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Abstract: Composite materials have interesting properties such as high strength-to-weight 

ratio and relatively high damping characteristics compared to metals which make them very 

attractive for rotating systems. They also provide designers with the possibility of obtaining 

predetermined behaviors in terms of position of critical speed by changing the arrangement of 

the different composite layers orientation and number of plies. 

The composite rotating shafts used will be fabricated using hand layout technique by filament 

winding technique. Glass fiber (E-Glass) as reinforced with a matrix of polyester resin and 

hardener will be used to construct the composite layers needed. Five cases will be studied 

using composite shafts wounded by different layers of composite materials namely; different 

stacking sequence, fiber orientation angles, (L/D) ratio, boundary condition and finally 

various types of fiber volume fraction. In the theoretical part, the validity of the proposed 

theoretical model for evaluating the dynamic response of composite shafts will be examined 

utilizing the equivalent modulus beam theory (EMBT). 

In the experimental part, the frequency of composite shaft specimens will be measured by 

self-excitation and so critical speed of the rotating shaft will be determined by using the (TM1 

MKII Whirling) machine apparatus. 

The numerical finite element technique is utilized to compute the eigen pairs of laminated 

composite shafts. A finite element model FEM has been developed to formulate the stiffness 

matrices using lamination theory. These matrices take into account the effects of axial, 

flexural and shear deformation on the eigen-nature of rotating composite shaft. 

Eigen natures of composite shafts were estimated through modal testing and are compared 

with (EMBT) results. 

The comparison between the numerical and experimental results proves that the suggested 

finite element models of the composite shaft provide an efficient accurate tool for the 

dynamic analysis of rotating composite shaft. 
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1. Introduction 
Composite materials are widely used as alternatives for conventional materials because of 

their desirable and tailorable properties that could not be achieved by either of the constituent 

material acting alone. Their superior strength-to-weight ratio, greater specific stiffness, and 

properties such as good wear resistance, long fatigue life, durability, thermal, electrical, and 

acoustical insulation, etc., have made them attractive alternatives for conventional materials in 
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a wide variety of products. The most common example of a composite material is reinforcing 

fibers embedded in a matrix. Fiber orientation in each layer as well as the stacking sequence 

of various layers can be controlled to generate a wide range of physical and mechanical 

properties for the composite laminate. The fibers form the principal load carrying members, 

while the surrounding matrix acts as a load transfer medium between the fibers. The 

surrounding matrix also keeps the fibers in desired location and orientation and also protects 

them from environmental damages due to temperature and humidity. 

 

Rotating flexible shafts are important machine elements, commonly used in many mechanical 

systems. These include reciprocating and centrifugal compressors, and lathe, grinding and 

milling machines which employ rotating elements as cutting tools. The rotating shaft may also 

be used as a means of power transmission in industrial machines such as gas turbines, turbo 

generators, aircraft engines, automobiles, medical equipment, household accessories and 

internal combustion engines [1]. In each case, the vibration control and stability of the 

rotating shaft are essential for the success of the machine operation, the precision of the 

cutting tools or the high efficiency of energy transmission in engines. The stability of rotating 

shafts under both conservative and non-conservative forces has been treated by Bolotin [2]. 

 

Rotating shafts are used for power transmission in many modern machines. Accurate 

prediction of dynamics of rotating shafts is necessary for a successful design. Free vibrations 

analysis is one of the important steps in rotor-dynamics. Grybos [3] considered the effect of 

shear deformation and rotary inertia of a rotor on its critical speeds. Choi et al. [4] presented 

the consistent derivation of a set of governing differential equations describing the flexural 

and the torsional vibrations of a rotating shaft where a constant compressive axial load was 

acted on it. Jei and Leh [5] investigated the whirl speeds and mode shapes of a uniform 

asymmetrical Rayleigh shaft with asymmetrical rigid disks and isotropic bearings. Free 

damped flexural vibrations analysis of composite cylindrical tubes was carried out by Singh 

and Gupta [6], where they used beam and shell theories. Sturla and Argento [7] studied the 

free and forced response of a viscoelastic spinning Rayleigh shaft. Melanson and Zu [8] 

studied the free vibrations and stability of internally damped rotating shafts with general 

boundary conditions. Kim et al. [9] studied the free vibrations of a rotating tapered composite 

Timoshenko shaft. Hosseini et al. [10] studied the free vibrations of an in-extensional simply 

supported rotating shaft with nonlinear curvature and inertia are considered. Rotary inertia 

and gyroscopic effects are included, but shear deformation is neglected. 

 

Accurate prediction of damping characteristics of rotor systems is therefore fundamental in 

the design of rotating machines as it provides estimations on safe-ranges of speeds of rotation. 

Over the last few years, many studies have focused on predicting critical speeds, natural 

frequencies, unbalance responses and, in particular, instability thresholds. Newkirk [11] 

observed that rotor-disk systems would undergo violent whirling at the first natural frequency 

at speeds above the first critical speed. Kimball [12] showed that internal damping 

destabilizes the whirling motion if the rotation speed of the rotor exceeds the first critical 

speed. In addition, Bucciarelli [13] showed that the instability criterion based on the ratio of 

energy dissipated between internal and external damping is inaccurate and that internal forces 

can produce instability by coupling spin and whirl motions. 

 

Classical results have been obtained and showed that rotor stability is improved by increasing 

external damping, whereas, increasing internal damping may reduce the instability threshold. 

However, most of the published studies deal with metal rotating structures and remain 

exclusively numerical without precise estimations of internal damping. Several finite element 

formulations have been performed for the analysis of composite shafts. These formulations 



Paper: ASAT-15-014-MS 

 

 

3 

are based on homogenized beam and shell theories. The equivalent modulus beam theory 

(EMBT), which is widely used for the dynamic analysis of composite shafts, was firstly 

introduced by Tsai [14]. 

 

Rastogi [15] used a hybrid of carbon/epoxy and glass/epoxy to optimize the cost versus 

performance requirements. He analyzed and designed a composite drive shaft using two 

approaches. The first approach is closed-form analytical expressions for the critical speed, 

torsional strength and buckling strength, which was utilized to develop a preliminary design 

tool. The effect of fiber orientation angle on the fatigue strength of composite tubes was 

discussed by many researchers [16–18] but, on the other hand, the effect of stacking sequence 

on the torsional fatigue strength is not available. Bert and Kim [19] carried out an analytical 

solution to compute torsional buckling of composite drive shafts. They calculated the 

torsional buckling load of composite drive shafts with various lay-ups with good accuracy by 

considering the effect of off-axis stiffness and flexural moment. Their theory can predict the 

torsional buckling of composite drive shafts under pure torsion and combined torsion and 

bending. Chen and Peng [20] performed numerical simulation using a finite element method 

to study the stability of composite shafts under combined loading conditions. They predicted 

the critical axial load of a thin walled composite drive shaft under rotation. Badie et al. [21] 

studied the effect of fiber orientation angles and stacking sequence on the torsional stiffness, 

natural frequency, buckling strength, fatigue life and failure modes of composite tubes. Finite 

element analysis (FEA) has been used to predict the fatigue life of composite drive shaft 

(CDS) using linear dynamic analysis for different stacking sequences. 

 

From previous review we can note that many papers introduced FEM to describe composite 

model studying a single fixation such as simply supported, while a group of papers was 

interested to study a limit number of lamina orientation. Other authors applied equivalent 

modulus beam theory (EMBT). The theory is generalized to include bending–twisting, shear–

normal and bending–stretching coupling effects. To account for the locations of different plies 

and their stacking sequence, longitudinal and inplane shear moduli are taken in the ply level. 

A Bresse–Timoshenko beam with transverse shear deformation, rotary inertia and gyroscopic 

effects included is considered from many authors to describe and formulate the stiffness and 

inertia effects of composite shaft system. 

 

The main objectives of the present paper are studying the effect of staking sequences and 

coupling mechanisms on the dynamic analysis (frequency, damping factor and mode shape) 

of composite shaft. 

 

In the theoretical part, the validity of the proposed theoretical model for evaluating the 

dynamic response of composite shafts will be examined utilizing the finite element technique.  
 

In the experimental part, the frequency of composite shaft specimens will be measured by 

self-excitation and so critical speed of the rotating shaft will be determined by using the (TM1 

MKII Whirling) machine apparatus. 

 

The effects of stacking sequences and anisotropic parameters on eigen-nature have been 

analyzed. This can be useful for designing the composite shafts for different requirements. 

Half-power bandwidth method used for measure damping nature has been demonstrated for 

estimating the damping nature at any speed which can be quite a valuable tool for estimating 

the damping at different speeds, it can be concluded that inclusion of layer along the 

transverse direction into fiber/polyester material is a good option for manufacturing stiffer 

shafts. 
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The comparison between the numerical and experimental results proves that the suggested 

finite element models of the composite shaft provide an efficient accurate tool for the 

dynamic analysis of rotating composite shaft.  

 

 

2. Materials and Production of Laminates Composite Shaft 
Glass fiber is used as reinforcement in the form of bidirectional fabric (Standard E-Glass 

Fiberglass) and polyester with catalyst addition as matrix for the composite material. The 

mechanical properties of the composite are calculated analytically using the mixture rule [22].  

Through hand lay-up process followed by a cure process, five sets of symmetrical laminates 

with a total of five layers each one are produced: 

 

Set1: [0/0/0/0/0], Set2: [0/45/0/45/0], Set3: [0/90/0/09/0] Set4: [45/45/0/45/45] and Set5: 

[90/90/0/90/90]. The numbers mentioned in the above sets indicates the angle of fiber 

inclination measured by degrees. 

 

After the cure process, the laminated composite shaft dimensions with length of L = 790 mm 

and D= 18.3 mm diameter and various L/D ratios are 20, 30 and 40. 

 

A typical specimen made from fiber reinforced plastic FRP composite shafts formed from 

five plies with 1mm thickness for each ply is shown in Fig. 1. Three composite levels were 

selected for each code number. These are specimens with low fiber volume fraction Vf = 25% 

and two levels of average fiber volume fraction Vf = 45 % and 65%. The fiber volume 

fraction in the specimens is determined experimentally, using the firing processes method 

[23] 

 

In order to study the effect of lamina orientation and staking sequence on the modal 

parameters, five code numbers of the specimens were fabricated and stated for each fiber 

volume fraction. 

 

 

Fig. 1   Three-dimensional specimen of composite shaft. 

 

3. Theoretical Investigation 
The present theoretical study is used to compute the mechanical properties of laminated 

composite shaft using mixture rule shown in Fig. 2. The laminate extensional, coupling and 

bending stiffness matrices of composite symmetric laminated composite shaft with different 

predetermined lamina orientations are computed on the basis of the classical lamination 

theory [24]. The material properties of each ply are summarized in Table 1 

 

3.1 Finite Element Formulation 
The rotor model is based on the finite element approach. The distributed properties of shafting 

sections are modeled by the theory of Timoshinko beam (circular) element that accounts for 

rotary inertia, gyroscopic moments, internal damping and shear deformation. The cylindrical 

composite shaft shown in Fig. 3 is assumed to be built up by a number of lamina perfectly 

bonded together. There are no relative displacements between adjacent layers. 

 

790 mm

18.3 mm
φ



Paper: ASAT-15-014-MS 

 

 

5 

 

 
Fig. 2   Composite laminated shaft [25]. 

 

Table 1   Mechanical properties of the composite shaft 

Elastic 

modulus 
E11,  [GPa] E22,  [GPa] G12,  [GPa] ν12 ν21 

Vf = 25℅ 20.75 4.60 2.29 0.27 0.06 

Vf = 45℅ 34.51 6.12 2.58 0.29 0.052 

Vf = 65℅ 48.3 9.2 2.9 0.302 0.058 

 

 
Fig. 3   Finite element of composite shaft. 

 

The finite element used has eight nodes as shown in Fig. 3. For each node, the element has 

four degrees of freedom: two displacements v and w, and two slopes about the y and z axes 

denoted, respectively α and β. In this case, the shaft axis is x. Referring to Fig. 3, the 

displacement field at a point in the element can be expressed in global coordinates as 

 

 [ ]  [ ]  [ ]  
[ ]   [ ]    [ ]  

[ ]   [ ]   [ ]  

(1) 

 

where [ ]  is the translational mass matrix, [ ]  is the rotational mass matrix,[ ]  is the 

gyroscopic matrix, [ ]  is a damping of composite including bearing [ ]  is the stiffness 

matrix and [ ]  is the stiffness matrix including the effects of concentrated bearing properties. 

The reader is referred to [26] for details of these matrices. 
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The Eigen-frequency can be then evaluated from the solution of the characteristic equation for 

composite shaft given by: 

 

 [   [ ]    [ ]  [ ] ]{ }  { } (2) 

 

In view of Eqn. (2), the program has been coded into computer using Matlab (7.1). The 

program computes the mass matrices and stiffness matrices of any orientation and fixation of 

the composite shaft. It computes the Eigen-values and Eigen-vectors. The Eigen-values are 

obtained by computing the roots of the characteristic polynomial of any real square matrix in 

an iterative manner with an accuracy of 10
-6

 for four fixations namely; C-C, C-S, S-S and 

C-F, where: C = clamped, S = simply-support and F = free. 

 

3.2. Modified Equivalent Modulus Beam Theory  
A Bresse–Timoshenko beam with transverse shear deformation, rotary inertia and gyroscopic 

effects included is considered. The theory is generalized to include bending–twisting, shear–

normal and bending–stretching coupling effects. To account for the locations of different plies 

and their stacking sequence, longitudinal and in-plane shear moduli are taken in the ply level. 

 

3.2.1. Formulation 
Consider shaft as shown in Fig. 3. The displacement field is described by the transverse 

displacements, w and v measured in the z and y directions, the bending slopes α and β in the 

x–z and x–y planes and ϕ is the shaft twist angle. The quantities w, v, α, β and ϕ are assumed 

to be time dependent and are expressed as 

 

    ̅     ,   ̅     ,   ̅    ,   ̅     ,    ̅     (3) 

 

where Ω is the whirl frequency 

 
Fig. 3   (a) Rotor-bearing system model, (b) Cartesian coordinates 

 

The strain energy of the shaft including bending in two planes, shear deformation, torsional 

energy can be expressed and strain energy for right and lift bearing [26] as 
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where kB is the bending stiffness coefficient which can be given [27] by 
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The torsional stiffness coefficient kT [27] is 
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and the shear stiffness coefficient kS is given by 

 

     ̀       (7) 

 

where  ̀ is the shear correction factor, Kyi and Kzi are the stiffness coefficient for bearing in y 

and z direction respectively. 

 

In Eqs. (5) and (6),     
 ,  ̅  

   
 and  ̅  

   
 are the outer radii, longitudinal and shear stiffness 

coefficients of the k
th

 ply, respectively. 

 

The total kinetic energy is the sum of the kinetic energies the shaft and the discs mounted on 

it. This can be expressed [26] as 
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Here ρ is the mass density of the shaft material, A, I and Ip are area, lateral and polar area 

moments of inertia of the shaft cross-section. MDi, IDTi and IDPi are mass, lateral and polar 

mass moments of inertia of the i
th

 disc, respectively. The rotational angular speed of the shaft 

is ω. The first, second, third and fourth set of terms within the integral sign give the effect of 

translatory, rotary and torsional inertia, and gyroscopic moment of the shaft. The four terms 

within the summation sign give the same effects for the discs mounted on the shaft. 

 

Table 2   Bearing stiffness data 
 

Bearing stiffness Kz1 (N/m) Ky1 (N/m) Kz2 (N/m) Ky2 (N/m) 

Value  1×10
7
 1×10

7
 1×10

7
 1×10

7
 

 

3.2.2. Solution equations 
The series solution functions are assumed for w, v, α, β and ϕ in the form 
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Here n is the total number of terms in the series solutions. The above functions satisfy 

geometric boundary conditions at x = 0 and x = l: The Lagrangian L = U - T is set up from 

strain and kinetic energies and made stationary with respect to the solution coefficients, i.e. 
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  ,  

  

   
   (10) 

 

The time dependence cancels out in all the terms and a set of 5n simultaneous algebraic 

equations in the form of a quadratic eigenvalue problem is obtained as 

 

 [   [ ]    [ ]  [ ]]{ }  { }   (11) 

 

Here the matrix [C] involves the contribution due to the gyroscopic effect and is dependent on 

rotational speed. The eigenvector {X} is given by 

 

{ }  [                                                               ]
     (12) 

 

3.3. Improvement to Include Different Coupling Mechanisms 
Several refinements have been made to account for different coupling mechanisms effects, 

namely, Poisson’s effect, shear–normal and bending–twisting coupling effects. Generally, the 

strain energy in the shaft is given by 
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The summation is taken over all the plies contained in the laminate, and 
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   (14) 

 

Here σxx and σθθ are inplane normal and hoop stresses and τxθ is the inplane shear stress, εxx 

and εθθ are the inplane normal and hoop strains and εxθ is the inplane shear strain in x and y 

coordinates as shown in Fig. 3b. [ ̅] is the transformed stiffness matrix of the k
th

 ply. 

 

3.3.1. Improvement to Include Poisson’s Coupling Effect 
In a thin single ply, shear effect is negligible and bending–stretching and shear–normal 

coupling effects are not present. However, in calculating strain energy, εθ is taken to be zero, 

which implies some effective stress occurs in θ-direction. But in the actual case no such stress 

acts. Thus, imposition of the condition of no cross-section deformation results in no strain 

condition in the circumferential direction and this gives higher frequency values. The 

circumferential stress in each ply is assumed to be zero, thus from Eq. (14), 
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Thus the value of  ̅   is updated to account for Poisson’s effect according to Eq. (16). 

 

3.3.2. Improvement to Include Shear–Normal Coupling Effect 
In conventional filament winding procedure the fibers at winding angles ±θ are interwoven in 

the same ply; similarly for configurations in which corresponding to +θ orientation ply above 

the mid-plane, there is an identical ply (material and thickness) of -θ orientation below the 

mid-plane as shown in Fig. 2; the shear–normal coupling effect is eliminated. However, if the 

shaft is made from laminates to provide a single winding angle, then shear–normal coupling 

(due to the terms  ̅     and  ̅    ) will be present. Generally, coupling exists between 

normal stress (σxx) with shear strain (εxθ) and shear stress (τxθ) with normal strain (εxx). From 

the classical laminate theory, the forces on the laminate are related with strain as follows 

 

 { }  [   ]{ }  (17) 

or 

 { }  [   ]
  

{ }   (18) 

 

For a uniaxial load in longitudinal direction and laminate of total thickness t, Nxx = tσxx; 

Nθθ = 0; and Nxθ = 0: Then 
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where Δ = A11a - A12b + A16c and a, b and c are the cofactors of A11, A12 and A16, respectively 

given by 
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The longitudinal and shear moduli can be given by 
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Similarly, applying Nxθ and keeping Nxx = Nθθ = 0; one obtains 
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where             
 , for single ply k,     ̅  

  ̅  
  ( ̅  

 )
 
. 

 

Taking a configuration of single ply, then Eqs. (19) and (20) become 
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To account for shear–normal coupling effect, the value of  ̅  
  in Eq. (14) and the value of 

Gxθ in calculating ks are replaced by Exx and Gxθ obtained in Eqs. (19) and (20), respectively. 

For symmetric balanced laminate or orthotropic plies, the terms  ̅   and  ̅   vanish and Eqs. 

(19) and (20) can be re-written as 

     
(    

   
 

   
)

 
    (23) 

Similarly Gxθ reduces to 

 

     
   

 
     (24) 

 

For single ply, Eqs. (22) and (24) become 
 

     ( ̅   
( ̅  

 )
 

 ̅  
)      (25) 

 

And 

 

      ̅  
   (26) 

 

Eqs. (22) and (24) are similar to that of Singh and Gupta [28], used to evaluate equivalent 

modulus in EMBT. However, Eq. (25) is similar to Eq. (16) for updating the value of  ̅   to 

account for Poisson’s effect. It is to be noted that, in the present formulation, Poisson’s effect 

is inherently included in the formulation of shear–normal coupling. This is clear by 

substituting ( ̅    ̅    ) for 0
o
 and 90

o
 ply angles in Eqs. (19) and (20) which reduce to 

Eqs. (16) and (23) and (26). 

 

3.3.3. Improvement to Include Bending–Twisting Coupling Effect 
In configurations at which +θ orientations are above the mid-plane there is an identical lamina 

(in the thickness and material) of -θ orientation at the same distance below the mid-plane (as 

shown in Fig. 2), the bending–twisting coupling represented by the terms D16 and D26 (in the 

bending stiffness matrix [D]) for the laminate is zero. For symmetric laminate the terms D16 

and D26 cannot be zero unless θ = 0
o
 or 90

o
. The bending–twisting stiffness coefficient [27] is 

given by 
 

     ∑  ̅  
    

   [    
 ] (27) 

 

The expression for strain energy is modified as 
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4. Experimental Investigation 
In the present experimental part the measurements of laminated composite shaft for various 

five lamina orientations, three different fiber volume fraction ratio, various (L/D) ratios and 

four boundary fixations are constructed and manufactured using winding layup method. The 

boundary conditions of a rotating composite shaft were achieved using a combination of 

various bush width and a rate level of bearing clearance to obtain a proper boundary fixation 

state.   

 

The dynamic analysis in the experimental results in qualitative and quantitative manner is 

presented to investigate their dynamic eigen-parameters including natural frequencies and 

damping factors. 

 

4.1. Composite Shaft Specimen Preparations 
Figure 4 shows the rotating composite shaft manufacture at various types of lamina 

orientations angles. The preparation and manufacturing of specimens are achieved by 

following the standard procedures [29]. Five layers of (1mm) thickness were wind by the 

required angle and spread on a wood Die at various orientation fibers. A layer of resin is 

spread on a wood Die treated by release agent (Wax or medical Vaseline). The wood Die 

(1000 long × 20 mm diameters) is then placed on the glass fiber and assembly together by 

copper wire and to close gab by cement. The press die was removed after 24 hours and the 

laminate has been completely cured at room temperature. The laminate composite shafts are 

cut to the required length (800mm long) using mechanical fine sawing machines. 

 
 

 
 

Fig. 4   Composite shafts manufacture. 

 

4.2. Experimental Modal of Vibration Damping of Composite Shaft FRP 
The frequency response tests were performed on composite shaft made from fiber reinforced 

plastic (FRP) by utilizing fast Fourier transform dual channel analyzer in conjunction with the 

computer as shown in Fig.5.The corresponding fundamental frequency and damping factor 

for various lamina orientation and different boundary conditions are measured and recorded 

using (FFT) analyzer in the range of (800:1600 Hz).The comparison between theoretical 

analysis using (EMBT) and Experimental measurements were performed and listed of 

Tables 4. 

[0/0/0/0/0] 

[0/45/0/45/0] 

[0/90/0/90/0] 

[45/45/0/45/45] 

[90/90/0/90/90] 
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Table 4   Comparison of natural frequencies (Hz) including different coupling 

effects at (L/D) ratio 40 with fiber volume fraction 65% 
 

Play angle 

Bending–

twisting 

(only) 

Poisson’s 

effect (only) 

Poisson’s 

effect and 

bending–

twisting 

Shear–

normal 

(only) 

Including 

all 

coupling 

(1) (2) (3) (4) (5) 

[0
o
] 119.47 119.47 119.47 119.47 119.47 

[15
o
] 108.97 108.97 100.38 95.58 78.85 

[30
o
] 73.14 73.14 72.66 53.54 51.915 

[45
o
] 44.91 44.91 58.78 45.12 47.76 

[60
o
] 34.41 34.41 41.09 32.64 36.96 

[75
o
] 33.12 33.12 32.91 30.96 31.66 

[90
o
] 31.54 31.54 31.54 31.54 31.54 

 

The peak response frequencies were identified from the peaks in the frequency spectra FRS.  

 

In addition, the system damping ratio ξ was evaluated from the quality factor Q from ω1 and 

ω2corresponding to half-power bandwidth method (29) as: [30] 

 

   
 

  
 

  

     
  (29) 

 

 

4.3. Eigen Parameter Measurements 

The equation of motion of a damped multi degree of freedom system in matrix form: 

 

 [ ] { ̈}  [ ] { ̇}  [ ] { }  { } (30) 

 

By expressing the solution of {X} as a linear combination of the natural modes of the system 

as: 

            (31) 

 

For the applied harmonic force of              at the rotating composite shaft. 

 

By substituting Eqn. (31) into Eqn. (30), we obtain 

 

 { }  [   [ ]    [ ]  [ ] ]
  {  } (32) 

 

 [ ]   [ ]   [ ]  (33) 

 

 [ ] [ ] 
  [ ]  [ ] [ ] 

  [ ]   (34) 

 

    
 

   
 

   

 
  (35) 

 

The eigen value problem of proportional damped system can be resolved to two stander eigen 

value problem [31] and the form. 
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(a)   Schematic diagram  

 

 
 

(b)   Photograph 
 

Fig. 5   The TM1 MKII Whirling of shafts apparatus 

 connected with dual channel analyzer test 

 

 *[ ] 
  [ ]    [ ]+     (36)   

 

 *[ ] 
  [ ]   [ ]+    (37) 

 

The equivalent damping matrix [C]e can be calculated as a proportional damping (Rayleigh 

damping) as shown in Eqn. (33), where γ and λ are coefficients determined by experimental 

investigation. The necessary and sufficient conditions of proportional damping system are 

given by Eqn. (34). In this case, the response of the rotating composite shaft was separated 

into the responses at each mode by spectral analysis and the damping ratio ξi and coefficients 

γ and λ are identified by Eqn. (35). The results of the coefficients γ and λ are listed in Table 4 

where: 

 

ξi and ωi are the damping ratio and natural frequency of i
th

 mode respectively and u is the 

eigen values of inertia damping matrix, u = 2ξω. 

 

Ch. B 
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2034 

Dot. Matrix 
Printer 
ND-15 

Accelerometer 
4374 Shaft 

Bearing 

Motor 

Foundation 

Speed 
 control 

Bearing 

Stroboscope  

Disc 



Paper: ASAT-15-014-MS 

 

 

14 

To study the effect of fiber orientation on the dynamic behavior of laminate composite shaft. 

The specimen location in the TM1 whirling of shafts apparatus and the boundary conditions 

can be achieved using suitable bearing then the ratio of clearance and bush bearing width 

adjustable.  

 

 

5. Results and Discussion 
 

5.1 Effect of Stacking Sequences, (L/D) Ratios, Boundary Conditions and Fiber 

      Volume Fraction on Eigen Frequency.  
Figure 6 shows the effect of stacking sequences, (L/D) ratios, different types of boundary 

conditions on frequency value based on mathematical modeling under fiber volume fraction 

Vf = 65%. From Fig. 6 it can be notes that the frequency values significantly varied with the 

state of stacking sequences. This is due to the outer staking layer is more effect on the 

stiffness compared with the inner layer. The change of lamina orientations from [0/0/0/0/0] to 

[90/90/0/90/90] decreases the eigen frequency by 54.42%.   
 

From Table 3 the effect of fiber volume fraction is slightly effect on the eigen parameters this 

indicate in the specimen [0/0/0/0/0] and volume fraction 65%, frequency values slightly 

increase. The low value of frequency at [90/90/0/90/90] and volume fraction 25% may be 

attributed to the low level of potential energy at this condition.  
 

In view of lamina orientations, the rate of change of the frequency via fiber volume fraction 

are relatively high compared with the rate of change due lamina orientations as shown in 

Table 3. From Fig.6 it can be observed that specimen [90/90/0/90/90] has the lowest 

frequency compared with the other specimen while the specimen [0]5 has the highest values 

this is due to the minimum and maximum values of flexural elastic modules and stiffness at 

this orientation respectively. The change of lamina orientations from [0/0/0/0/0] to 

[0/90/0/90/0] decreases by 54.4%.  
 

 
 

Fig. 6   Effect of stacking sequence on frequency at different (L/D) ratios and various 

boundary fixations with fiber volume fraction Vf = 65%. 
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From Table 3 (a), (b) and (c) it can be noted that, the fiber volume fraction has a limited effect 

on frequency and damping factor value because the effect of lamina orientations has a 

dominant influence. 

 

Table 3   Values of fundamental frequency in Hz and damping factor “ξ” for various 

laminated orientations, fiber volume fraction and different boundary fixation
*
 

a. (L/D = 40)  

Lamina orientation 

and boundary 
fixations 

C-C C-S S-S C-F 

Ξ 

f, [Hz] 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

EMBT FE Ex 
EMBT FE Ex 

EMBT FE Ex 
EMBT FE Ex 

[0/0/0/0/0] 

V
f 
=

 2
5

℅
 

0.11 264.8 261 260 0.13 173.7 172 167 0.14 111.3 111 109 0.17 39.6 38 37 

[0/45/0/45/0] 0.14 221.5 220 219 0.15 145.2 144 141 0.16 92.9 90 87 0.19 33.1 33 29 

[0/90/0/90/0] 0.19 174.8 172 170 0.22 114.6 113 111 0.24 73.3 73 70 0.34 26.1 25 22 

[45/45/0/45/45] 0.22 151.1 149 148 0.29 99.1 99 87 0.32 63.3 62 59 0.40 22.6 22 18 

[90/90/0/90/90] 0.28 120.7 119 117 0.33 79.1 78 75 0.36 50.6 50 46 0.47 18.0 17 14 

[0/0/0/0/0] 

V
f 
=

 4
5

℅
 

0.09 320.4 320 318 0.11 210.1 209 208 0.14 131.3 131 129 0.17 47. 1 46 44 

[0/45/0/45/0] 0.12 268. 1 266 263 0.14 173.6 172 169 0.15 114.4 114 113 0.19 40. 1 39 38 

[0/90/0/90/0] 0.15 211.5 211 207 0.18 136.4 135 134 0.21 87. 3 87 85 0.29 31.5 30 29 

[45/45/0/45/45] 0.19 182. 3 180 177 0.23 116.2 116 115 0.27 76. 3 75 74 0.36 27.3 27 26 

[90/90/0/90/90] 0.24 145. 4 143 140 0.29 93. 1 92 90 0.31 62.2 61 60 0.42 21.3 21 20 

[0/0/0/0/0] 

V
f 
=

 6
5

℅
 

0.06 396.2 395 392 0.09 258.4 257 255 0.13 164.3 163 161 0.16 58.4 56 56 

[0/45/0/45/0] 0.10 328.1 328 326 0.11 216.3 216 214 0.15 137.1 137 135 0.18 48. 2 45 43 

[0/90/0/90/0] 0.13 257.3 254 253 0.16 167.1 166 163 0.18 108.2 108 105 0.23 38.1 37 35 

[45/45/0/45/45] 0.16 226.2 224 224 0.19 144.2 144 141 0.23 93.4 92 89 0.29 33.3 33 30 

[90/90/0/90/90] 0.19 175.4 174 172 0.23 113.7 112 109 0.29 74. 2 73 71 0.34 26.5 26 24 

 

b. (L/D = 30) 

Lamina orientation 

and boundary 

fixations 

C-C C-S S-S C-F 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

EMBT FE Ex 
EMBT FE Ex 

EMBT FE Ex 
EMBT FE Ex 

[0/0/0/0/0] 

V
f 
=

 2
5

℅
 

0.09 286.8 286 283 0.12 188.2 187 186 0.13 120.5 120 117 0.15 46.2 45 44 

[0/45/0/45/0] 0.13 237.9 235 234 0.14 157.3 156 154 0.15 109.7 107 106 0.17 38.6 37 35 

[0/90/0/90/0] 0.17 186.3 185 182 0.20 124.3 124 121 0.21 76.2 75 73 0.31 30.4 30 27 

[45/45/0/45/45] 0.20 162.3 160 158 0.26 107.3 107 104 0.28 65.9 65 62 0.36 26.3 25 23 

[90/90/0/90/90] 0.26 130.7 130 127 0.29 85. 7 85 83 0.32 54.8 53 51 0.42 21.0 20 17 

[0/0/0/0/0] 

V
f 
=

 4
5

℅
 

0.08 344.0 343 341 0.10 227.6 227 225 0.12 142.2 140 138 0.15 67.1 66 64 

[0/45/0/45/0] 0.11 281.6 280 277 0.12 188.1 117 184 0.14 123. 3 122 120 0.17 45.5 45 43 

[0/90/0/90/0] 0.14 220.3 220 218 0.16 147.7 146 144 0.19 99.3 98 96 0.26 36.7 35 33 

[45/45/0/45/45] 0.18 199.1 199 196 0.20 125.8 124 122 0.24 72.4 70 70 0.32 31.8 30 28 

[90/90/0/90/90] 0.22 171.4 171 168 0.25 100.3 100 198 0.27 67.4 66 64 0.38 24.8 23 21 

[0/0/0/0/0] 

V
f 
=

 6
5

℅
 

0.05 418.7 417 415 0.08 279.9 279 277 0.12 177.9 175 173 0.14 68.1 67 66 

[0/45/0/45/0] 0.09 358.2 357 356 0.10 234.3 233 231 0.14 148.5 146 145 0.16 53.2 52 51 

[0/90/0/90/0] 0.12 274.3 274 270 0.14 181.0 180 179 0.16 117.1 116 114 0.20 44.4 44 40 

[45/45/0/45/45] 0.15 242.8 242 239 0.17 156.2 155 153 0.21 101.1 100 97 0.26 38.8 38 36 

[90/90/0/90/90] 0.17 188.4 187 185 0.20 123.2 123 120 0.25 84.3 83 81 0.31 30.9 30 27 
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Table 3   (Continued) 

c. (L/D = 20) 

Lamina orientation 

and boundary 
fixations 

C-C C-S S-S C-F 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

ξ 

f, [Hz] 

EMBT FE Ex 
EMBT FE Ex 

EMBT FE Ex 
EMBT FE Ex 

[0/0/0/0/0] 

V
f 
=

 2
5

℅
 

0.08 308. 3 307 305 0.11 219.5 218 216 0.12 140.6 139 137 0.14 53.9 52 50 

[0/45/0/45/0] 0.11 260.2 259 257 0.13 183.5 182 180 0.14 128.1 126 125 0.15 45.2 44 43 

[0/90/0/90/0] 0.15 202.2 201 200 0.17 144.8 144 142 0.19 88.2 87 86 0.27 35.5 33 32 

[45/45/0/45/45] 0.17 176.1 175 174 0.23 125.2 124 123 0.25 76. 3 76 75 0.32 30.7 30 28 

[90/90/0/90/90] 0.22 141.6 141 140 0.26 99.9 99 97 0.28 63. 78 62 60 0.38 24.5 23 22 

[0/0/0/0/0] 

V
f 
=

 4
5

℅
 

0.07 373.8 373 370 0.09 265.5 265 263 0.11 165. 1 163 162 0.13 73.2 72 70 

[0/45/0/45/0] 0.10 313.2 312 311 0.11 219.4 218 216 0.13 144.5 143 141 0.15 61.1 60 60 

[0/90/0/90/0] 0.12 246.7 245 244 0.14 172.3 172 170 0.17 121.3 119 118 0.23 42. 5 41 40 

[45/45/0/45/45] 0.16 202.2 201 199 0.18 146.3 144 142 0.21 99.8 98 95 0.29 37.1 35 34 

[90/90/0/90/90] 0.20 179.4 178 177 0.23 119.2 118 116 0.24 78.6 76 75 0.33 28.9 27 26 

[0/0/0/0/0] 

V
f 
=

 6
5

℅
 

0.05 458.4 457 455 0.07 326.5 326 324 0.10 207.6 206 205 0.13 79.4 79 76 

[0/45/0/45/0] 0.08 378.1 377 374 0.09 273.3 272 271 0.13 173.2 172 170 0.14 63.1 62 60 

[0/90/0/90/0] 0.11 301.3 300 299 0.12 211.1 209 208 0.15 136.7 135 133 0.18 51. 3 50 48 

[45/45/0/45/45] 0.13 257.4 256 255 0.15 182.2 180 178 0.18 118. 2 117 116 0.23 45.3 44 43 

[90/90/0/90/90] 0.16 201.2 201 198 0.18 143.7 142 140 0.22 89.4 88 87 0.27 36. 4 34 33 

 
*
  (C-C) = clamped-clamped, (C-S) = clamped-simply supported, 

    (S-S) =  simply supported-simply supported, (C-F) = clamped-free 

 

From Fig. 7 it can be observed that specimen [0/0/0/0/0] has the lowest damping factor 

compared with the other specimen while the specimen [90/90/0/90/90] has the highest values 

this is due to the minimum and maximum values of flexural elastic modules. In view of 

different fixation, the rate of change of the critical speed via different fixations are relatively 

high compared with the rate of change due to the use of the various code numbers of fiber 

orientations as shown in Fig. 6 (c) and Table 3. 
 

Figure 7 declares the effect of stacking sequences and fiber volume fraction on damping 

factor under one case of clamped-clamped boundary fixation. It is clear that the damping 

factor values significantly varied with the state of lamina orientations and fiber volume 

fraction in a reverse trend as compared with frequency Fig. 6 (a). The high value of damping 

factor occurs under [0/90/0/90/0] and 25% volume fraction. 

 
 

5.2. Effect of Including Different Coupling Mechanism on Natural Frequency 
Figure 8 shows the validation of formulation and programming, the results obtained from 

modified EMBT. In order to have a basis for comparison between different coupling 

mechanism effects. Results presented in Table 4, clearly show excellent agreement of the 

natural frequencies obtained from EMBT for shafts with single ply of fiber angle varying 

from 0
o
 to 90

o
, fiber volume fraction is 65% and (L/D) ratio 40. As expected, natural 

frequencies in the first modes are found to decrease with the value of fiber angle increasing 

from 0
o
 to 90

o
. For excluding Poisson’s and other coupling effects with changing the fiber 

angle ply from 0
o
 to 90

o
 the natural frequencies decreases by 69.6%. For including Poisson’s 

and other coupling effects with changing the fiber angle ply from 0
o
 to 90

o
 the natural 

frequencies decreases by 69.6%.  
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5.3. Dynamic Response of Rotating Composite Shaft 
Programming codes based Matlab program, version (7.1) are implemented to analyze the 

dynamic response of the rotating composite shaft under a harmonic load on the bases on the 

proposed theoretical investigations. The analysis are performed for composite shaft of three 

types of (L/D) ratio (20, 30 and 40), fiber volume fraction (65%), (S-S) boundary fixation and 

various types of lamina fiber orientations. 

 

Figures 9 represent the frequency response of the composite shaft at the clamped-clamped 

boundary fixation of the specimen with various types of fiber volume fraction and various 

lamina fiber orientation angles. The results indicate that there is apparently a correlation 

between the theoretical and experimental results, Table 5, shows the damping factors, natural 

frequency for the first and second mode for three types of fiber volume fraction and various 

lamina orientations and the coefficients γ and λ. 

 

The composite shaft is discretized into three interconnected elements using FEM. From Fig. 9 

it can be seen that the amplitude of specimens [90/90/0/90/90] are higher than those of the 

other specimen and [0/0/0/0/0] has lower ones. And the maximum amplitude at (L/D = 40) 

compared with the (L/D = 20) by almost 0.9%. From the previous result it can be shown that 

the maximum amplitude at (L/D) ratio 40 and [90/90/0/90/90] specimens and minimum 

amplitude at (L/D) ratio 20 and [0/0/0/0/0] specimens. 

 

 
 

Fig. 7   Effect of stacking sequence on damping factor at different (L/D) ratios 

 and various boundary fixations with fiber volume fraction Vf = 65%. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
am

p
in

g 
fa

ct
o

r 
"

" 

Stacking Sequence  

L/D = 40

L/D = 30

L/D = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
am

p
in

g 
fa

ct
o

r 
"

" 

Stacking Sequence  

L/D = 40

L/D = 30

L/D = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
am

p
in

g 
fa

ct
o

r 
"

" 

Stacking Sequence 

L/D = 40

L/D = 30

L/D = 20

0

0.1

0.2

0.3

0.4

0.5

0.6

D
am

p
in

g 
fa

ct
o

r 
"

" 

Stacking Sequence 

L/D = 40

L/D = 30

L/D = 20



Paper: ASAT-15-014-MS 

 

 

18 

 

 
 

+ Bending–twisting (only);                             Δ Poisson’s effect (only); 

◊ Poisson’s effect and bending–twisting;        ○ Shear–normal (only); 

● Including all coupling. 
 

Fig. 8   Variation of natural frequency with different ply angles due 

 to different coupling mechanisms.  

 

 

Table 5   The damping factors, natural frequency and coefficients γ and λ for (S-S) 

boundary fixation with Vf = 65℅. 

Lamina orientation 1ξ 2ξ 1ω 2ω γ λ 

[0/0/0/0/0] 

L
/D

 =
 4

0
 

0.13 0.107 164.3 398.2 39.38 2.84*10
-4

 

[0/45/0/45/0] 0.15 0.136 137.1 352.5 43.03 4.23*10
-4

 

[0/90/0/90/0] 0.18 0.191 108.2 285.3 44.76 7.89*10
-4

 

[45/45/0/45/45] 0.23 0.220 93.4 146.6 44.61 1.1*10
-3

 

[90/90/0/90/90] 0.29 0.281 74. 2 196.7 44.36 1.7*10
-3

 

[0/0/0/0/0] 

L
/D

 =
 3

0
 

0.12 0.087 177.9 522.8 42.8 1.76*10
-4

 

[0/45/0/45/0] 0.14 0.122 148.5 437.5 44.85 3.23*10
-4

 

[0/90/0/90/0] 0.16 0.150 117.1 345.2 43.41  5.05*10
-4

 

[45/45/0/45/45] 0.21 0.177 101.1 297.5 42.93 7.04*10
-4

 

[90/90/0/90/90] 0.25 0.236 84.3 237.3 85.81 1.2*10
-3

 

[0/0/0/0/0] 

L
/D

 =
 2

0
 

0.10 0.053 207.6 672.9 5.59 2.72*10
-4

 

[0/45/0/45/0] 0.13 0.101 173.2 540.9 45.41 2.18*10
-4

 

[0/90/0/90/0] 0.15 0.128 136.7 431.2 46.04 3.46*10
-4

 

[45/45/0/45/45] 0.18 0.162 118. 2 385.3 51.01 4.97*10
-4

 

[90/90/0/90/90] 0.22 0.190 89.4 323.8 46.21 7.33*10
-4
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Fig. 9   Results of the theoretical model for the frequency response 

 of the rotating composite shaft at (S-S) boundary 

 fixation and fiber volume fraction 65%. 

 

 

6. Conclusions 
From the numerical and experimental results one can conclude: 

The dynamic analysis of laminated composite shaft with different stacking sequences, five 

cases will be studied using composite shafts wounded by different layers of composite 

materials namely; different stacking sequence, fiber orientation angles, (L/D) ratio, boundary 

condition and finally various types of fiber volume fraction.  

 

i. The present comparison between the numerical and experimental results proves that the 

suggested finite element models of the composite structural shaft, bearing and disc with 

current fixations state provide an efficient tool for compute the dynamic analysis with 

proper accuracy. 

ii. Dynamic response gives proper information about resonance avoidance for certain 

operation conditions particularly composite shaft. In the other hand frequency response 

of composite shaft provides proper indication about vibration state and the location of 

nodes and modes at each position. These important parameters from designers point of 

view. 

iii. It can be concluded that inclusion of layer along the transverse direction into 

fiber/polyester material is a good option for manufacturing stiffer shafts. 
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iv. Different coupling mechanisms, as obtained from (EMBT) theory, were found to reduce 

shaft natural frequencies. The percentage reduction depends on coupling mechanisms 

available in different ply angles. For Poisson’s effect the maximum reduction in the 

shaft natural frequency is found to be at about 45
o
 ply angle, however for shear–normal 

and bending–twisting coupling, the maximum reduction is found to be at about 30
o
 ply 

angle. 
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