Journal of Plant Production

Journal homepage: <u>www.jpp.mans.edu.eg</u> Available online at: <u>www.jpp.journals.ekb.eg</u>

Irrigation with Magnetically Treated Water, Foliar Application of Ascorbic Acid and Cobalt for Improving Onion Growth, Yield and Quality 🎽

Abd El-Nabi, H. M. E.¹; S. M. A. Doklega^{1*} and Y. F. E. Imryed²

¹Veget. and Flori. Dept. Fac. Agric., Mansoura University, Egypt.
²Plant Production Department, Faculty of Agriculture, Benghazi University, Libya.

Cross Mark

Two field experiments were performed aiming to assess the impact of irrigation with different types of water (Non-treated irrigation water and magnetically treated irrigation water) as main plots and exogenous application of some stimulants as sub plots at different rates *i.e.*, 0.0,100,150 and 200 mg ascorbic acid L^{-1} and cobalt sulphate at rates of 20,40 and 60 mg Co L^{-1} on the performance of onion plants during two successive seasons. The results indicated that onion plants irrigated with magnetically treated water possessed growth, yield and quality parameters better than that irrigated with non-treated water. Regarding foliar application, the control treatment gave the lowest performance compared to the other six treatments of both ascorbic acid and cobalt. On the other hand, the values of growth, yield and quality parameter under ascorbic acid treatments were better than that under cobalt treatments, where the performance significantly increased as the rate of ascorbic acid increased, while the performance under cobalt treatments significantly increased with increasing added cobalt from 0.0 mg L⁻¹ to 20 and 40 mg Co L⁻¹ and then significantly decreased at 60 mg Co L⁻¹, where the toxicity of cobalt might appear on the plants grown at this rate. Also, the interaction between irrigation with magnetically treated water and foliar sprayed with ascorbic acid at rate of 200 mg L-1 gave highest significant values of plant growth parameters, yield and quality parameters (Vit .C , TSS, dry matter , total sugar, fiber, Anthocyanin, pyruvic acid , carbohydrates and protein).

Keywords: Irrigation water, magnetically treated water, stimulants, ascorbic acid, cobalt and onion plants.

INTRODUCTION

Onion (*Allium cepa* L.) belongs to the family of Amaryllidaceae. It is considered an important vegetable crop in Egypt. It contains antioxidants and compounds that fight inflammation, decrease triglycerides and reduce cholesterol levels all of which may lower heart disease risk. Their potent anti-inflammatory properties may also help reduce high blood pressure and protect against blood clots (Golubkina and Caruso, 2020).

Currently, magnification of irrigation efficiency is becoming necessary due to the water shortage in all countries of the world, including Egypt, thus we must work on improving the properties of irrigation water. Recently researches indicate many positive effects of using magnetically treated water techniques for irrigation purposes.

Magnetically treated water technology is a promising approach to address the requirement of optimization of irrigation efficiency. This technology has widely investigated and adopted in the agriculture sector in many countries. Many studies proved that magnetically treated water helps plants easily absorb nutrients from the soil, where the magnetization of low-quality water *e.g.*, agricultural drainage water, reduces its hazard salinity influences on plants and soil due to its ability to washing of different anions from the soil, thus leaching away salts. In other words, subjecting low-quality water to a magnetic field leads to modification of its traits, as it becomes more energetic, therefore abler to flow. Also, subjecting the water to a magnetic field prevents the absorption of heavy metals and increases absorption of essential nutrients *e.g.*, P and K by plant roots, where this treated water dissolves more essential and beneficial nutrients into the root zone to become available and subsequently stimulating plant growth (Faiyad and Hozayn, 2020).

Plants which irrigated with magnetized water had many benefits as well as; raising rate of germination, growth of roots and shoots system, development of inflorescence and fruiting, fruits number, yield and quality as well as decrease the amounts of irrigation water, the solubility of salts and pH (Grewal and Maheshwari, 2011). Magnetized water treatment might potentially diminish the application of fungicides, insecticides, herbicides, which are expensive costs and often harmful human health and environment (Aliverdi *et al.*, 2015).

Doklega (2017) cleared that irrigation potato plants with magnetically treated water produced the highest significant values of plant growth, chlorophylls, yield, chemical composition and quality parameters except nitrate (NO_3) and nitrite (NO_2) contents compared to normal water treatments.

One of the protective ways from environmental stress is treating the plants with antioxidants *e.g.*, ascorbic acid as an foliar application, where it plays a beneficial role in scavenging reactive oxygen species (ROS) resulting from oxidate stress in addition to its essential role in cell division and expansion (Fouda, 2021). Majeed *et al.* (2019) investigated the effects of foliar application of ascorbic acid at rates of 0.0, 250 and 500 ppm on growth and

productivity of potato. The results showed that the treatment of 250 ppm was superior in plant yield and tuber weight as well as leaf chlorophyll, P and K content. Beside, Khazaei and Estaji (2020) reported that external application of ascorbic acid enhanced the growth performance and antioxidants of sweet pepper plants under drought stress.

Cobalt is classified as an essential element in plant nutrition according to the Official Journal of the European Union, REGULATION (EU) 2019/ 1009. Many studies confirmed the vital role of the cobalt element in improving the plants performance. Gad and Kandil (2010) evaluated the effect of cobalt and different sources of phosphorus fertilizers on the performance and yield quantity of tomato, where their results showed that cobalt addition increased all parameters of tomato growth and yield with all sources of P fertilizers. Beside, Gad (2012) found that cobalt had a appositive role in improving growth performance and yield of cowpea plants.

The current study was performed to evaluate the effect of magnetically treated irrigation water on the performance of onion plants and some foliar applications *i.e.*, ascorbic acid and cobalt element.

MATERIALS AND METHODS

1. Experimental Site and Climate Conditions.

The present investigation was performed in a private farm located in Mansoura city, Egypt.

2.Experimental Setup.

Two experiments were done during two successive winter seasons 2019/2020 and 2020/2021 at the Experimental Station Mansoura Univ., Egypt to evaluate the effect of irrigation with magnetically treated water, foliar application of ascorbic acid and cobalt on vegetative growth, chemical composition, yield, and quality parameters of onion plants.

The experiment layout was split-plot system in a randomized complete block design with 3 replicates. The main plots were for irrigation water treatments (magnetized and non-magnetized) while foliar application treatments (ascorbic acid and cobalt) were distributed in the sub plots.

The experimental sub plot area was $15.75 \text{ m}^2(4.5 \text{ m} \times 3.5 \text{ m})$ with a separator of 2.5 m between both main irrigation plots with 8 ridges of 0.75 m wide and 3.0 m long in each sub plot). Onion seedlings (**Cv. Giza Red, 60 days old**) were transplanted on 25^{th} October.

The magnetized water was obtained by passing through a magnetically treated water unit (2.0 inch diameter, 0.60 mT and supplied.

Both ascorbic acid (0.0,100,150 and 200 mg/L) and cobalt sulphate (20,40 and 60 mg Co L-1) were obtained from El-Gamhoria Company, Egypt and its foliar application was repeated three times with three weeks intervals starting the 3rd irrigation event for both, where these materials were applied with a solution volume of 500 L fed⁻¹ for both. Generally, both fertilization processes and all traditional agricultural practices for onion production were done according to Ministry of Agri. and Land Rec. in Egypt. **3.Soil and irrigation water Analyses.**

The characteristics of planting soil (at depth of 0-30 cm) of the experimental site as well as irrigation water before and after the subjecting to magnetization analysis

are presented in Tables 1 and 2, where the analyses were according to Dane and Topp (2020) and Sparks *et al.* (2020).

Table 1. Characteristics of the planting soil.

Physical properties	Value
Mechanical analysis	
Sand,%	17.32
Silt ,%	33.18
Clay,%	50.50
Texture class is clay	
Chemical properties	
CEC, cmol kg ⁻¹	49.0
Organic matter,%	1.75
CaCO ₃ , %	1.75
EC _w , dS m ⁻¹	2.65
pH (1:2.5 soil suspension)	8.10
Available nutrients, mg kg ⁻¹	
Nitrogen	51.5
Phosphorus	8.22
Potassium	220

 Table 2. Chemical analysis of the irrigation water before and after the subjecting to magnetization.

Parameter	Non-treated water	Magnetically treated water
pH	7.300	7.100
EC (dSm^{-1})	2.05	1.85
**SAR, meq l ⁻¹	9.39	9.60
***RSC, meq l-1	-2.1	-1.19
	Soluble cations,	meq L ⁻¹
Ca ⁺²	2.465	1.650
Mg^{+2}	2.800	2.695
Na ⁺	15.24	14.15
K^+	0.005	0.005
	Soluble anions,	meq L ⁻¹
CO3 ⁻²		
HCO3 ⁻	3.16	3.15
Cl	15.5	13.6
SO4 ⁻²	1.85	1.75
** Sodium odcom	tion ratio (SAD)-No/	SOPT $(C_{0}^{+2} + M_{\sigma}^{+2})/2$

** Sodium adsorption ratio (SAR)=Na/SQRT ($Ca^{++} + Mg^{++})/2$ ***Residues sodium carbonate (RSC) = ($CO_3^{-2} + HCO_3^{-}$)- ($Ca^{+2} + Mg^{+2}$)

4.Measurement traits.

After 95 days from transplanting, some growth and chemical traits of onion plants were determined as follows;

• Foliage fresh and dry weights were measured.

• Total chlorophyll and carotene contents were determined according to Şükran *et al.* (1998).

• Nutrients *i.e.*, Nitrogen, phosphorus and potassium were determined according to Tandon (2005).

When bulbs reached to the proper maturing stage, harvesting was done, where some physical and quality characteristics of bulbs were determined as follows;

- **Physical characteristics of bulbs and total yield:** Average bulb weight, total bulb yield and marketable bulb yield.
- Quality characteristics of bulbs: Vitamin C and total soluble solid (TSS) were determined according to AOAC (2000). To calculation of dry matter (DM), onion samples were oven-dried at 70 C° until constant weight. Total sugar and fiber were determined according to AOAC (2000). Anthocyanin pigment was determined as described by Crecente-Campo *et al.* (2012). Pyruvic acid was determined according to Anthon and Barrett (2003). Carbohydrates and crude protein were determined according to AOAC (2000).

5.Statistical Analysis.

Data was statistically analyzed according to Gomez and Gomez (1984) and the treatment means were compared according to Duncan (1955)

RESULTS AND DISCUSSION

Magnetically treated water effect:

Data of Tables 3, 4, 5, 6 and 7 show that onion plants irrigated with magnetically treated water possess the highest values of vegetative growth parameters, chemical constituents and quality parameters compared to plants irrigated with non-treated water and the differences were significant. Also, it can be noticed that improvement of growth criteria as a result of irrigation with magnetically treated water positively reflected bulbs yield and characteristics. The superiority of magnetically treated water may be attributed to changes in its properties ,i.e., viscosity, hydrogen bonding, polarity, conductivity and solubility of salts, pH and surface tension and these changes improved onion plant performance. Many studies proved that these changes in water characters capable to affect the plant's performance (Ali et al., 2017; Hozayn et al., 2020 and Sarraf et al., 2020).

Foliar application effect:

Data illustrate that control treatment recorded the lowest values of vegetative growth criteria and chemical constituents as well as bulbs yield and characteristics compared to the other six treatments of both ascorbic acid and cobalt. On the other hand, the values of all aforementioned traits under ascorbic acid treatments were better than that under cobalt treatments, where the performance significantly increased as the rate of ascorbic acid increased, while the performance under cobalt treatments significantly increased with increasing added cobalt from 0.0 mg L^{-1} to 20 and 40 mg Co L^{-1} and then significantly decreased at 60 mg Co L^{-1} , where the toxicity of cobalt might appear on the plants grown at this rate.

The superiority of ascorbic acid may be attributed to its vital role in cell wall expansion and cells division in addition to its key role in the ascorbate-glutathione pathway. Similar results were obtained by Farooq *et al.* (2020).

The positive effect of cobalt at concentrations of 20 and 40 mg Co L^{-1}) may be due to its role in reducing the rate of transpiration, where cobalt element may be caused an increase in the leaf water potential relative, therefore improvement of the photosynthesis process which positively reflected on bulbs yield and quality parameters. Our findings are in accordance with those of Akeel and Jahan (2020).

Interaction effect:

Data elucidate that onion plants irrigated with magnetically treated water and sprayed with ascorbic acid at rate of 200 mg L^{-1} have the best performance compared to other combined treatments in all measurements and the differences were significant.

The obtained results took the same direction for all vegetative and chemical measurements, yield and its components and the influence of treatment with magnetically treated water and both ascorbic acid and cobalt treatments, where these treatments play important roles in influencing the growth of plants, which is reflected positively on all measurements mentioned in the tables.

The effect of magnetically treated water on the differences between normal and magnetically treated water is clear as shown in the same tables, and this in turn is the reason for the superiority of magnetically treated water as previously mentioned.

 Table 3. Impact of investigated treatments on growth parameters and photosynthetic pigments of onion plants after 95 days from transplanting during seasons of 2019/2020 and 2020/2021.

		Plant fre	esh weight	Plant dr	y weight	T. chlorophyll Carotene				
Treatments			g/ 1	olant			mg/ g	F.W		
		1 st	2^{nd}	1 st	2^{nd}	1 st	2^{nd}	1 st	2^{nd}	
			Irrigation	water treatn	nents					
Non-treated w	ater	64.38b	65.91b	7.58b	7.73b	1.061b	1.086b	0.426b	0.434b	
Magnetically t	reated water	68.88a	70.31a	8.17a	8.37a	1.174a	1.201a	0.511a	0.523a	
			Folia	r application	s					
Cont.		64.66g	65.92e	7.60d	7.83d	1.068e	1.094d	0.438f	0.450f	
$100 \text{ mg } \text{L}^{-1}$ Ascorbic acid		67.28c	68.71bc	7.98abc	8.09b	1.136b	1.160b	0.481c	0.491c	
150 mg L ⁻¹ A	scorbic acid	67.94b	69.47ab	8.07ab	8.23a	1.147ab	1.181a	0.492b	0.502b	
200 mg L ⁻¹ A	scorbic acid	68.55a	70.11a	8.16a	8.30a	1.165a	1.187a	0.503a	0.515a	
20 Cobalt mg	L-1	65.97e	67.27d	7.81cd	7.98bc	1.104cd	1.125c	0.455e	0.463e	
40 Cobalt mg	L-1	66.64d	68.00cd	7.89bc	8.05b	1.115c	1.146b	0.467d	0.479d	
60 Cobalt mg	L ⁻¹	65.39f	67.29d	7.60d	7.89cd	1.088d	1.112cd	0.444f	0.453f	
			Ir	nteraction						
	Cont.	62.38n	63.65h	7.28i	7.50h	1.0081	1.033j	0.406j	0.415i	
	100 mg L ⁻¹ Ascorbic acid	65.03j	67.01ef	7.66e-h	7.80efg	1.078hi	1.102fg	0.435h	0.444g	
Nau turntad	150 mg L ⁻¹ Ascorbic acid	65.67i	67.21ef	7.75efg	7.91ef	1.092gh	1.125f	0.447g	0.455fg	
Non-treated	200 mg L ⁻¹ Ascorbic acid	66.30h	67.81e	7.84def	7.97e	1.109fg	1.130ef	0.458g	0.467f	
water	20 Cobalt mg L ⁻¹	63.78l	64.68gh	7.51ghi	7.62gh	1.049jk	1.068hi	0.412ij	0.419hi	
	40 Cobalt mg L ⁻¹	64.39k	66.01fg	7.58f-i	7.75fg	1.060ij	1.088gh	0.422i	0.430h	
	60 Cobalt mg L ⁻¹	63.13m	64.97gh	7.41hi	7.56h	1.031kl	1.053ij	0.403j	0.411i	
	Cont.	66.93g	68.18de	7.92cde	8.15d	1.127ef	1.156de	0.471f	0.485e	
	100 mg L ⁻¹ Ascorbic acid	69.53c	70.41bc	8.30ab	8.38bc	1.193bc	1.218ab	0.527b	0.537bc	
M	150 mg L ⁻¹ Ascorbic acid	70.20b	71.73ab	8.38ab	8.54ab	1.202ab	1.238a	0.536b	0.549b	
Magnetically	200 mg L ⁻¹ Ascorbic acid	70.79a	72.40a	8.48a	8.63a	1.220a	1.243a	0.549a	0.562a	
treated water	20 Cobalt mg L ⁻¹	68.16e	69.85c	8.11bcd	8.34c	1.160d	1.181cd	0.498d	0.507d	
	40 Cobalt mg L ⁻¹	68.89d	70.00c	8.19abc	8.35c	1.171cd	1.203bc	0.513c	0.527c	
	60 Cobalt mg L-1	67.64f	69.61cd	7.78efg	8.21cd	1.145de	1.170d	0.486e	0.496de	

The treatment means were compared according to Duncan (1955)

Abd El-Nabi, H. M. E. et al.

Table 4.	4. Impact of investigated treatments on N,P and K content in onion plants after 95	days from transplanting
	during seasons of 2019/2020 and 2020/2021.	

Tuesdan anda		N	1%	Р	%	K%				
1 reatments	. –	1 st	2^{nd}	1 st	2 nd	1 st	2 nd			
	Irrigation water treatments									
Non-treated	water	2.95b	3.07b	0.269b	0.274b	2.47b	2.52b			
Magnetically	y treated water	3.57a	3.68a	0.324a	0.332a	2.94a	3.00a			
]	Foliar applica	tions						
	Cont.	2.99g	3.09d	0.273g	0.279g	2.50g	2.55g			
100 n	ng L ⁻¹ Ascorbic acid	3.35c	3.47bc	0.304c	0.310c	2.75c	2.82c			
150 n	ng L ⁻¹ Ascorbic acid	3.44b	3.58ab	0.312b	0.317b	2.84b	2.90b			
200 n	ng L ⁻¹ Ascorbic acid	3.52a	3.67a	0.320a	0.328a	2.92a	2.98a			
2	20 Cobalt mg L ⁻¹	3.18e	3.20d	0.289e	0.298e	2.64e	2.69e			
4	10 Cobalt mg L ⁻¹	3.26d	3.38c	0.296d	0.303d	2.70d	2.75d			
6	50 Cobalt mg L ⁻¹	3.10f	3.21d	0.281f	0.287f	2.58f	2.64f			
			Interaction	n						
	Cont.	2.651	2.75j	0.245k	0.249j	2.221	2.27k			
	100 mg L ⁻¹ Ascorbic acid	3.04i	3.16gh	0.275h	0.280fg	2.53i	2.59h			
Non-	150 mg L ⁻¹ Ascorbic acid	3.13h	3.27fg	0.284g	0.287f	2.62h	2.69g			
treated	200 mg L ⁻¹ Ascorbic acid	3.21g	3.34f	0.294f	0.301e	2.71g	2.76f			
water	20 Cobalt mg L ⁻¹	2.89j	3.00hi	0.261ij	0.268h	2.40j	2.45i			
	40 Cobalt mg L ⁻¹	2.96j	3.08h	0.268hi	0.273gh	2.48i	2.53h			
	60 Cobalt mg L ⁻¹	2.78k	2.88ij	0.254j	0.261i	2.33k	2.38j			
	Cont.	3.32f	3.43ef	0.302e	0.308d	2.77f	2.84e			
	100 mg L ⁻¹ Ascorbic acid	3.67c	3.79bc	0.333b	0.340b	2.98c	3.06b			
Magnetically	150 mg L ⁻¹ Ascorbic acid	3.75b	3.90ab	0.339ab	0.347b	3.07b	3.12b			
treated	200 mg L ⁻¹ Ascorbic acid	3.84a	4.00a	0.346a	0.354a	3.14a	3.20a			
water	20 Cobalt mg L ⁻¹	3.48e	3.40ef	0.317d	0.327c	2.88de	2.93cd			
	40 Cobalt mg L ⁻¹	3.57d	3.68cd	0.325c	0.332c	2.92cd	2.96c			
	60 Cobalt mg L ⁻¹	3.41e	3.54de	0.309e	0.313d	2.83ef	2.89de			

The treatment means were compared according to Duncan (1955)

Table 5. Impact of investigated treatments or	n average	weight	of bulbs	and	total	yield	at	harvest	stage	during
seasons of 2019/2020 and 2020/2021.										

		Average b	ulb weight	Total bu	lb yield	Marketable bulb yield		
Treatm	ents	g F	.W		Ton	ı h ⁻¹		
	-	1^{st}	2^{nd}	1^{st}	2^{nd}	1^{st}	2 nd	
Non-tre	ated water	92.90b	94.66b	34.19b	34.84b	32.32b	33.07b	
Magnet	ically treated water	109.08a	110.93a	40.14a	40.82a	38.26a	39.02a	
Cont.		93.89g	95.51g	34.55g	35.15g	32.74g	33.38g	
100 mg	L ⁻¹ Ascorbic acid	103.26c	105.41c	38.00c	38.79c	36.16c	36.86c	
150 mg	L ⁻¹ Ascorbic acid	105.73b	107.58b	38.91b	39.59b	36.98b	37.85b	
200 mg	L ⁻¹ Ascorbic acid	107.98a	109.76a	39.74a	40.39a	37.81a	38.64a	
20 Coba	alt mg L ⁻¹	98.70e	100.51e	36.32e	36.99e	34.48e	35.12e	
40 Coba	alt mg L ⁻¹	101.13d	103.16d	37.22d	37.97d	35.25d	35.96d	
60 Coba	alt mg L ⁻¹	96.24f	97.64f	35.41f	35.93f	33.59f	34.54f	
	Cont.	85.82n	87.60n	31.58n	32.24n	29.85i	30.45n	
	100 mg L ⁻¹ Ascorbic acid	95.24j	97.47j	35.05j	35.87j	33.17g	34.13j	
Non-	150 mg L ⁻¹ Ascorbic acid	97.56i	99.54i	35.90i	36.63i	33.98fg	34.84i	
treated	200 mg L ⁻¹ Ascorbic acid	99.76h	101.68h	36.71h	37.42h	34.79ef	35.61h	
water	20 Cobalt mg L ⁻¹	90.641	92.031	33.361	33.871	31.53h	31.901	
	40 Cobalt mg L ⁻¹	93.02k	94.71k	34.23k	34.85k	32.28h	33.05k	
	60 Cobalt mg L ⁻¹	88.26m	89.59m	32.48m	32.97m	30.63i	31.53m	
	Cont.	101.96g	103.42g	37.52g	38.06g	35.63e	36.31g	
	100 mg L ⁻¹ Ascorbic acid	111.27c	113.35c	40.95c	41.71c	39.15b	39.59c	
Magne	150 mg L ⁻¹ Ascorbic acid	113.90b	115.61b	41.92b	42.54b	39.98ab	40.86b	
tically	200 mg L ⁻¹ Ascorbic acid	116.21a	117.83a	42.77a	43.36a	40.83a	41.66a	
water	20 Cobalt mg L ⁻¹	106.75e	109.00e	39.28e	40.11e	37.42c	38.33e	
multi	40 Cobalt mg L ⁻¹	109.24d	111.61d	40.20d	41.08d	38.22c	38.87d	
	60 Cobalt mg L ⁻¹	104.21f	105.69f	38.35f	38.89f	36.55d	37.54f	

The treatment means were compared according to Duncan (1955)

Table 6. Impact of investigated treatments on	quality	characteristics	of bulbs	at harves	t stage	during	seasons	of
2019/2020 and 2020/2021.								

		Vita	min C	TI	DS	Dry n	natter	Tota	l sugar	Fiber	
Treatments		mg 1	100g ⁻¹				%				
		1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
Non-treated w	vater	11.38b	11.62b	10.77b	11.45b	10.58b	10.83b	7.37b	7.55b	2.92b	2.97b
Magnetically	treated water	13.13a	13.39a	12.07a	14.19a	12.20a	12.44a	8.11a	8.27a	3.83a	3.91a
			I	Foliar appli	cations						
Cont.		11.43g	11.76g	10.85e	11.63g	10.67g	10.87f	7.39f	7.53e	2.96g	3.03g
100 mg L ⁻¹ Ascorbic acid		12.54c	12.67c	11.59b	13.19c	11.66c	11.89c	7.86bc	8.05b	3.51c	3.59c
150 mg L ⁻¹ A	scorbic acid	12.77b	13.10b	11.79a	13.58b	11.86b	12.14b	7.96ab	8.12ab	3.62b	3.69b
200 mg L ⁻¹ A	scorbic acid	13.04a	13.30a	11.99a	14.00a	12.12a	12.38a	8.06a	8.25a	3.75a	3.83a
20 Cobalt mg	L ⁻¹	12.01e	12.23e	11.25c	12.46e	11.13e	11.34e	7.64de	7.81cd	3.27e	3.33e
40 Cobalt mg	L ⁻¹	12.28d	12.52d	11.42bc	12.80d	11.38d	11.62d	7.74cd	7.90c	3.39d	3.46d
60 Cobalt mg	L ⁻¹	11.71f	11.96f	11.05d	12.06f	10.92f	11.24e	7.55e	7.70d	3.10f	3.17f
				Interact	ion						
	Cont.	10.48n	10.77n	10.16m	10.26n	9.87j	10.06j	6.991	7.12k	2.49n	2.54m
	100 mg L^{-1} Ascorbic acid	11.66j	11.78j	10.94ij	11.79j	10.83g	11.16g	7.49hi	7.71gh	3.05j	3.10j
Non-	150 mg L^{-1} Ascorbic acid	11.90i	12.15i	11.16hi	12.20i	11.05g	11.33fg	7.60gh	7.78fg	3.16i	3.21i
treated	200 mg L ⁻¹ Ascorbic acid	12.16h	12.40h	11.36gh	12.61h	11.31f	11.57ef	7.68fg	7.88efg	3.28h	3.35h
water	20 Cobalt mg L ⁻¹	11.171	11.481	10.60kl	11.131	10.33hi	10.46i	7.29jk	7.48ij	2.831	2.88k
	40 Cobalt mg L ⁻¹	11.45k	11.68k	10.76jk	11.43k	10.57h	10.84h	7.38ij	7.54hi	2.96k	3.02j
	60 Cobalt mg L ⁻¹	10.83m	11.05m	10.41lm	10.72m	10.12ij	10.42i	7.16kl	7.31jk	2.65m	2.701
	Cont.	12.38g	12.75g	11.54fg	13.01g	11.47ef	11.69e	7.80ef	7.94def	3.43g	3.52g
	100 mg L^{-1} Ascorbic acid	13.42c	13.56c	12.24bc	14.59c	12.48b	12.61b	8.23bc	8.38b	3.98c	4.07c
Magnetically	150 mg L^{-1} Ascorbic acid	13.63b	14.04b	12.42ab	14.96b	12.68ab	12.96a	8.32ab	8.45ab	4.09b	4.18b
traated water	200 mg L^{-1} Ascorbic acid	13.91a	14.19a	12.61a	15.40a	12.93a	13.18a	8.43a	8.61a	4.22a	4.31a
ucated water	20 Cobalt mg L ⁻¹	12.85e	12.99e	11.91de	13.79e	11.93cd	12.21cd	7.99d	8.14cd	3.71e	3.78e
	40 Cobalt mg L ⁻¹	13.12d	13.36d	12.08cd	14.17d	12.18c	12.39bc	8.09cd	8.27bc	3.83d	3.90d
	$60 \text{ Cobalt mg } L^{-1}$	12.60f	12.86f	11.69ef	13.40f	11.73de	12.05d	7.94de	8.08cde	3.55f	3.63f
The treatment	means were compared accord	ding to D	uncan (195	(5)							

The treatment means were compared according to Duncan (1955)

 Table 7. Impact of investigated treatments on anthocyanin pigment, pyruvic acid , carbohydrates and protein of bulbs at harvest stage during seasons of 2019/2020 and 2020/2021

		Antho	cyanin	Pyruvi	ic acid	Carboh	ydrates	Protein	
Treatments		mg 1	00g-1	μmo	l.g ⁻¹		%		
		1 st	2 nd	1 st	2 nd	1 st	2^{nd}	1 st	2 nd
		Ι	rrigation wat	er treatmen	ts				
Non-treated w	vater	26.82b	27.34b	5.12b	5.22b	16.10b	16.49b	7.59b	7.77b
Magnetically treated water		28.55a	29.04a	6.77a	6.89a	17.68a	18.01a	8.54a	8.71a
			Foliar app	olications					
Cont.		26.95e	27.44f	5.32g	5.42g	16.21g	16.52f	7.63g	7.78d
100 mg L ⁻¹ A	scorbic acid	27.84bc	28.43c	6.15c	6.26c	17.10c	17.50bc	8.22c	8.38b
150 mg L ⁻¹ A	scorbic acid	28.13ab	28.64b	6.35b	6.45b	17.31b	17.66b	8.33b	8.52a
200 mg L ⁻¹ A	scorbic acid	28.41a	28.89a	6.61a	6.75a	17.56a	17.97a	8.47a	8.65a
20 Cobalt mg	L-1	27.49cd	27.98d	5.73e	5.84e	16.66e	17.04de	7.94e	8.08c
40 Cobalt mg	L-1	27.74bc	28.32c	5.95d	6.04d	16.96d	17.31cd	8.09d	8.26b
60 Cobalt mg	L-1	27.22de	27.63e	5.53f	5.64f	16.43f	16.75ef	7.79f	8.01c
			Intera	ction					
	Cont.	26.13k	26.70j	4.571	4.69n	15.39m	15.70k	7.13k	7.271
	100 mg L ⁻¹ Ascorbic acid	26.84hij	27.48h	5.26j	5.34j	16.30i	16.79gh	7.75h	7.97hi
Non-	150 mg L ⁻¹ Ascorbic acid	27.20ghi	27.74g	5.47i	5.57i	16.55h	16.92fg	7.86gh	8.06gh
treated	200 mg L ⁻¹ Ascorbic acid	27.45fgh	28.00f	5.78h	5.93h	16.80g	17.24ef	8.00fg	8.19fg
water	20 Cobalt mg L ⁻¹	26.71ijk	27.12i	4.91k	4.991	15.90k	16.32ij	7.48i	7.58jk
	40 Cobalt mg L ⁻¹	26.94hij	27.45h	5.11j	5.20k	16.13j	16.46hi	7.59i	7.77ij
	60 Cobalt mg L ⁻¹	26.47jk	26.89j	4.76k	4.84m	15.651	15.99jk	7.32j	7.53k
	Cont.	27.77efg	28.19ef	6.06g	6.14g	17.03f	17.34ef	8.13ef	8.29ef
	100 mg L ⁻¹ Ascorbic acid	28.84abc	29.37bc	7.03c	7.17c	17.90c	18.22b	8.68c	8.78bc
Magnetically	150 mg L ⁻¹ Ascorbic acid	29.06ab	29.54b	7.23b	7.34b	18.07b	18.39ab	8.80ab	8.98ab
treated	200 mg L ⁻¹ Ascorbic acid	29.37a	29.77a	7.43a	7.56a	18.31a	18.70a	8.93a	9.11a
water	20 Cobalt mg L ⁻¹	28.27cde	28.85d	6.56e	6.68e	17.42d	17.76cd	8.40d	8.59cd
	40 Cobalt mg L ⁻¹	28.54bcd	29.19c	6.79d	6.88d	17.79c	18.17bc	8.58c	8.74c
	60 Cobalt mg L ⁻¹	27.97def	28.37e	6.29f	6.43f	17.21e	17.51de	8.25e	8.48de

The treatment means were compared according to Duncan (1955)

CONCLUSION

This study increases our knowledge regarding the efficacy of the subjecting of water to magnetization before its usage for irrigation purposes, where magnetically treated water had a positive role in improving onion performance.

Also, results obtained confirmed that both ascorbic acid and cobalt possess a vital role in improving onion performance.

REFERENCES

- Akeel, A and A. Jahan (2020). Role of cobalt in plants: its stress and alleviation. Contaminants in agriculture. Cham: Springer, 339-357.
- Ali, A., Arfa, Y and A. S. Mohamed (2017). Maximizing water use efficiency for some plants by treated magnetic water technique under East Owainat conditions. Egyptian Journal of Soil Science, 57(3): 353-369.

- Aliverdi, A.; M. Parsa and H. Hammami (2015). Increased soybean-rhizobium symbiosis by magnetizedally treated water. Bio. Agric. and Hort., 31(3): 167-176.
- Anthon, A. and D. Barrett (2003). Modified method for the determination of pyruvic acid with di-nitrophenyl hydrazine in the assessment of onion pungency. J Sci. Food Agric., 83:1210-1213.
- AOAC,(2000)." Official Methods of Analysis". 18th Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.
- Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M. A and M. L. Vázquez-Odériz (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (*Fragaria× ananassa Duch, cv Selva*). Journal of Food Composition and Analysis, 28(1): 23-30.
- Dane, J. H. and C. G. Topp (2020). "Methods of soil analysis", Part 4: Physical methods (Vol. 20). John Wiley & Sons.
- Doklega, S.M.A (2017). Impact of magnetized water irrigation, soil mineral fertilization and foliar spraying with nanomaterial on potato plants. J. Plant Production, Mansoura Univ., Vol. 8(11): 1113 – 1120.
- Duncan, D.B. (1955). Multiple ranges and multiple F test.Biometrics.,1-42.
- Faiyad, R.M and M. Hozayn (2020). Effect of magnetic water and urea fertilizer on sugar beet yield and quality. Plant Archives. 2 (20): 8622-8634.
- Farooq, A., Bukhari, S. A., Akram, N. A., Ashraf, M., Wijaya, L., Alyemeni, M. N and P. Ahmad (2020). Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (*Carthamus tinctorious* L.). Plants, 9(1):104.
- Fouda, (2021). Impact of antioxidants and cobalt on growth performance of broccoli plants irrigated by different irrigation sources. Plant Cell Biotechnology and Molecular Biology, 22(41-42): 24-32.
- Gad, N and H. Kandil (2010). Influence of cobalt on phosphorus uptake, growth and yield of tomato. Agriculture and Biological J. of North Am, 1(5): 1069-1075.
- Gad, N. (2012). Response of Cowpea Plants to Cobalt and Molybdenum Combination. Middle East Journal of Applied Sciences, 2(1), 13-19.
- Golubkina, N and G. Caruso (2020). Onion. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 73-87). Academic Press.

- Gomez, K. A. and A. A. Gomez (1984). "Statistical procedures for agricultural research". John Wiley and Sons, Inc., New York.pp:680.
- Grewal, H.S. and B.L. Maheshwari (2011). Magnetized treatment of irrigation water and Snow pea and Chickpea seeds enhances early growth and nutrient contents of seedlings. Bio Electromagnetics, 32: 58-65.
- Hozayn, M., Ali, H. M. H., Marwa, M. A and A. F. El-Shafie (2020). Influence of magnetic water on French basil (*Ocimum basilicum L. var. Grandvert*) plant grown under water stress conditions. Plant Archives, 20(1): 3636-3648.
- Khazaei, Z and A. Estaji (2020). Effect of foliar application of ascorbic acid on sweet pepper (*Capsicum annuum*) plants under drought stress. Acta Physiologiae Plantarum, 42(7):1-12.
- Majeed, B. H., Mohammed, M. M and A. H. Almashhadany (2019). Influence of foliar application of ascorbic acid and atonik on growth and yield of potato. Research on Crops, 20 (spl): 58-60.
- Official Journal of the European Union. Regulation (Eu) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. L 170. 25 June 2019, Volume 62. Available online: https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=OJ:L:2019:170:FULL&f rom=EN (accessed on 22 January 2020).
- Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M and S. Liu (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9(9): 1139.
- Sparks, D. L., Page, A. L., Helmke, P. A and R. H. Loeppert (Eds.). (2020)."Methods of soil analysis", part 3: Chemical methods (Vol. 14). John Wiley & Sons.
- Şükran, D. E. R. E., GÜNEŞ, T and R. Sivaci (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1):13-18.
- Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilizers & organic manures. Fertilizer Development and Consultation Organization.

الري بالماء المعامل مغناطيسيا والرش الورقي بحمض الاسكوربيك والكوبالت لتحسين نمو ومحصول وجودة البصل حسام محمد السعيد عبد النبي' ، سمر محمد عبد الحميد دقليجه' و يوسف فرج الشريف إمريض' 'قسم الخضر والزينة - كلية الزراعة – جامعة المنصورة

^تقسم الإنتاج النباتي - كلية الزراعة – جامعة بنغازي

تم إجراء تجربتين حقليتين تهدفان إلى تقييم تأثير الري بأنواع مختلفة من المياه (مياه الري غير المعامله ومياه الري المعاملة مغناطيسيًا) في القطع الرئيسية والرش الورقي لبعض المنشطات في القطع المنشقة بمعدلات مختلفة (٥ – ١٠٠ – ١٥٠ - ٢٠٠ مجم/لتر) من حمض الاسكورييك وكبريتات الكوبالت بمعدلات (٢٠ -٤٠ - ٢٠ مجم /لتر) على نمو نباتك البصل خلال موسمين متتاليين. اوضحت النتاتج أن نباتك البصل التي تم ريها بالمياه المعاملة مغناطيسيًا اعطت أفضل صفات النمو والمحصول والجودة مقارنة بتلك التي تم ريها بالمياه غير المعاملة. فيما يتعلق الرش الورقي ، أعطت معاملة الكترول أقل القيم مقارنة مع المعاملات السنة الأخرى لكل من حامض الأسكورييك والكوبالت. من ناحية أخرى ، اعطي الرش بحمض الأسكورييك اعلي قيم النمو والمحصول وصفات الجودة مقارنة بتلك التي تم معاملة الخرى كل من حامض الأسكورييك والكوبالت. من ناحية أخرى ، اعطي الرش بحمض الأسكورييك اعلي قيم النمو والمحصول وصفات الجودة مع بالكوبالت ، كانت هذاك زيادة معنوية مع زيادة معدل حمض الأسكورييك الحلي قيادة معنوية مع زيادة الإضافة بالكوبالت من بالكوبالت ، كانت هذاك زيادة معنوية مع زيادة معدل حمض الأسكورييك اعلي قريادة معنوية مع زيادة الإضافة بالكوبالت من بالكوبالت من كانت هذاك ريادة معدل حمض الأسكورييك الت فنك زيادة معنوية مع زيادة الإضافة بالكوبالت من ١٠ إلى و مع مام التي ينخفض بشكل ملحوظ عند ٦٠ مجم /لتر بلسبب سمية الكوبالت على النباتات المزروعة بهذا المعدل. كنك أعلي أعلي التواعل بين الري بالماء المعامل مغناطيسيا مع الرش والورقي بحمض الاسكوريك بمعول ٢٠ ملجم /لتر أعلي قيم معنوية لقياسات النمو و المحصول و صفات الري الري المعامل مغناطيسيا مع الرش والسكريات الكلية و الالياف والانواد المعام الميار وليك و ولي والمعالي المعامل مغناطيسيا مع الرش