonitrile and the pH of the buffered water as 

continuous factors; the obtained retention times were utilized in the quantitative structure retention relationship (QSRR) studies. 

Furthermore, quantitative structure activity relationship (QSAR) studies for these promising compounds were performed. QSAR 

and QSRR models were built by different techniques namely multiple linear regression (MLR), principal component regression 

(PCR) for linear modelling and Principal Component-Artificial Neural Networks (PC-ANN) for nonlinear modelling. Internal 

validation (leave many out method), and external validation were used to evaluate the performance of the generated models. 

Depending on the calculated statistical parameters, PC-ANN QSAR model showed the best predictive power for the biological 

activities of the test set compounds. Whereas MLR technique was more suitable to build QSRR model, this model can help in 

understanding how the chemical structure and the lipophilicity of the compounds can affect the retention time and 

chromatographic behavior. 
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1. Introduction  

Chronic Obstructive Pulmonary Disease 

(COPD) is defined as a long-term lung disease marked 

by progressive airflow limitations [1] due to abnormal 

chronic inflammation in the airways and lung tissues. 

It was classified as the third leading cause of death 

worldwide in 2016 and the fourth leading cause of 

death in the United States [2]. The available 

medications for the management of COPD include β2 

agonists, anticholinergic, methylxanthines and inhaled 

corticosteroids, but all these medications can only 

reduce and alleviate the symptoms without disease-

modifying properties [3].Therefore, there is a 

persistent need to develop new therapeutics for this 

respiratory disease.  

Roflumilast (ROF), Figure 1, the PDE-4 

inhibitor was launched in 2012 in the USA for COPD 

treatment, but this drug has many side effects such as 

headache, weight loss and gastrointestinal disturbance 

[4]. 

PDE-4 inhibitors prevent the hydrolysis of 

cAMP (cyclic adenosine monophosphate) to AMP 

(adenosine monophosphate), this inhibition will lead 

to protein kinase A activation, reduction of 

inflammatory mediators release, reduction of cytokine 

release, reduction of fibrotic lung remodeling and 

oxidative stress [5]. PDE-4 family encompasses four 

subtypes PDE-4A, PDE-4B, PDE-4C, and PDE-4D. 

Researchers believed that the PDE-4B subtype can 

open new doors in COPD treatment, due to its role in 

the inflammatory process and the selective inhibition 
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of this subtype does not cause emesis which is highly 

related to PDE-4D inhibition [6,7]. This study will 

focus on newly synthesized dialkoxybenzamide 

derivatives Figure 1, that are structurally analogous to 

the known phosphodiesterase (PDE) inhibitor 

Roflumilast (ROF) with more selective properties 

against PDE-4B enzyme, these compounds could be 

promising and good candidates for the treatment of 

chronic obstructive pulmonary disease (COPD) [8,9]. 

 

 
Figure 1. Structures of Roflumilast and the reported 
dialkoxybenzamide PDE4B inhibitors 

 

QSAR and QSRR approaches play essential 

role in drug discovery field by reducing time and cost 

to get lead drugs. QSAR depends on a mathematical 

relationship between the chemical structure of the 

compound represented by descriptors (independent 

factors) and the activity (dependent factors). QSAR 

approach helps in identifying hits from a large library 

of compounds then these hit molecules can be further 

studied and activity experiments can be started [10]. 

Hence QSAR studies can avoid synthesis and testing 

large number of nonrelevant compounds. QSRR 

represents a specific type of quantitative structure-

property relationship QSPR. QSRR model can 

mathematically relate the chemical structure of the 

compound represented by descriptors (independent 

factors) to the chromatographic retention (dependent 

factors) [10,11]. QSRR models can be utilized in: 

understanding the chromatographic behavior of 

molecules and separation mechanism in a specific 

chromatographic system, prediction the retention of 

new analytes, determination the most molecular 

descriptors that impact in the retention prediction and 

recently QSRR could predict analytes lipophilicity 

being highly related to the retention in reversed phase 

chromatographic system [11,12] . 

Generating robust QSAR/QSRR models 

depends mainly on the selection of the most relevant 

molecular descriptors; noisy and irrelevant descriptors 

should be removed, this step can be performed by 

using variable selection techniques or feature 

extraction methods [13].  

Feature extraction appears to be a promising 

technique specially in cases with a huge number of 

descriptors and the presence of multicollinearity 

problem, in this case, variable selection methods may 

drop in determination of the optimal variables [14]. 

Feature extraction depends on reducing 

dimensionality from high dimensional data to a lower 

dimensional feature space. One of the most common 

feature extraction approaches is Principal Component 

Analysis (PCA). PCA can produce a new matrix with 

new orthogonal variables (PCs) from the original one 

by dimension reduction, this reduction can simplify 

the analysis process [15].  

After the selection step is performed, 

meaningful variables will be correlated to the target 

property by linear methods such as Multi Linear 

Regression (MLR), Principal Component Regression 

(PCR) or Partial Least Square (PLS) or by nonlinear 

methods such as artificial neural networks (ANN), 

Support Vector Machine (SVM) [16].  ANN 

modelling is one of the most attractive technique due 

to its simplicity and it is not so complicated 

comparatively to other machine learning techniques 

[17].  

The aim of this research is to continue and 

complete a comprehensive study of a promising series 

of fourteen dialkoxybenzamide PDE4B inhibitors 

analogous to ROF that were previously synthesized  

[8] and to build robust QSAR and QSRR models by 

investigating three of the most widely applied and 

powerful techniques MLR, PCR and Principal 

component-Artificial Neural Networks PC-ANN. The 

study was concerned with PCA application as a data 

mining approach to overcome the redundant and 

multicollinear descriptors problem. 

It is also worth to mention that central 

composite experimental design (CCD) was used to 

optimize the RP-HPLC elution of the compounds and 

achieve the desired chromatographic separation with 

sharp and symmetric peaks. In the contrast with 

traditional development of HPLC methods which is 

based on trial and error, this approach can avoid the 

large consumption of chemicals, time and efforts by 

modelling the data and using limited number of 

experiments. The retention times obtained from the 

optimized separation method will be used in the 

building of QSRR model.  

 

2. Experimental 

2.1 Chemicals, solvents, instruments and 

chromatographic analysis: 

Fourteen compounds were in house 

synthesized according to the reported method, Figure 

1 [8], roflumilast was purchased from Shanxi Jinjin 

chemicals co. ltd, Shanxi, China. HPLC-grade 

acetonitrile and methanol were purchased from sigma 

Aldrich, Germany. HPLC bi-distilled water was 

produced in house. Potassium dihydrogen phosphate 

from Sigma-Aldrich, Germany. Formic acid was 
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supplied from El Nasr Pharmaceutical Chemicals Co., 

Cairo, Egypt. Phosphoric acid and sodium hydroxide 

were used for adjusting pH of the mobile phases. pH 

meter Jenway3510, Essex-UK, England. Sonicator 

(power sonic).  

Stock solutions were prepared by dissolving 

5 mg of each compound in a mixture of (50:50) 

acetonitrile: methanol and diluted to 10 mL in the 

same mixture. The stock solutions were stored in 4 °C. 

One mL of each stock solution was diluted to 10 mL 

with the mobile phase to attain sample concentrations 

50 μg mL-1.  Retention times of the compounds were 

recorded using Agilent 1100 series isocratic system, 

the used columns in this study were ZORBAX C8 (4.6 

× 150 mm, 5µm) and C18 (4.6 × 250, 5µm).  Injection 

volume was 10 µl. The mobile phase was pumped at a 

flow rate was 1 mL min-1 using UV detection at 205 

nm. The UV detection of the compounds was at 205 

nm. All the injections were carried out at room 

temperature. 

2.2 Design of experiment DOE 

Design-Expert7.0.0 (Stat-Ease, Inc., 

Minneapolis, USA) software, response surface 

methodology, central composite design (CCD) tool, 

face centered type was adopted for the determination 

of the optimum RP-HPLC analytical conditions, the 

three used factors were: pH, organic modifier ratio and 

columns. The pH of the mobile phase was varied to 3 

different levels: 3, 5 and 7. Three different ratios of 

buffered water: acetonitrile (organic modifier): 70:30, 

60:40 and 50:50 were used. Two types of columns 

were used either C8 or C18 column. Eighteen designed 

experiments were performed in random order and the 

retention time of each compound was recorded and 

used as a response, then the variance of the retention 

times at each run was calculated (Table 1) and utilized 

to compare between the runs.  

 

2.3 QSAR and QSRR modelling 

2.3.1 Calculation of molecular descriptors 

SMILES (Simplified Molecular Input Line 

Entry System) of the studied structures were imported 

to Molecular Operating Environment (MOE, 10.2008) 

software [18] then inverted to 3D structures by MOE 

builder tool. The molecules with minimized energy 

geometry were optimized by using Hamiltonian 

MMFF94x forcefield until RMS gradient reached 0.05 

kcal.mol−1Å−1 and partial charges were calculated. 

Finally, the descriptors for each compound were 

calculated. The number of these calculated molecular 

descriptors was 334. 

2.3.2 Variable selection 

Most influential variables were obtained by 

Stepwise Selection as a traditional variable selection 

method or by principal component analysis (PCA) as 

a feature reduction method. PCA was carried out by 

SPSS 25, dimension reduction toolbox. Before the 

application of PCA analysis, preprocessing data step 

was performed by excluding descriptors with constant 

values and descriptors with standard deviation equals 

0, after that, 282 descriptors were obtained. These 

descriptors were scaled by standardization procedure 

and z-score was calculated (z − score =
𝑥𝑖−𝑥𝑖̅

𝜎𝑖
  where 

𝑥𝑖: nonstandardized value of the descriptor, 𝑥𝑖̅: mean 

value and 𝜎𝑖: standard deviation) for each descriptor 

to ensure that descriptors with larger range will not 

take over smaller ones. The extraction of PCs based on 

eigen values greater than 1.  

 
 
Table 1: Experimental runs designed by CCD  

Run Point space type Factor1 

A: pH 

Factor 2 

B: Organic modifier% 

Factor 3 

C: Column type 

Response variance 

1 Center 5 40 C18 2.569 

2 Factorial 3 50 C8 3.106 

3 Axial 5 30 C18 0.803 

4 Axial 3 40 C8 1.411 

5 Axial 7 40 C8 0.799 

6 Factorial 7 30 C8 1.788 

7 Factorial 3 30 C18 0.762 

8 Axial 7 40 C18 0.640 

9 Factorial 7 50 C18 0.124 

10 Axial 5 50 C8 0.906 

11 Factorial 7 50 C8 0.107 

12 Factorial 3 30 C8 0.369 

13 Axial 5 30 C8 0.951 

14 Factorial 7 30 C18 0.200 

15 Center 5 40 C18 2.569 

16 Center 5 40 C8 0.727 

17 Axial 5 50 C18 2.857 

18 Center 5 40 C8 0.727 
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2.3.3 QSAR and QSRR models development  

QSAR and QSRR models were built by SS-

MLR, PCR as linear methods and PC-ANN as a 

nonlinear method. Multilayer perceptron neural 

network (executed on NeuroSolutions version 5) 

trained with back-propagation algorithm, the 

activation function was tanh-1, the training data set was 

shuffled, weight decay parameter was optimized and 

used to avoid overfitting and improve generalization. 

CVE (Cross Validation Error) was monitored during 

training process to reach the minimum value and the 

training of the NN stopped directly when this value 

begins to increase. 

The architecture of NN consists of three 

layers: input layer which receive the vital independent 

variables and send them to the hidden layer, the 

number of neurons in this layer should be optimized, 

then these neurons will apply transformations to the 

input data and send them to the output layer to handle 

and calculate the response.  

Model validation, the critical step which can 

assess the robustness and efficacy of the generated 

QSAR/QSRR models, was evaluated by Leave Many 

Out Cross Validation (LMO-CV) method. In LMO-

CV method, each time 20% of the compounds were 

omitted randomly from the original training set, then 

the built model was used to predict the 

activity/retention time for the rest removed 

compounds. LMO-CV is more robust and reliable 

method to evaluate models with small data set [19] as 

in our case, we have only 15 compounds. 

Defining Applicability Domain (AD) of 

QSAR/QSRR models is very important step, there is 

no model predictable and suitable for entire chemicals, 

the predictability of a model is only for new chemicals 

that fall in its domain[20].  AD can be investigated by 

utilizing one of the following methods: probability 

density distribution method, range-based method and 

distance-based method, this method commonly uses 

leverage approach, which has wide application in 

QSAR/QSRR studies. Warning leverage or threshold 

value h* can be calculated by following equation: 

 

ℎ∗ =
3(𝑘 + 1)

𝑛
                                             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

k: the number of descriptors in the model  

n: the number of training set compounds  

to calculate leverage value of each compound: 

 

ℎ𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1  𝑥𝑖          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2                      

 

xi: the descriptor row vector calculated for the 𝑖th 

compound 

X: the matrix of descriptors calculated for the training 

set  

The leverage values for the studied 

compounds were calculated by Enalos node in 

KNIME [21] analytics platform (version 

4.2.3).Williams plot, which display standardized 

residuals versus leverage values h, was applied. The 

squared area established within ± 3 standard 

deviations and a threshold leverage value (h*=1).  

Prediction considered unreliable for compounds with 

a high leverage value (hi>h*) [22]. 

 

3. Results and discussion 

3.1 Optimization of chromatographical 

conditions by central composite design 

Response surface methodology (RSM) is a 

widely used and powerful technique of design of 

experiments (DOE). It depends on mathematical and 

statistical relationships between factors (inputs) and 

target response. Central composite design (CCD) and 

Box-Behnken are the major tools of RSM. 

CCD is an effective design can fit second-order 

polynomial models and requires only a minimum 

number of experiments for modeling [23, 24]. CCD 

building depends on three types of points [25, 26]: 

factorial points represent +1,−1 levels of factor. Star 

(axial) points this points location depends on Alpha 

value. Alpha value can also determine the type of the 

design, rotatable when (Alpha=1.41), orthogonal 

(Alpha=1.26) or face centered (Alpha=1) this design 

is preferred because it ensures that the axial point 

location in the factorial space [26]. Center points 

represent replicate terms and can assess the 

experimental error.  

Central composite design (CCD) was our 

suitable choice as we have two numeric factors and 

one categorical, while in Box-Behnken method at least 

three factors should be numeric (continuous).  

The three independent factors are: Factor A: 

pH of the aqueous part of the mobile phase, the studied 

levels were at 3, 5 and 7. Factor A is considered to be 

a numeric factor. Factor B: the organic modifier 

(acetonitrile) ratio also categorized as a numeric 

factor, was evaluated at three levels which were 30, 40 

and 50%. Factor C: the column type used was either 

C8 or C18 as a categorical factor. Alpha value was 

selected equal to 1 and face centered design was 

constructed; the response was the natural logarithm 

(ln) of variance of retention times. 

The number of designed experiments was 18, 

calculated by the following equation: 

 

𝑁 = 2𝑘 + 2𝑘 + 𝑐           equation 3 

 

N: the number of experiments 

k: the number of factors 

c: the number of replicates 



 ...........SOME DIALKOXYBENZAMIDE PHOSPHODIESTERASE-4B INHIBITORS 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 65, No. 9 (2022) 

 

767 

Analysis of variation (ANOVA) was applied 

to check the significantly of the model and the 

included terms, Table 2. The obtained model was 

quadratic. The p-value of the obtained model was 

0.0001, which means that the model is appropriate and 

significant. Model reduction was done to get rid of the 

nonsignificant terms; this step can be performed by 

different techniques such as backward, stepwise and 

forward selection. Backward was the preferred and the 

chosen method being more robust than the others. 

Herein, the nonsignificant term A2 was removed. 

Finally, the obtained model after reduction was as 

follows: 

ln(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) = 0.44 − 1.08𝐴 + 0.38𝐵 − 0.36𝐶
− 1.24𝐴𝐵 + 0.69𝐴𝐶 − 0.5𝐵𝐶
− 0.49𝐵2                      𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 

A: pH 

B: organic modifier 

C: column type 

  

The model F-value 15.57 implies the model 

is significant. Values of Prob>F less than 0.05 

indicates model terms are significant, in this case A, 

B, C, AB, AC, BC, B2 are the significant model terms. 

The model correlation coefficient R2 , Adj. R2 and 

Pred. R2 values were: 0.915, 0.8571 and 0.6776 

respectively. Pred. R2 value is in reasonable agreement 

with Adj. R2 and accepted because the difference 

between them not greater than 0.2 or 20% [27]. 

Adaquate precision (Signal to Noise ratio) which 

refine the error between the predicted values and the 

average prediction was 13.207 this indicates adequate 

signal of the model. As R2 and Adj. R2  values were 

more than 0.7 and S/N more than 4, so this model can 

be used to navigate the design space and will be able 

to find the optimum chromatographic conditions for 

the studied compounds.  

It can be concluded from Figure 2, the 

experimental and predicted values appear to be in a 

good agreement, Figure 2A. From the normal 

probability plot of residuals, it can be clearly noticed 

that the residuals are placed on a straight line and a 

normal distribution appears, Figure 2B. The plot of 

residuals vs the predicted response, Figure 2C, can 

prove the suitability and the fitness of the model for 

the used data. 3-D surface plots showed the impact of 

the factors on the response. The variance increased 

whenever pH values reduced and organic modifier 

increased, Figure 3. Perturbation plot, Figure 4, was 

employed to show the effect of the factors on the 

response. The curvature shape of factor B (organic 

modifier ratio) indicate that ln(variance) of the 

retention times could be more sensitive to this factor 

more than factor A (pH).   

Finally, numerical optimization was 

performed under the following constraints: pH was in 

range, organic modifier was in range, the selected 

column was C8 as it showed more symmetric and 

sharper peaks than C18, the response ln(variance) was 

maximized. Different solutions were gotten after 

numerical optimization and maximization of the 

response and it was found that Run 2 (pH=3, organic 

modifier ratio = 50% using C8 column) is the optimum 

run with 0.988 desirability, Figure 5 and then used in 

QSRR studies. 

 
 
Table 2: ANOVA for response surface reduced quadratic model 

Source Sum of squares Df Mean square F-value P-value   

Model 15.85 7 2.26 15.57 0.0001   

A-pH 9.02 1 9.02 62.01 <0.0001   

B-Organic modifier 1.37 1 1.37 9.44 0.0118   

C-Column 1.97 1 1.97 13.56 0.0042   

AB 8.93 1 8.93 61.39 <0.0001   

AC 3.66 1 3.66 25.17 0.0005   

BC 2.41 1 2.41 16.57 0.0022   

B2 1.00 1 1.00 6.67 0.0256   

Residual 1.45 10 0.15     

Pure error 0.000 2.00 0.000     

Cor Total 17.30 17      

Std. Dev. 0.38       

Mean -0.22       

PRESS 5.58       

R2 0.9159 Adj. R2 0.8571 Pred.R2 0.6776 Adeq. Precision 13.207 
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Figure 2. A: plot of actual vs predicted response B: normal probability plot C: plot of residuals vs predicted response 

 
Figure 3. Perturbation plot of ln(variance)                         

 
Figure 4. 3D surface plot of variance as function of pH and organic modifier ratio 
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Figure 5. predicted solution for maximum ln (variance) of retention times by CCD numerical optimization 

 
3.2 QSAR/QSRR models: 

3.2.1 Linear models:  

3.2.1.1 Stepwise Selection-MLR 

Stepwise selection (which combines forward 

selection and backward elimination) was run on the set 

of calculated descriptors after excluding descriptors 

with constant values, descriptors with standard 

deviation equals 0 and descriptors with high 

correlation > 0.95 one of them was deleted. 

 QSRR study: logarithmic values of retention 

times (log tR) were utilized as dependent variables. on 

the other hand, the selected descriptors, which 

represent the independent variables in the model, 

were: Q-VSA-FPNEG (the fractional negative polar 

van der waals surface area) with positive correlation 

coefficient, SlogP-VSA6 (log of the octanol/water 

partition coefficient calculated from the structure 

including implicit hydrogens). VSURF-HL2 

(represent molecular hydrophilic-lipophilic balance) 

this descriptor inversely related to the retention. The 

standardized regression coefficients which reflect the 

importance and the significance of each descriptor in 

the model [12] were 0.708, 0.442 and 0.417 for Q-

VSA-FPNEG, SlogP-VSA6 and VSURF- HL2 

respectively, Figure 6A. 

 

𝑙𝑜𝑔 𝑡𝑅 = 0.205 + 0.026(SlogP − VSA6) + 3.363(𝑄𝑉𝑆𝐴 −
𝐹𝑃𝑁𝐸𝐺) − 5.826 (𝑉𝑆𝑈𝑅𝐹 − 𝐻𝐿2)    equation 5 

 

(R2=0.82, R2
adj=0.767, Q2

LMO=0.783, R2
pred= 0.83) 

 

From the previous QSRR model, we have a 

sight on the factors that can affect chromatographic 

behavior. It is clearly apparent that the QSRR model 

was affected by the lipophilicity and the charges of the 

eluted compounds. The influence of functional groups 

such as presence of halogen could increase the 

lipophilicity and thus can cause increasing of the 

retention of the compound in reversed phase 

chromatography as seen in compound 4h which has 

the highest retention time. The methoxy group could 

increase the polarity of the compound so reduction in 

the retention is noticed (Table 4). 

 QSAR study: pIC50 (-log scale of 1/IC50 in 

molar units) values were used in the model 

development (Table 5). The most influential 

descriptors were PM3-HOMO (a quantum-chemical 

descriptor represent the energy of the highest occupied 

molecular orbital and calculated by using PM3 

Hamiltonian) with a positive coefficient, when this 

descriptor value increase this means the ability of the 

compound to donate electrons will increase and the 

nucleophilic reactions could occur easily [28,29]. 

From the obtained model it can be revealed that 

molecules with lower electron accepting properties 

could have higher activity. BCUT-SMR2 (BCUT 

descriptors use the atomic contribution to the molar 

refractivity calculated according to Wildman and 

Crippen SMR method) and FASA (water accessible 

surface area of all atoms with positive/negative partial 

charge). The importance of each descriptor in the 

model were PM3_HOMO > FASA > BCUT-SMR2, 

Figure 6B.  

 

𝑝𝐼𝐶50 = 8.086 + 4.33(BCUT − SMR2) +
0.596(𝑃𝑀3 − 𝐻𝑂𝑀𝑂) + 5.9 (𝐹𝐴𝑆𝐴) 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 
 

(R2=0.83, R2
adj=0.765, Q2

LMO=0.745, R2
pred= 0.7) 

The robustness of the generated 

QSAR/QSRR models by SS-MLR was estimated by 

internal validation, leave-many out (L20%O) cross-

validation method. The cross-validation correlation 

coefficient (Q2 or R2cv) values for each model were 

more than 0.5 [30].  Root mean-square error RMSECV 

and RMSEpred values were low and did not exceed 0.5 

(Table 6&7). External validation was carried out by 

prediction of the test set (non-seen before 

compounds), R2
pred (it also can be termed 𝑄(𝐹1)

2 ) value 

was more than 0.6, this indicates the predictability of 

the model, also additional statistical parameters for 
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external predictability were evaluated, such as the 

value of   
𝑅2−𝑅0

2

𝑅2   where 𝑅2  and  𝑅0
2 obtained from the 

plot of predicted values vs actual without and with 

zero intercept respectively, 
𝑅2−𝑅́0

2

𝑅2   where 𝑅́0
2 obtained 

from the plot of actual values vs predicted with zero 

intercept, k the slope of predicted values vs actual and 

𝑘́ the slope of actual values vs predicted (Table 6&7).  

In Figure 7A, the plot of predicted log tR by 

the generated QSRR model versus experimental 

values were in concurrence and showed significant 

correlation. In Figure 7B, it can be noticed that the plot 

of calculated residuals versus experimental values of 

log tR was distributed around zero, this also can be an 

indicator of the predictive power of the generated 

model. 

 

 

 

 
Figure 6. A: Importance of the contributed descriptors in MLR QSRR model, B: Importance of the contributed descriptors in 

MLR QSAR model 
 
Table 4: experimental and predicted values of retention times in chromatographic conditions C8, pH=3 and 50:50 % (buffered 
water: ACN) and residuals 

Compound Experimental log tR   Predicted log tR  

MLR Res. PCR Res. PC-ANN Res. 

4a 0.52 0.31 0.21 0.54 -0.02 0.41 0.11 

6a 0.51 0.51 0 0.6 -0.09 0.43 0.08 

Rof 0.63 0.71 -0.08 0.61 0.02 0.61 0.02 

4b 0.52 0.45 0.07 0.53 -0.01 0.58 -0.06 

4d 0.30 0.35 -0.05 0.3 0 0.38 -0.08 

6b  0.49 0.6 -0.11 0.65 -0.16 0.58 -0.09 

4i  0.50 0.52 -0.02 0.58 -0.08 0.56 -0.06 

4g  0.54 0.49 0.05 0.54 0 0.58 -0.04 

8 0.26 0.34 -0.08 0.4 -0.14 0.29 -0.03 

4h 0.90 0.91 -0.01 0.7 0.2 0.8 0.1 

4j 0.71 0.69 0.02 0.73 -0.02 0.6 0.11 

4e 0.46 0.43 0.03 0.51 -0.05 0.4 0.06 

Test set         

6c 0.52 0.427 0.12 0.57 -0.05 0.6 -0.08 

4f 0.72 0.739 -0.019 0.69 0.03 0.6 0.12 

4c 0.37 0.38 -0.01 0.49 -0.12 0.41 -0.04 
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Table 5: observed and predicted values of pIC50 and residuals   

  

 

 

 

 

 

 

 

 

 

 

 
 

 
 

*Original IC50[nM] values can be found in the previous study (reference 8) 

 
 
Table 6: Statistical summary to evaluate QSRR models performance 

𝒚 : experimental value for training set, 𝒚̅: the average of the experimental value for training set, 𝒚̂𝑳𝑴𝑶
 leave many out cross-validation predicted 

value for training set, 𝒚𝒕𝒆𝒔𝒕:experimental value of the external test set, 𝒚̂𝒕𝒆𝒔𝒕predicted value for the external test set. 𝑁: number of samples, 𝑅0
2 

obtained from the plot of predicted values vs actual with zero intercept, 𝑅́0
2 obtained from the plot of actual values vs predicted with zero 

intercept, k the slope of predicted values vs actual and 𝑘́ the slope of actual values vs predicted with zero intercept. 

 
Table 7: Statistical parameters to evaluate QSAR model performance 

Compound *Observed pIC50 

 

Predicted pIC50   

MLR Res. PCR Res. PC-ANN Res. 

4a 9.24 8.97 0.27 9 0.24 9 0.24  

6a 9.17 9.17 0 8.93 0.24 9.14 0.03  

6c 9.12 8.98 0.14 9.02 0.1 9 0.12  

4b 8.97 9 -0.03 9 -0.03 9.03 -0.06  

4d 8.93 8.7 0.23 9 -0.07 8.83 0.1  

4i 8.93 8.74 0.19 8.88 0.05 8.7 0.23  

4g 8.89 9 -0.11 8.9 -0.01 8.87 0.02  

8 8.79 8.73 0.06 9 -0.21 8.9 -0.11  

4f 8.72 8.85 -0.13 8.83 -0.11 8.75 -0.03  

4h 8.25 8 0.25 8.5 -0.25 8.37 -0.12  

4j 8.05 8.16 -0.11 8.3 -0.25 8.3 -0.25  

4c 8.64 8.9 -0.26 9 -0.36 8.94 -0.3  

Test set          

6b 9 8.89 0.11 9.02 -0.02 9.09 -0.09  

ROF. 8.9 8.744 0.156 8.97 -0.07 8.89 0.01  

4e 8.53 8.55 -0.02 8.7 -0.17 8.64 -0.11  

QSRR model         

Statistical parameter  MLR PCR PC-ANN          Accepted range 

𝑹𝑪𝑽
𝟐 (𝑸𝑳𝑴𝑶

𝟐 ) = 𝟏 −
∑(𝒚 − 𝒚̂𝑳𝑴𝑶)𝟐

∑(𝒚 − 𝒚̅)𝟐  
 0.78 0.66 0.78  𝑸𝑳𝑴𝑶

𝟐 > 0.6 

(internal validation) 

𝑹𝒑𝒓𝒆𝒅
𝟐 (𝑸(𝑭𝟏)

𝟐 )

= 𝟏 −
∑(𝒚𝒕𝒆𝒔𝒕 − 𝒚̂𝒕𝒆𝒔𝒕)𝟐

∑(𝒚𝒕𝒆𝒔𝒕 − 𝒚̅𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈)
𝟐 

 0.83 0.7  0.64  𝑹𝒑𝒓𝒆𝒅
𝟐 > 0.6 

(External validation) 

𝑹𝑴𝑺𝑬𝑪𝑽 = √
∑(𝒚̂𝑳𝑴𝑶 − 𝒚 )𝟐

𝑵𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
 

 0.082 0.092  0.075  Lower values preferable 

𝑹𝑴𝑺𝑬𝒑𝒓𝒆𝒅 = √
∑(𝒚̂𝒕𝒆𝒔𝒕 − 𝒚𝒕𝒆𝒔𝒕 )𝟐

𝑵𝒕𝒆𝒔𝒕
 

 0.07 0.077  0.086  Lower values preferable 

𝑹𝒕𝒆𝒔𝒕
𝟐 − 𝑹𝟎

𝟐

𝑹𝒕𝒆𝒔𝒕
𝟐

 
 -0.099 0.012  -0.4  <0.1 

𝑹𝒕𝒆𝒔𝒕
𝟐 − 𝑹́𝟎

𝟐

𝑹𝒕𝒆𝒔𝒕
𝟐

 
 -0.099 0.013  -0.4  <0.1 

𝒌  1.025 0.93  1.008  0.85 ≤𝒌≤ 1.15 

𝒌́  0.966 1.052  0.97  0.85 ≤𝑘́≤ 1.15 

QSAR model         

Statistical parameter  MLR PCR PC-ANN          Accepted range 

𝑹𝑪𝑽
𝟐 (𝑸𝑳𝑴𝑶

𝟐 ) = 𝟏 −
∑(𝒚 − 𝒚̂𝑳𝑴𝑶)𝟐

∑(𝒚 − 𝒚̅)𝟐  
 0.745 0.68 0.77  𝑸𝑳𝑴𝑶

𝟐 > 0.6 

(internal validation) 

𝑹𝒑𝒓𝒆𝒅
𝟐 (𝑸(𝑭𝟏)

𝟐 )

= 𝟏 −
∑(𝒚𝒕𝒆𝒔𝒕 − 𝒚̂𝒕𝒆𝒔𝒕)𝟐

∑(𝒚𝒕𝒆𝒔𝒕 − 𝒚̅𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈)
𝟐 

 0.7 0.72  0.835  𝑹𝒑𝒓𝒆𝒅
𝟐 > 0.6 

(External validation) 

 

𝑹𝑴𝑺𝑬𝑪𝑽 = √
∑(𝒚̂𝑳𝑴𝑶 − 𝒚 )𝟐

𝑵𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
 

 0.172 0.192  0.163  Lower values preferable 
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𝒚 : experimental value for training set, 𝒚̅: the average of the experimental value for training set, 𝒚̂𝑳𝑴𝑶
 leave many out cross-validation predicted 

value for training set, 𝒚𝒕𝒆𝒔𝒕:experimental value of the external test set, 𝒚̂𝒕𝒆𝒔𝒕predicted value for the external test set. 𝑁: number of samples, 𝑅0
2 

obtained from the plot of predicted values vs actual with zero intercept, 𝑅́0
2 obtained from the plot of actual values vs predicted with zero 

intercept, k the slope of predicted values vs actual and 𝑘́ the slope of actual values vs predicted with zero intercept. 

 

 
Figure 7. Applicability domain of (A) QSAR& (B) QSRR generated models 

 

 

 
Figure 8. A: Plot of experimental vs predicted log tR by MLR QSRR model, B: Plot of calculated residuals versus 

experimental values of log tR  

 

Applicability domain with leverage approach was 

shown by Williams plot (standardized residuals vs 

leverage), the squared area was between ±3 

standardized residuals and the leverage threshold h*=1 

calculated by equation 1. All the studied compounds 

fell in this square. However, if two-thirds of the test 

set fell into the AD area of the generated model, this 

model could be considered to have a good reliability 

for the predictions [31].  

  

3.2.1.2 Principal component regression 

QSRR study: PCA was performed on a data set 

consisting of 282 previously calculated molecular 

descriptors after excluding descriptors with constant 

values and descriptors with standard deviation equals 

0. Descriptor standardization was performed to ensure 

that all the descriptors have the same weight in the 

analysis process. PCA was a powerful technique to 

summarize and compress the large pool of descriptors 

into only 14 informative PCs also they are orthogonal 

so the collinearity problem between the variables is 

solved [32,33]. These 14 PCs have eigen values more 

𝑹𝑴𝑺𝑬𝒑𝒓𝒆𝒅 = √
∑(𝒚̂𝒕𝒆𝒔𝒕 − 𝒚𝒕𝒆𝒔𝒕 )𝟐

𝑵𝒕𝒆𝒔𝒕
 

 0.11 0.106  0.082  Lower values preferable 

𝑹𝒕𝒆𝒔𝒕
𝟐 − 𝑹𝟎

𝟐

𝑹𝒕𝒆𝒔𝒕
𝟐

 
 -0.063 -0.004  -0.068  <0.1 

𝑹𝒕𝒆𝒔𝒕
𝟐 − 𝑹́𝟎

𝟐

𝑹𝒕𝒆𝒔𝒕
𝟐

 
 -0.059 -0.01  -0.075  <0.1 

𝒌  1 0.99  0.99  0.85 ≤𝒌≤ 1.15 

𝒌́  0.99 1.009  1.007  0.85 ≤𝑘́≤ 1.15 
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than 1 and explain around 100% of variance in the 

original data matrix ( 

 

 

Table 3). To build relationship between these 

acquired PCs subset and the target property forward 

selection-linear regression was carried out. Herein, 

PC2 and PC3 showed significant linear correlation 

with the chromatographic retention according to the 

following equation:  

 

𝑙𝑜𝑔 𝑡𝑅 = 0.533 − 0.089𝑃𝐶2 + 0.105𝑃𝐶3  
                                                       𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

(R2=0.7, R2
adj=0.63, Q2

LMO=0.66, R2
pred= 0.709) 

 QSAR study: the same steps mentioned above 

were also applied here and PC1, PC2 and PC7 showed 

significant linear correlation with pIC50 and the PCR 

equation is:  

𝑝𝐼𝐶50 = 8.832 − 0.145𝑃𝐶1 + 0.207𝑃𝐶2
− 0.096𝑃𝐶7 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8 

 

 (R2=0.69, R2
adj=0.614, Q2

LMO=0.68, R2
pred= 0.72) 

 

 
Table 3: PCs and initial Eigen values 

Component Initial Eigenvalues Extraction Sums of Squared loading 

Total % of Variance Cumulative% Total % of Variance Cumulative% 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

95.993 

46.47 

33.082 

22.965 

18.274 

14.134 

11.801 

9.992 

9.475 

7.143 

4.599 

3.705 

870.3 

97.1 

34.04 

16.482 

11.731 

8.144 

6.480 

5.012 

4.185 

3.54 

3.360 

2.533 

1.631 

1.314 

97019 

074.3 

847040 

50.... 

62...8 

70.397 

76.877 

81.889 

86.074 

89.614 

92.973 

95.506 

97.137 

98.451 

99.542 

100.000 

95.993 

46.47 

33.082 

22.965 

18.274 

14.134 

11.801 

9.992 

9.475 

7.143 

4.599 

3.705 

870.3 

97.1 

34.04 

16.482 

11.731 

8.144 

6.480 

5.012 

4.185 

3.54 

3.360 

2.533 

1.631 

1.314 

97019 

074.3 

847040 

50.... 

62...8 

70.397 

76.877 

81.889 

86.074 

89.614 

92.973 

95.506 

97.137 

98.451 

99.542 

100.000 

Extraction Method: Principal Component Analysis

. 

3.2.2 Nonlinear models PC-ANN:  

QSRR study: ANN architecture: the input layer the first 6 PCs (ranked in descending order according to 

their eigenvalues) were utilized, this number of PCs gives the statistically accepted model.  One hidden layer 

contains 3 neurons also this number of neurons was optimized, learning rate= 0.01, momentum constant α=0.5, 

maximum number of epochs (learning circles) = 1000, weight decay parameter = 10-2, back-propagation training 

algorithm was used for training the neural network, the activation function was tanh-1 , the output layer was the 

predicted values. 

Weight adjustment is an important issue during ANN training, as the ANN is trained more, weights will 

largely grow, and this could lead to an unstable network with poor performance to new unseen data. So, it is 

important to keep these weights small, for this purpose weight decay regularization parameter was used in this 

study as a driving force to reduce the weights and prevent them to be larger[34].  During ANN training process, 

the data set was divided into training set, validation set (20% of the data), the error of validation set was monitored 

to observe the decrease, when this error begins to increase this mean ANN is going to overfit and the training 

process should be stopped (this is called early stopping criterion). The obtained model showed good performance 

depending on Q2
LMO and R2

pred values but not the best comparing with SS-MLR method (Table 6). 

QSAR studies: ANN architecture: the input layer the first 7 PCs (ranked according to their eigenvalues) 

was used.  Only one hidden layer with 3 neurons, learning rate= 0.01, momentum constant α=0.5, maximum number 

of epochs (learning circles) = 1000, weight decay parameter = 10-3, back-propagation training algorithm was used 

for training the neural network, the predicted values showed in (

Table 5). This model was the best depending on external and internal validation results (Q2
LMO=0.77, 

R2
pred=0.835). Additional external validation metrics of this generated QSAR model showed in 

Table 7.  

In Figure 9A, the plot of experimental values 

of pIC50 versus predicted values obtained by the PC-

ANN model, showed the good quality of the model. In 

Figure 9B, the plot of calculated residuals versus 

experimental values of pIC50 was distributed around 

zero, which reflect the good predictivity of the model.   
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Figure 9. A: Plot of experimental vs predicted pIC50 by PC-ANN QSRR model, B: Plot of calculated residuals versus 
experimental values of pIC50 

 

 

4. Conclusion: 

Fourteen reported newly synthesized PDE-4B 

inhibitors and roflumilast were highlighted in this 

research. Central composite design was used to select 

the optimal RP-HPLC conditions (C8, pH= 3 and 

50:50 % organic ratio), retention times obtained under 

these optimal conditions were exploited in QSRR 

studies. Three different linear and nonlinear 

techniques (SS-MLR, PCR and PC-ANN) were 

utilized to build robust QSAR/QSRR models. For 

QSRR modelling, SS-MLR showed best results 

depending on internal and external validation 

statistical parameters, lipophilicity related descriptors 

have the most contribution in this model. PCR didn’t 

give any significant improvement in comparison with 

MLR. QSAR studies, PC-ANN showed the best 

predictive results comparing with SS-MLR and PCR. 

The application of regularization (weight decay type) 

was important to improve the performance of ANN in 

our case study.  
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