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Abstract: In the current work, a finite element formulation is developed for modeling and 

forced vibration of isotropic as well as orthotropic composite beams with distributed 

piezoelectric actuators subjected to both mechanical and electrical loads. The proposed model 

is developed based on a simple higher order shear deformation theory where the 

displacements field equations in the model accounts for a parabolic distribution of the shear 

strain and the non-linearity of in-plane displacements across the thickness and subsequences 

the shear correction factor is not involved. The virtual displacement method is used to 

formulate the equations of motion of the structure system. The model is valid for both 

segmented and continuous piezoelectric elements which can be either surface bonded or 

embedded in the laminated beams. A two-node element with four mechanical degrees of 

freedom in addition to one electrical degree of freedom for each node is used in the finite 

element formulation. The electric potential is considered as function of the thickness and the 

length of the beam element. The steady state responses for damped and undamprd beams are 

formulated. A MATLAB code is developed to compute the static deformation, free vibration 

parameters, and the beams responses due to harmonic excitation of mechanical and electrical 

loads. The predictions from the proposed model are in good shape. 

 

Keywords: Finite element, Piezoelectric materials, higher order deformation theory, 

composite material mechanics, forced vibration.  
 

Nomenclature 
A  Beam cross section area. 

ijA  Elements of extensional stiffness matrix. 

ijB  Elements of coupling stiffness matrix. 

b  Width of beam element. 

ijklC  Elastic constants. 

1c , 2c , 3c  and  4c  Constant coefficients. 

 D  Electric displacement vector (C/m
2
). 

 E  Electric field vector (V/m). 

1E , and  2E  Young’s modulus in the axial and transversal directions. 

 e  Piezoelectric constants tensor (C/m
2
). 
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af   , tf  Axial and transversal mechanical forces. 

L Length of beam element. 

N  Total number of plies in the laminated beam. 

 Q  Elasticity matrix (N/m
2
).  

q  , and q  Nodal displacements and its second derivative.  

1S
 

Surface area in x-y plane. 

T  Kinetic energy. 

wvu ,,  Displacements of any point in the x-, y-, and z directions. 

21anduu  Axial displacements at the beam element nodes. 

W  Work done due to external loads. 

21,andww  Transversal displacements at the beam element nodes. 

xz  Shear strain in x-z plane. 

 s  Dielectric matrix (F/m). 

   Strain vector. 

)(xo  and  )(xzo  Reference surface extensional and shear strains.  

i  Transversal displacement shape functions. 


~

 
Modal damping coefficient. 

i  
Axial displacement shape functions. 

i
 

Rotation displacement shape functions. 

21  and
 

Electrical potential shape functions. 

)(2)(2)( ,, xzxxo and  Reference surface curvatures.  

  Material mass density of the beam. 

   Stress vector (N/m2).  

21  and  Rotation angles at nodes. 

HSDT Higher-order shear deformation Theory. 

SSDT Second-order shear deformation Theory. 

FSDT First-order shear deformation Theory. 

CBT Classical beam Theory. 

 

 

Introduction 

Several researchers have studied the forced vibration and dynamic analysis of smart structures 

with piezoelectric material. 

KYU Kang al., 1996, proposed finite element model to predicte theoretically and measured 

experimentally the damping factor and model damping of the carbon/epoxy beams with 

piezoelectric materials. They suggested that the modal damping was more appropriate 

performance index rather than the damping ratio for vibration suppression in the structure 

from fasting point of view.   Samanta et al., 1996, proposed a finite element formulation based 

on (HODT) for active vibration control of composite plate with piezoelectric actuators and 

sensors due to the applied harmonic mechanical and electrical loads. They concluded that 

significant reduction in vibration amplitude occurs because of increase of induced damping 

through feedback.  Wang and Quek, 2000, provided model for flexural and free vibration 

analysis of sandwich beam with piezoelectric layer.  They concluded that the dynamic 

characteristics of the entire structure are related to the position of the piezoelectric layer.  Sun 

and Huang, 2000, derived analytical solution of smart composite beams based on (FODT) 
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(Mindlin plate theory). They found that the displacement decay amplitude increases as the 

feedback control gain increases, and the piezoelectric film (PVDF) has a 'breakdown' voltage 

of around 200 V. When the input control voltage exceeds this breakdown voltage, the dipolar 

molecular structure of the PVDF is destroyed.  

Hwu et al., 2001, derived an orthogonality relation contained the effects of rotary inertia and 

shear deformation for the free and forced vibrations of smart composite sandwich beams. The 

effects of these two factors are illustrated by numerical examples to complete their study. 

Mitra et al., 2004, presented finite element model based on (FODT) of composite thin walled 

box beams with piezoelectric actuators for vibration control. Open and closed loop responses 

were obtained using state space modeling. A proportional-integral (PI) controller using 

acceleration feedback was implemented for control the vibration due to single-frequency 

excitations. Their experimental and numerical results correlated very well in the proposed 

analysis. Senthil, and Baillargeon, 2004, proposed finite element model of sandwich 

cantilever beam and laminated composite plates using piezoelectric actuators/sensors for 

active vibration suppression.  The electric field was applied perpendicular to the direction of 

polarization. Their predictions showed good agreement with the experimental results. ZHOU 

et al., 2005, developed analytical model for piezoelectric bimorph based on improved 

(FSDT). Their model combined the equivalent single-layer approach for mechanical 

displacements and a layer wise-type modeling of the electric potential. The obtained results of 

their model revealed that: i) Excellent agreement between the model predictions with shear 

correction factor equal to 8/9 and the exact solutions for the resonant frequencies. ii) Accurate 

bending vibration frequencies even for thick beam, whereas the classical thin beam theory or 

plate theory gives low accurate results. iii) Further investigations are needed for the shear 

correction factor of the piezoelectric laminates. Trindade and Maio, 2006, developed finite 

element formulation to evaluate the vibration damping performance of sandwich cantilever 

beams.  The beams connected to resistive shunt circuits for the passive vibration control. The 

obtained results for cantilever beam gave a reduction up to 15 dB in resonant vibration 

amplitude of the third mode.    

In the present work, a finite element model is developed for isotropic and orthotropic beams 

with piezoelectric actuators based on a simple higher order shear deformation theory made by 

(Reddy, 1984). The steady state response of the beam system is analyzed for six cases of 

loading conditions. The model is able to compute static deformations, natural frequencies, 

mode shapes, and the beams responses due to a harmonic excitation of both mechanical and 

electrical loads.  

 

 

Theoretical Formulation 
The displacements field equations for the beam using higher order shear deformation theory 

(Reddy, 1984; Khdeir and Reddy, 1997) at any point through the thickness are presented by: 

 3

2

4
( , , ) ( )

3
 

 
     

x x

w
u x y z u x z z

h x
 (1) 

 ( , , ) 0v x y z   

       ( , , ) ( )w x y z w x  

where 0u  and 0w   denote the displacements of a point ( , ,0)x y  at the mid plane, and ( ) x  is 

the rotation angle along x  axis.   For one-dimensional beam where the width in the y-

direction is stress free and by using the plane stress assumption the remaining strains 

components xx and xz    are represented by: 
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Piezoelectric Constitutive Relations 
The piezoelectric constitutive equations are given by (Nye, 1985; Tzou and Tseng, 1990; 

Ikeda, 1996): 

 ij ijkl kl kij kc e E    (4) 

 
s

i ikl kl ik kD e E    (5) 

where; 6,..,1, ji ; and 3,..,1k .  

 

In the proposed model the following assumptions are used: (1) The width in y direction is 

stress free and the plane stress assumption is used. Therefore, it is possible to set 

01223122322    and 022   in Eqn. (4). (2) The polarization axis z is aligned 

with the thickness direction of the beam, thus only  zD  in Eqn. (5) is taken into consideration. 

(3) By introducing zE  applied across the actuator thickness and the other components of the 

electric fields are zeros. (4) The coefficient 15e  and s

11  are neglected. Therefore the 

constitutive relations Eqn. (4) and Eqn. (5) are reduced to: 
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where, the coefficients in Eqn. (6) are given by: 

 

Case I: Isotropic Beam 

 EQ 11

~
            GQ 55

~
        , and         ijij QQ    (7) 

 

Case II: Orthotropic Beam 
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5555
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QQ   (8) 

 

And the piezoelectric coefficients are given by: 
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where; ijQ  and ije  are the transformed reduced stiffness coefficients, and piezoelectric 

modules, respectively (Reddy, 2004). 
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Energy Formulation 
The kinetic energy of the structure system is given by:  

  dvwuT
v

  22

2

1
  (10) 

The work done due to external mechanical and electrical loads is represented by:  

  

1

1

00 S

it

L

t

L

a dSwfwdxfudxfW
i

  (12) 

where;  (C/m
2
)  is the surface charge density on the actuator surface, and   is the electric 

potential at the piezoelectric surface area 1S  at ( 11 hz   ). 

 

The total internal strain energy for the structure system U  is the sum of internal strain energy, 

and the electric field potential energy such as (Tzou and Tseng, 1990):   

     dvEDU
v

zzxzxzxxxx  
2

1
 (13) 

Case I: Isotropic Beam 
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Case II: Orthotropic Beam 
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Finite Element Formulation 
A two nodes beam element with four mechanical degrees of freedom and one electrical 

degree of freedom   , , , ,

T
T

x

w
q u w

x
  

 
  

 
 at each node are used.  
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Figure 1. Element nodal degrees of freedoms. 

 

The linear interpolation shape functions  j  and j  are used for representing the axial 

displacement 0u  and the rotation angle x  at the mid-plane as (Cook et al., 1974):  

 
L

x
11 ,   and  

L

x
2  (16) 

 
L

x
11 ,   and  

L

x
2  (17) 

And a Hermit cubic shape functions j  are used for representing the transversal displacement 

0w  at the mid-plane as (Cook et al., 1974):  

  

z 

x 
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In the proposed model the electric potential is considered as function of the thickness and the 

length of the beam (Elshafei
1
 et al., 2010; Elshafei

2
 et al., 2013). In case of the electric 

potential is function of the length, it can be represented by: 

   j

j
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where;  
L

x
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
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L
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
 (20) 

 

And in case the electric potential is function of the thickness of the beam, it is given as: 
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where; 
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Thus by the product of equations (20) and (22) and impose the homogenous boundary 

condition on the bottom surface to eliminate the rigid body modes. Thus the electric potential 

can be written as (Elshafei
1
 et al., 2010; Elshafei

2
 et al., 2013): 
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And the shape functions are finally takes the form (Elshafei
1
 et al., 2010): 
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Variational Formulation 
The principle of the virtual displacement is expressed as follows:   

 TWU    (25) 

The first variation of the kinetic energy Eqn. (10) is expressed as: 
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By substituting the shape functions equations (16), (17), and (18) into Eqn. (26), and perform 

the integration the mass matrix of the beam element can be obtained.   

By inserting the displacements equation (1) into Eqn. (12) and take the first variation yields; 
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By substituting the shape functions equations (16), (17), (18) and (24) into Eqn. (27) and 

perform the integration over the length of the beam yields the element load vector. Thus,  
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Case I: Isotropic Beam 
By inserting Eqns. (2) into Eqn. (14) and take the first variation, the strain energy equation 

(14) takes the form: 
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










 (28) 

By substituting the shape functions equations (16), (17), (18) and (24) into Eqn. (28) and 

perform the integration over the beam volume yields the element stiffness matrix for isotropic 

beam. 

 

 

Case II: Orthotropic Beam 
The first variation of the strain energy equation (15) takes the form: 
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By substituting the shape functions equations (16), (17), (18) and (24) into Eqn. (29) and 

perform the integration over the beam with length L, width b, and height h yields the element 

stiffness matrix for orthotropic beam.   

 

Equation of Motion 
The overall equation of motion of the structure system is obtained in terms of the global 

coordinates representing the global generalized mechanical displacements vector q , and the 

global generalized electric coordinate vector    describing the applied voltages at the 

actuators as follows: 

 










































G

Fq

KK

KKqM

q

qqqqq

 







00

0
 (30) 

where qqM  and qqK represent the global generalized mass and stiffness matrices 

corresponding to the vector of mechanical displacement. qK , and qK  represent the static 

coupling of the substrate with the piezoelectric layers.  And the term K is electric stiffness 

matrix. The vector  F  is the applied mechanical force vector, and  G  is the electric 

excitation force vector as a result of the applied surface charge density distribution on the 

actuators. 

 

Forced Vibration 
To study the forced vibration response of the structure substrate a transverse harmonic 

mechanical load is applied normal on the top surface, and a harmonic voltage is also applied 

to the actuator layer. Both of these loads are represented by: 

 tftzf t sin),( 0    And    tVtzx  sin),,0,( 0

1   (31) 

where; 0V , 0f , and   are the amplitude of the electrical excitation distribution (volt), the 

transverse mechanical loads, and the excitation frequency, respectively. 

 

The first variation of the external work equation (18) as a function of time has the form: 

  

1

1

0

),,0,(),(),(
S

it

L

t dStzxwtzfwdxtzfW
i

  (32) 

By substituting Eqn.(31) Eqn. into (32) and the shape functions Eqns.(18), and (24) into 

Eqn.(32) and perform the integration over the beam length and surface of the piezoelectric 

actuator yields the mechanical load vector  )(tF   and electrical actuating load vector  )(tG , 

respectively in the right hand side of Eqn. (30) as a function of time. The electrical actuating 

load vector )(tG  is expressed with specified applied voltage instead of specifying the charge 

distribution. 

 

The structure damping is included in the overall structure system equation, Eqn. (30), and it 

can be written as: 

 

              )()( tKtFqKqCqM qqqR    (33) 

where;  RC  is the Rayleigh’s damping matrix and given as follows: 

      qqR KMC    (34) 

And   and   are Rayleigh’s coefficients of proportionality. 

 



Paper: ASAT-15-007-ST 

 

 

9 

The steady state response of the beam system is analyzed using mode superposition. By using 

left hand side of Eqn. (30) the eigenvalue /eigenvector analysis can be performed and using 

for uncouple the global system of ordinary differential equations. The independent ordinary 

differential equations could then be solved individually and the response for any given 

vibration model can be obtained such as: 

 

For un-damping case: 

The solution of equation (30) can be expressed as (Rao, 1995): 

 





 dtQt
q

tqtq

L

ii

i

i

i

i

iii )(sin)(
1

sin
)0(

cos)0()(
0

 


         ni ,......,2,1  (35) 

For damping case: 
The solution of equation (30/36) can be expressed as (Rao, 1995):  

 
2
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( ) (0) cos (0) (0) sin
1

1
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i i i i

i i
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i d
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q t q e t q q e t

Q e t d
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
 



   


 

 

 
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  

 

 (36) 

where; 2~
1 iid    is the damped natural frequency and  i

~
  the modal damping 

coefficient.   The initial generalized displacements and velocities  0iq  and  0iq  can be 

obtained from the initial values of the physical displacements and velocities, respectively. 

 

 

Validation Examples 
In the present study, a MATLAB code is constructed to perform the finite element model of 

isotropic and orthotropic smart beams with piezoelectric materials. The static deformations, 

the natural frequencies, mode shapes validation are presented by (Elshafei
2
, 2013) for the 

proposed model. The structures responses are calculated for the beams due to different kinds 

of mechanical and electrical loads. The code can be used for both thick and thin composite 

beams. A cantilever beam consisted of structure substrate, adhesive layer, and piezoelectric 

layer shown in Figure 1 is used in this validation with material properties given in Table 1. 

 

 

 

 

 

 

 

 

 

Figure 2: Cantilever beam with piezoelectric layer 
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The following six cases are studied to validate the proposed forced vibration model for a 

beams subjected to sinusoidal electrical and mechanical loads. Both types of beams are 

studied in each case. 

 

Table (1): Geometric and material properties of smart beams   

 

Properties 
Aluminum 

substrate
a 

A54/3501 

Graphite /epoxy [0] 

composite substrate 

Adhesive 

layer
a
 

Piezoelectric 

actuator PZT- 4
a
 

11E  (GPa) 68.9 144.8 6.9 83 

22E (GPa) 68.9 9.65 6.9 66 

12  0.25 0.3 0.4 0.31 

12G (GPa) 27.6 4.14 2.46 31 

31d  (m/v) 0 0 0
 

-122 10
-12

 

33d (m/v) 0 0 0
 

285 10
-12

 
s

33  (F/m) 0 0 0
 

11.53 10
-9

 

  (
3/ mkg ) 2769 1389.23 1662 7600 

Length (m) 0.1524 0.1524 0.1524 0.1524 

Thickness( m ) 0.01524 0.01524 0.000254 0.001524 

Width (m) 0.0254 0.0254 0.0254 0.0254 

    
a
 (Saravanos and Heyliger, 1995) 

 

 

A. Effect of the Mechanical and Electrical Loads Directions on the Beam 

     Response 
Figure 3 shows the responses of aluminum beam and symmetric angle-ply laminated beam 

[0/90/90/0]  beams due to the mechanical load with different amplitudes values (-100 N and 

100 N) and constant applied voltage of 150 volt. It is seen from the figure that the beams 

responses are affected by the changing in the direction of the applied mechanical load. 

 

             
                     a. Aluminum beam                                                                       b. Composite beam 

                (AL Substrate -Layer PZT-4) 
 

Figure 3: Effect of mechanical load on the beam response. 
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B. Effect of the Electrical Excitation Load Direction on the Beam Response at 

     Constant Mechanical Load 
Figure 4 shows the responses of aluminum beam and symmetric angle-ply laminated beam 

[0/90/90/0] when the piezoelectric actuator is subjected to various values of the applied 

electrical loads in the polarization direction and vice versa (150 volt and -150 volt) and a 

constant mechanical load of 10 N. It is seen from the figure that the beams responses are 

affected by the electrical excitation load direction. 

 

                

                     a. Aluminum beam                                                           b. Composite beam 

                (AL Substrate -Layer PZT-4) 
 

Figure 4: Effect of electrical load direction on the beam response. 

 

 

C: Effect of Electrical Load Amplitude on the Beam Response 
Figure 5 shows the responses of aluminum beam and symmetric angle-ply laminated beam 

[0/90/90/0] due to the application of electrical loads with various amplitude values (50, 150, 

300 & 400) volt, and mechanical load with amplitude of 100 N. 

 

       
                                a. Aluminum beam                                                   b. Composite beam 

                       (AL Substrate -Layer PZT-4) 
     

Figure 5: Response of beam due to electrical loads 

 

 

D: Effect of Ply Orientation Angle on the Beam Response 
Figure 6 shows the smart composite beams responses with different ply-orientation angles, 

symmetric angle-ply laminated beam [0/90/90/0], [30/50/50,30],  [40,-45,-45,45], and anti-

symmetric angle-ply laminated beams [0/90/0/90], [30/50/30,50],  [40,-45,45,-45], due to a 

constant electrical load with amplitude value of 150 volt and mechanical load with amplitude 

of 100 N.   
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Figure 6:  Response of smart composite beam with different ply-orientation angles. 

 

 

E: Effect of the Loads Application Time on the Beam Response 
Figure 7 shows the effect of the time on the responses of aluminum beam and symmetric 

angle-ply laminated beam [0/90/90/0] due to the application of electrical load with amplitude 

of 100 volt and mechanical load with amplitude value equal to 50 N. 

 

 

 
 

Figure 7:  Time response of aluminum beam (substrate 1-layer PZT-4).  

 

F: Beam Response due to the Effect of the Proportional Damping 
The responses of aluminum beam and symmetric angle-ply laminated beam [0/90/90/0] are 

shown in Figures (8 and 9). Both beams are subjected to electrical load with amplitude 150 

volt and mechanical load with amplitude 50 N, and with a time step of 1 s  where Rayleigh’s 

coefficients 6 51 10 , 0.965 10a b      (Ramkumar and Ganesan, 2009).  
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Aluminum beam Composite beam 

 

Figure 8: Damped response of aluminum and composite beams 

 

 

Conclusion 
A finite element model was proposed to predict the static deformation, free vibration 

characteristics, and the steady state response of laminated aluminum and fiber reinforced 

composite beams with piezoelectric actuators. The following conclusions have been drawn: 

1) The beams responses increase by twice the value as long as the applied mechanical 

load is applied in the same direction of the electrical loads. 

2) The beam responses affected by the direction and amplitude of electric excitation load 

also the time of application of the electrical loads.  

3) Also beams responses affected by the materials of the substrate, ply orientation angles 

of the fiber reinforced beam, and the chosen value of the damping coefficients. 

4) The proposed model did not suffer from the shear correction factor which is 

problematic in the first order shear deformation theory.  

5) A notified decreases of the number of degrees of freedom of the proposed element 

compared with other element developed by the higher order shear deformation theory, 

which, of course, save the computational time. 

6) The validity of representing the electric potential as a function of the thickness and the 

length of the beam element in the proposed model.   

7) The aluminum beam is responded more than the graphite/epoxy beam as expected 

because the latter is stiffer in the x-direction. For effective actuation, it is preferable to 

use piezoelectric with high stiffness in order to import greater actuation capability.  In 

addition the less stiff the substrate is, the greater responding obtained.   
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