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INTRODUCTION  

 

A Digital Elevation Model (DEM) is a digital raster image representation of an earth's 

surface created from elevation data, where regular grid represents elevation values in the 

earth's surface. There are many types of elevation models. The shape of the ground 

surface is represented by the Digital Terrain Model (DTM). The shape of the surface is 

represented by a digital surface model (DSM), such as buildings, vegetation, hills, etc. 

[1]. Topography is an essential factor in most types of hydrology analysis. It can be 

derived from various DEMs through many types of techniques, for example, digitizing 

contours from available topographic maps, topographic leveling, many types of GPS 

measurements, and Light Detection and Ranging (LIDAR). Numerous maps may be 

produced from DEMs using GIS operations. More data sources can be used for the 
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Water resources assessment is an essential element in the sustainable 

development and management of water resources. It provides a basis for 

many applications, such as maintenance of projects associated with 

irrigation and drainage. Catchment detection and identification is one of the 

water resources assessment fields, especially in dry areas. Few studies have 

attempted to detect catchments based on DEM, such as the level‐set method 

based on graph theory. In this work, a deep learning algorithm (DenseNet) 

was used to detect and locate catchments. Identifying Sink Features in the 

DEM is the first step. Then, using the level-set process to delineated 

topographic depressions in DEMs. Finally, Catchments are detected using 

DenseNet. As the DEM accuracy increase by removing uncertainty from 

DEM the catchment detection performance increase. Asyut Governorate, 

Egypt, is used as a study area. 
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generation of DEMs. Selection is dependent on data availability for a field area, cost, and 

application. Derived DEMs can be used in a heuristic process or method. [2] small scale 

(e.g., background hill-shading images, physiographical classification, internal terrain, 

drainage density for statistical analysis at regional scales (e.g., elevation zones, slope, 

slope direction) and physical modeling at the local scale (local drain direction, slope 

gradient, flow path). The resolution of DEM is significant when using slope gradient 

maps in hazard assessment. In general, slope gradient maps should not be used for small-

scale studies [3]. DEMs are used in hydrological modeling of slopes, and slope maps are 

used in physical modeling.  DEMs' importance becomes increasingly because of the 

fundamental nature of the data and knowledge of the data they represent [4]. The DEM 

serves as the basis for modeling and analyzing spatial topographical information. 

Accuracy and acquisition techniques are developed and become available for researchers. 

Many DEMs technologies were used, including landform evolution, the modeling of soil 

erosion, and other geo-simulations. DEMs provide critical data for water resource 

management, such as detecting catchment areas and assessing flood risk [5]. 

 

     All DEMs contain particular uncertainty or DEM errors (the difference of a given 

elevation relative to the ground truth or reality). DEM errors are frequent blunders or 

random errors. Systematic errors produced from making or generation DEM. Systematic 

errors can be removed or minimized. Vertical errors associated with the data collection 

process are typically identified and removed before data release [6]. The sources of errors 

are summarized as (a) incomplete density of observations may Couse errors in data 

sampling. (b) an error like numerical errors in the computer, interpolation errors, or 

classification and processing errors and (c) measurement errors like position inaccuracy 

(in both x and y directions) [7]. These observer bias errors lead to uncertainty in DEM, 

which reduces the accuracy of application results. Providing elevation measurements of 

an earth surface (ground truth) manually compared with DEM values to detect and 

remove uncertainty and improve the DEM accuracy [8]. 

 

    A catchment is a low point in a specific area that makes creek, lake, and rivers by 

water flows.  The size and depth of these catchments area depend on the volume, 

direction, and speed of water flows and shape of the catchment's land.  Catchments vary 

significantly in size, and the amount of water they can hold is determined mainly by the 

size of the catchment and the amount of rain that falls on it.  Rivers, bush land, fields, 

lakes, houses, streets, trees, pets, and people are all part of the natural and human 

processes that make up catchments [9].  
 

          Deep Neural Networks provide a better level of information reflection, potentially 

resulting in improved predictive control, generalization, and transferability [9-11]. CNN 

is a neural network that uses multiple building blocks to learn spatial hierarchies of 

features in an automated and adaptive manner, such as convolution layers, pooling layers, 

and fully connected layers. CNN's with a more complex layer structure are more capable 

of learning [10]. The majority of current high-resolution DEM reconstruction methods 

were created for natural terrains, divided into three types. i.e., DEM interpolation [11], 

DEM enhancement [12] and learning-based DEM reconstruction [13]. Another CNN 

application was used to estimate a topographic reconstruction to estimate a DEM using a 
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single complex image [14].application was used to estimate a topographic reconstruction 

to estimate a DEM using a single complex image [14]. 

 

RELATED WORK 

Many methods used DEM to determine catchments areas in many types of earth 

surfaces like landscape, mountains, hills, and urban. The algorithms used to determine 

catchments are priority flood and level set.  

 

    The priority-flood algorithm was used to find and fill sinks in the DEM. The 

depression-less DEM was then subtracted from the initial DEM [15]. Grid cells with a 

difference in elevation of 0 are non-depression cells removed from further analysis. The 

binary image was generated from the elevation difference grid. Cells that contain value 1 

denote depression cells. (Elevation change > 0) and value of 0 denotes non-depression 

cells. The depression region's attributes were computed using the region-group algorithm. 

The root mean square error (RMSE) of nonzero depressions was used as a threshold to 

illuminate small and shallow depressions. Finally, the refined binary frame was used to 

cut the original DEM using a mask. [16]. to detect the nested hierarchy of depressions, 

the population of depressions was passed to the level algorithm. The filling algorithm was 

used to form synthetic river pathways to drain surface water to the river system. The main 

limitation of this algorithm is that it only fills depressions dependent on flow 

accumulation and must be calculated before used input data. 

 

     The level set used to detect catchments. By tracing the dynamic topological changes, 

the level-set method was used to construct topological graphs and derive geometric 

properties of the nested depressions. They used conventional depression treatment, 

particularly when evidence on the nested hierarchical structure of depression is available. 

[18]. However, it has some disadvantages. Assume there is the first collection of points 

defining the changing boundary. That points are inserted into the border as it narrows or 

expands. The distance between the boundary points is small enough to allow smooth 

evolution. This process may become a difficult task during the implementation of the 

algorithm, especially when there's a topological change because of the nested hierarchy's 

characterization. The small depressions were not detectable due to pixel resolution 

limitations. 

     In the Delineation of Potential Catchments on the lidar-derived DEM, they used the 

localized contour approach to find wetland depressions. The wetland depression relates to 

the depression's full scope. Wetlands and catchments are linked and should be regarded 

as interconnected hydrological units, with the average height of wetland depressions 

being 2.6×103 m2. For each of the 33×241 wetland depressions, the associated wetland 

catchments were identified [19]. Wetland catchments were roughly 10 times larger than 

wetland depressions, with a median size of 26 × 103 m2. For each wetland depression, 

the proportion of depression area to catchment area was calculated. The proportions were 

found to range from 0.04 to 83.72%, with a median of 14.31%. The average wetland to 

catchment area was estimated. Because of the much larger sample size, the results were 

calculated from over 30000 wetland depressions and catchments, providing a statistically 

accurate result for the study region. This method has the limitation that it focuses on more 
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significant wetland depression greater than 500 m2 but ignores eliminated areas smaller 

than 500 m2. 

 

MATERIALS AND METHODS  

 

The automated method of inferring nested depressions consists of several steps: first, 

DEM filtering, in which image preprocessing tools are used to enhance the DEM data. 

Only depression pixels from a subset of the smoothed DEM are then obtained using the 

depression filling algorithm (i.e., priority flood). Second, the priority flood algorithm is 

used to classify depressions. And finally, characterizing catchment area hierarchical 

structure and using the DEM subset in the computation of geometric properties. 
 

1.  HYDROLOGICAL CORRECTION 
 

Hydrologic modeling with Geographic Information Systems (GIS) technology starts with 

good elevation data. United States Geological Survey (USGS) provides DEM 30-meter. 

DEMs do not accurately reflect the surfaces of low-lying, extremely flat areas containing 

multiple ponds and wetlands. Data from hypsography was used to create this component. 

    

     In ArcGIS, the conditioning step of hydrologic modeling necessitates the development 

of three general utility datasets. A DEM with sinks filled, a grid showing the flow path 

for each cell, and a flow accumulation dataset in which each cell receives a value equal to 

the total number of cells that drain into it are generated in that order. Depressions or sinks 

in a DEM were used for flow routing and complied with before creating a flow path or 

accumulation grids. Many sinks are not actual sinks and have been removed as a result of 

DEM creation errors. Some sinks require regular maintenance. A prerequisite is the 

development of a threshold grid or sinks mask [20]. Identifying wetland features in a 

DEM, which in turn will be used to construct a realistic sink mask. This mask will 

subsequently be used with a set of ArcInfo GRID commands to fill a DEM selectively. 

The resultant DEM is employed in generating flow direction, flow accumulation, and 

drainages line grids to create the correct hydrological DEM. 

 

2.  IDENTIFYING SINKS IN DEM 

 

Initially, ArcInfo was used to clip the initial DEM which shown in figure 1, filled DEM, 

flow path grid, and flow accumulation grids, and then a mask tool was used to extract. 

The original DEM grid is subtracted from the filled depression-less version to compute 

the difference grid as equation (1). Then, the cell values in the sink mask that are greater 

than 0 were coded to 1 as in equation (2), the Region Group algorithm was applied to the 

sink mask to create unique sink regions. The region group algorithm is used to connect 

cells, as shown in figure 2. 
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                 Figure 1:  initial DEM that used under spatial operations 

                  Figure 2: DEM sinks mask 

3.  DELINEATING TOPOGRAPHIC DEPRESSIONS 

The sink mask and DEM are passed to the level set algorithm to detect the catchments 

regions. The level-set approach will be used to delineate topographic depressions in 

DEMs; we define the level-set function φ to have the following properties in equation  

(3).  

       

 

                                 Figure 3. The level-set approach for numerical surface analysis 

(3) 
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The point (x, y) on the surface is represented by z, The surface elevation of the point is 

E(z), and the elevation of the xy plane intersecting the surface is h [18], as shown in 

figure 3. Then the level-set function converts a surface into a binary image when these 

two properties are used. By intersecting the surface with the xy plane, points above the xy 

plane are numbered as 0, where surface points below the xy plane are labeled as 1. Based 

on the xy plane's elevation, which can vary between the depression's lowest and highest 

points, the resulting binary image identifies the inundated area as shown in figure 5 which 

declares the level set catchments area in three levels. These are output levels of the actual 

depression area. 

4.  CATCHMENT DETECTION 

 

      DenseNet (Densely Connected Convolutional Networks) is one of the most robust 

neural networks models for visual object recognition. An output of the previous layer acts 

as an input of the second layer by using composite function operation. This composite 

operation consists of the convolution layer, pooling layer, batch normalization, and non-

linear activation layer. Both subsequent layers use the attribute maps from the previous 

layers as inputs, as shown in figure 4. [23], These connections mean that the network has 

L (L+1)/2 direct connections. L is the number of layers in the architecture. DenseNets are 

divided into DenseBlocks, where the dimensions of the feature maps remains constant 

within a block, but the number of filters changes between them. These layers between 

them are called Transition Layers and take care of the downsampling applying a batch 

normalization, a 1x1 convolution and a 2x2 pooling layers. After each layer block, apply 

regularizes penalties by 5 on layer parameters or layer activity during optimization to 

prevent network overfitting. 

 

 

                                       Figure  4: A 5-layer dense block with a growth rate of k = 4,                                                                                               
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Rectified Linear Unit (ReLU) and Batch Normalization applied after each Dense Block. 

The number of filters changes between the DenseBlocks, increasing the dimensions of the 

channel. The growth rate (k) helps in generalizing the L
th

 layer. It controls the amount of 

information to be added to each layer. We used the DenseNet deep learning model to train 

spatial data [22]. The Dense Block is a critical component of the DenseNet because it 

enhances information flow between layers. It is composed of BN, ReLU, and 3 × 3 Conv. 

The specific formula is shown as follows, expressed in equation (4): 

 

Where denotes the concatenation of the feature-maps generated in layers 

0,1,….., L-1and HL() is defined as a composite function three consecutive operations on the 

input of the layer is defined as a composite function of three consecutive operations on 

the input of the l
th

 layer.Began with concentric patches for training generated by 

normalizing data. Used Dimensions of the outer patches 64x64 and the inner patches 

32x32. Using Adam optimization, we trained our architecture for 45 epochs with a batch 

size of 64. The F1 score, which is a measurement of a test's accuracy, is used to assess our 

classification accuracy. It is measured using the test's precision and recall. Precision is 

defined as the number of correctly identified positive results divided by the total number of 

positive results, including those not identified correctly. The recall is calculated by dividing 

the number of correctly identified positive findings by the total number of samples that 

should have been positive.  

 

             Figure 5: Polygon features output from the level set algorithm 

 

     DenseNet uses a combination of nonlinear transformations with high complexity from 

higher layers and transformations with low complexity from the shallow layer in its deep 

concatenations. Thus, it tends to get a smooth decision function with better generalization 

performance. DenseNet will also deepen the network, thus reducing overfitting. DenseNet 

uses concatenation to join features from different layers, so features must be the same size. 

Down-sampling, on the other hand, is critical in a CNN because it increases the receptive 
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field. A direct result output that is the same size as the input data is preferred, with each 

pixel on the original input image reflecting the group of the pixel at the exact location. We 

utilized feature polygons shapefile to validate our method and used corrected DEM 

downloaded from USGS [24] with size 2568 x1428 pixels. For training and testing, we 

manually labeled 70% of the pixels as ground truth. Each set of data needed normalization 

and patching from the normalized data.  The polygon feature was converted to pixels masks 

and counted to classify into two pixels that followed normal elevation area and other 

followed catchments area. All calculations were completed using machine that have 

microprocessor Intel core i 7 , Windows operating system , NVidia GeForce GTX Titan X 

12GB GPU with 12 G.B of memory and 16 GB of  RAM. The sinks mask and the DEM 

used as input data to the level set algorithm. Figure 5 shows a polygon Shapefile in DEM 

that output from the level set in three levels:  high, medium, and low, representing the 

elevations from 551 to 589, from 286 to 550, and 50 to 285, respectively. Labeled shapefile 

and DEM elevation data (training DEM) are input to the DenseNet model for training and 

validation. 

5.  STUDY AREA AND EXPERIMENTS  

 

     The study area is Asyut Governorate is  located between the latitudes of 26° 50′ and 

27° 40′ north, and the longitudes of 30° 40′ and 31° 32′ 13.5′′ east, and it is bordered on 

both sides by the Nile River as shown in figure 6 .  Asyut Governorate is located in 

Egypt's arid belt, characterized by long, hot summers, cold winters, low rainfall, and high 

evaporation rates. According to Asyut Meteorological Station [27].SRTM elevations data 

sets were downloaded from the United States Geological Surveys1 (USGS) Earth 

Explorer.  DEM is provided 1° x 1° tiles at 1 arc-second (30m) resolution and is on the 

WGS84 datum. Also is referenced to mean sea level realized by the EGM 96 geoid 

model. Hence the heights are orthometric with vertical units in meters for calibration 

purposes. 

    In this work, two experiments are implemented in the study area. The first experiment 

used a shapefile containing a catchment area feature and corrected DEM as input data to 

DenseNet. While in the second experiment, the DEM uncertainties were detected to 

improve the DEM accuracy. The shapefile and corrected DEM after detected 

uncertainties parts are input to DenseNet. In the first experiment( catchment detection in 

raw DEM CDR-DEM), the raw DEM in Asyut study Area and sinks mask are used 

simultaneously as input data to the level set algorithm. The parameters use in this 

algorithm are minimum depression size = 50 m2 (the minimum catchment area detected) 

and depression depth = 1 m (the minimum depth of catchment recognized). The 

depression of each pixel calculated from which has the same depression grouped in the 

same region.    
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       Figure 6. Location and Digital elevation model of the study area in Asyut 

.   The output of the level set algorithm is the feature of catchment formed in a polygon 

shapefile. This shapefile and DEM are used as input to DenseNet. The DenseNet detects 

catchments area (actual sinks or depression) in the DEM image. The catchments are 

detected in DEMs with an accuracy of 90.6%. Figure 7 and Figure 8 Shows the test and 

classified image for two experiments.  In the second experiment (Catchment detection in 

Error Free DEM CDEF-DEM), due to the DEM low resolution (each pixel represents 30m 

x 30m of the surface), the DEM uncertainties were detected and removed. First, the DEM 

uncertainties were removed [25].  Accuracy descriptive statistics of elevation values were 

used to compare points between the elevation of raw data in raster image (HSRTM) and 

elevation of GPS or ground truth points HGPS. For the study area, the vertical differences 

between HSRTM and HGPS were computed as ΔH (SRTM-GPS) is shown in Table (1). The 

minimum elevation for the GPS is 266m while the maximum is 317m, and Root Mean 

Square Error is calculated using (5). Comparing SRTM DEM and reference GPS points 

shows that most SRTM point's elevation is lower than GPS elevation [25]. The points' 

elevation differences minimum and maximum values are -98m and 156m, respectively, as 

shown in Table 1: 

 

 

Where  represents the ith elevation value determined on the DEM surface,  

represents the original elevation, and n represents the number of elevation points tested. 
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                           Table 1.2D elevation differences of first study area 

Elevation statistics     ΔH(SRTM-GPS)  

Min -98 
 

Max 156 
 

Mean -8.9748 
 

RMSE 22.29 
 

        

     First, the 565 GPS survey points were overlaid on the DEMs in ArcGIS10.3 and used 

extracted values of DEMs at points located with the GPS data [26]. The SRTM and GPS 

data added in ArcGIS using add x, y data tool to compute the difference values in a 2-

dimension raster image by performing Inverse Distance Weighted (IDW) interpolation 

from geostatistical analyst tools. 2-Dimension raster view was used to create uncertainties 

features by global mapper GIS software and save them in shapefile [26].  The shapefile 

was used as ground truth data that passed to the DenseNet model as validation data. 2-

dimension raster image that contains elevation differences as training data. The system 

labels the uncertainties region in the study area.  The below algorithm shows the steps 

used to detect the catchment region. 

CDER-DEM Algorithm 

 

 

 

 

 

 

 

 

 

 

 

1. By GIS software create polygon uncertainties feature and export it as  shapefile. 

2. Create difference image 

2.1       

2.2      

3 Raster image and uncertainty shapefiles are used  for training the DenseNet to label the uncertainty regions. 

4 The labeled uncertainty region image and sinks image are used by level set algorithm to compute shape file. 

5 The shape file and DEM data were input to DenseNet model to label the catchment areas. 
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RESULTS  

 

 For both experiments, the DenseNet learning rate is 0.0001 For training the model for 

area bounded by longitudes =30° 26' 02.1588" E and 31° 08' 49.1588" E and latitudes 

=27° 25' 14.2078" N and 27° 01' 27.2078" N. the minimum and maximum elevation are 

29 m and 285 m respectively, for testing the area between longitude =30° 05' 31.2528" E 

and 30° 48' 18.2528" E and between latitudes =27° 50' 37.1931" N and 27° 50' 37.1931" 

N. the minimum and maximum elevation are 22 m and 170 m. both regions captured by 

Projection DATUM WGS84. The study area contains varied surface elevations like 

medium mountains, hills, landscape, and water.  Two kernels are used, 3 x 3 and 5 x 5, in 

the DenseNet model [25].  The network that uses 5 x 5 kernel filters achieved a better 

result, as shown in Table 2. 

Table 2. Experiments accuracy results 

CDR-DEM 

Kernel filter size precision recall f1-score Accuracy of the model% 

3×3 0.90 0.97 0.93 89.189 

5×5 0.91 0.98 0.94 90.585 

            CDER-DEM  

3×3 0.92 0.99 0.95 91.096 

5×5 0.93 0.99 0.95 92.652 

 

We used Python, a cross-platform programming language, to implement the level set 

algorithm. Several scientific libraries are used, such as SciPy, scikit-image, and 

matplotlib. And Gdal Geospatial Data library that Reading and writing DEM files makes 

it possible to integrate powerful algorithms for processing geospatial data (such as DEM) 

[18].  
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a-Test image b-Classified image 

Figure 7. (a) tested image b) classified image of CDR-DEM method 

The input image of elevation differences that passed to the DenseNet model and the 

output labeled image. Table 3 shows the output results of catchments areas detection in 

CDR-DEM and CDER-DEM. Catchment detection is  on of many hydrology applications 

such as flash flood forecasting , groundwater localization, Calculates rainfall, surface 

runoff, etc. The accuracy of the DenseNet model depended on the spatial resolution of the 

digital elevation model and the accuracy of catchments shape files feature. The results 

show that catchments regions were located in slopes Areas. The overall classification 

accuracies are 90.6% for CDR-DEM and 92.7% for CDER-DEM, as shown in table 3: 

 

Table 3.Statistics Experiments results 

Model CDR-DEM CDER-DEM 

Number of catchments 30 30 

Maximum depth 153 150 

Minimum depth 2.9 2 

Mean depth 28.9 27 

Loss 0.2501 0.2232 

Accuracy 90.6% 92.7% 
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            a- Differences elevation image                        b- Classified image   

Figure 8. (a) Differences elevation image,(b) classified image of CDER-DEM 

 

      Many loss functions are used in deep learning like (Regression Loss Function, Mean 

Squared Error, Mean Squared Logarithmic Error Loss, Mean Absolute Error Loss. Binary 

Classification Loss Function, Binary Cross-Entropy Loss, and Hinge Loss). In this work 

cross-entropy was used [28] to improve the classification performance for each batch 

predicted values compared with the actual labels. The cross-entropy loss function 

computes the probability of misclassified pixels. In binary classification, the pixel 

probability is usually predicted by only one output. The binary cross-entropy loss 

function is calculated from (6). 

 

 

 Where log is the natural logarithm, y is a binary indicator (0 or 1), and p is prediction 

probability 

Time complexity  

The time-complexity of the CNN classification training process is influenced by three 

primary factors [29]: (1) the configuration of image feature extraction through CNN 

model. Including the convolution, the max-pooling and the drop-outs; (2) the depths of 

neural network layers (3) the number of iterations (epochs) to optimize the model; and (4) 

the model optimizer [30]. The time complexity for The core component of DenseNet 

model is: 

 O  ,where is the number of convolution layer,  the 

number of filters,   is the size of filters,    is the number of input channels of the  

layer, and is the size of the output feature map. 
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DISCUSSION 

 

      Deep Convolutional Neural Network is one of the most popular and effective 

approaches in the remote sensing and special data domain, especially for classification 

problems. The capability of DenseNet models to learn several levels of abstraction in a 

hierarchical fashion directly from images differentiate them from traditional machine 

learning approaches. GIS software like Arc map and Global mapper play an important 

role in this work which used to detect watershed, flow direction and used to sinks 

extraction from DEM. catchments area detection are very important field in water 

resource. In this work we used integration between power full an effective algorithm 

which used in identifying catchments regions depending on GIS software analysis 

provide information about actual sinks and actual water flow in digital elevation model. 

Accuracy of DEM is another important point must keep in mind in this work. The 

accuracy effect directly in DenseNet Performance. Shape files formed  in various points, 

lines and polygons    We  use shape files in form in polygons   that correspond  features 

of catchments regions and Use corresponding digital elevation  model to  train our model. 

In first experiment(CDR-DEM) train DenseNet model with two kernel filter size  and  45 

epochs  we  observed  that the accuracy increased from ~89.2 %  to ~90.6%  when used 

5×5  filter and the loss decreased from  0.3834  to 0.3544   and  when removed 

uncertainty from DEM the accuracy improved and obtained after 45 epoch ~91.1% to 

~92.6% and  loss from  0.2501 to 0.2232.   figure 9  illustrate the relationship between 

loss and epochs for CDR-DEM in (a)and for CDR-DEM in (b), furthermore  in figure 10 

we observe the improvement in accuracy When representing the relationship  between 

accuracy and epochs for CDR-DEM in (a)and  CDR-DEM in (b)   . It is clear from this 

that special data image affected by errors. And illustrated the effect the time of training 

by these errors as illustrated in table 4.    

Table 4. Classification performance and Elapsed Time for DenseNet model 

                      CDR-DEM 

Kernel filter size Epoch Loss Elapsed Time (~h:m) Accuracy% 

3×3 
45 

0.3834 1:25 89.189 

5×5 0.3544 1:12 90.585 

                             CDER-DEM 

3×3 
45 

0.2501 1:20 91.096 

5×5 0.2232 1:10 92.652 
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In paper[18] proposed level set algorithm using Python, The proposed level set 

method emulates water level decreasing from the spill point along the depression boundary 

to the lowest point at the bottom of a depression. By tracing the dynamic topological 

changes (i.e., depression splitting/merging) within a compound depression, the level-set 

method can construct topological graphs and derive geometric properties of the nested 

depressions. To test the applicability of the proposed level set algorithm for delineating 

nested depressions from DEMs at watershed and landscape scales, in  Pipestem River 

watershed in the state of North Dakota in north America . The bare-earth LiDAR DEM can 

be downloaded by image tiles (2 9 2 km) with 1-m pixel resolution. Vertical accuracy of 

the LiDAR DEM is 15 cm.  And actual sinks are computed depended on corrected and 

actual geographic data. The level set algorithm input needs to many spatial parameters for 

catchments area characteristic like catchments area and depths.     But in our proposed 

method is an actual and automatically catchments detection method. That depends on 

features data and few many tiles of DEM in study area and efficient results in catchments 

location by training validation data in deep learning model which proven that is  faster and  

accurate  method.   

 

 (a) CDR-DEM                                   (b) CDER-DEM 

Figure 9. Loss error curves obtained by two experiments for the training set (blue curves) and testing set 

(red curves): (a) CDR-DEM method, (b) CDER-DEM method 

(a) 
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(b) 
     Figure 10. The relationship between Accuracy and epochs for two methods: (a) CDR-DEM 

method, (b) CDER-DEM method 

 

CONCLUSION AND FUTURE WORK 

 

 In this work, two experiments were used to detect catchments regions in the study area.  

The first CDR-DEM used raw data DEM. which results catchments labels with an accuracy 

of 90.6%. In the second CDER-DEM, the uncertainty regions detected and eliminated from 

the DEM. The operations of Removing errors from DEMs provide more information and 

efficient results in training    and produced more accuracy to 92.6%, as shown in Table 

3.worked binary classification in deep learning using DenseNet model to classify DEM to 

two classes to detect catchments region in study area.  

    Using the integration between GIS software like ArcGIS, level set algorithm, and deep 

learning to predict the catchments regions in the digital elevation model achieved 

Promising results even with limited training data. Spatial Visualization of catchments is 

an essential part of several strategies to enable land cover analysts for decision-makers.  

We tend to use the advantages of integrating between GIS software and powerful deep 

learning models to predict flash floods in future work. 
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