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Abstract 

This paper presents a new concept of stainless-steel eddy current-based electromagnetic induction screw type for heat 
exchanger or double pack heaters in hot water product, steam boiler and high heating evaporator, which is more suitable and 
acceptable to consumers of a new generation for energy applications. In addition, the active clamped edge-resonant high-
frequency PWM inverter using trench-gate IGBTs power module can operate according to the zero-voltage soft-switching 
principle with PWM and has been developed and proven for high-efficiency hot water heating boiler and product in 
consumer power applications. The power device for consumer induction heater using active-clamp soft-switched PWM high-
frequency inverter is evaluated and discussed based on simulation through PSIM and experimental results. To extend the 
operating ranges of zero-voltage soft-switching under a low-power setting as well as improve efficiency, a high-frequency 
pulse density modulation strategy for a high-frequency soft-switched inverter is demonstrated. The practical effectiveness of 
induction heating power supply has been greatly proven from the point of view of induction heating application. 
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1. INTRODUCTION   

The main source of heating, cooling, and electrical power generation applications is natural gas [1, 2], a fossil 
fuel, which in turn is exacerbating the looming global warming. Therefore, new-age residential induction heaters 
pave the way for the replacement of traditional electric and gas heating technologies. Induction Heating (IH) 
systems have inherent advantages, such as higher conversion efficiency, being cleaner, and having less time to 
acquire heat [3]. On the other hand, IH incurs more efficient clean energy disposal [4, 5]. Compared with 
traditional heating techniques such as resistive heating, flame heating, or arc furnaces, IH is more suitable for 
industrial applications because it is more effective and efficient [6-9]. More importantly, methodologies for an 
inherently safe pregnancy in IH are very favorable for many medical applications [10-14]. The portability and 
plug-and-play aspects of IH-supported devices mean that they are in high demand concerning home applications 
[15-17]. 

In recent years, electromagnetic induction eddy current-based heat energy processing and utilization systems 
using a variety of high-frequency high-power inverters have attracted special interest from the viewpoints of 
high efficiency, high reliability, safety, cleanliness, compactness in volumetric size, light in weight, rapid 
temperature response for particular high-power applications in industry automotive and consumer fields [18-20]. 
The electromagnetic IH is concerned with non-contact, high efficiency, and clean electric heating method due to 
the energy conversion heated device by induction eddy current based on Faraday's law of electromagnetic 
induction principle in addition to Joule's heating principle [21-23]. Induction heating technology has a wide 
range of usage areas such as melting, annealing, welding, tight passing, hardening, forming, cooking and plasma 
physics [24, 25].  

There are various induction water heaters developed recently. But those heaters were designed for water 
heating. Also, academic studies have been focused on water heating. Thus, an induction water heater system 
seems to be a useful innovation [26]. The high-frequency inverters of induction heating applications can supply 
high-frequency power to IH load, which consists of working coil and eddy current-based heating materials. 
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Some high-frequency inverters operating overpower frequency ranges from 20 kHz to several MHz need to be 
cost-effective, high efficiency and have high power density [19, 20, 27, 28]. There are various high-frequency 
inverter circuit topologies, such as full-bridge, half-bridge, single-ended push-pull, center tap push-pull and 
boost half-bridge. Of these, the voltage source type ZCS (zero current switching) [29], ZVS (zero voltage 
switching), SEPP (Single-Ended Push-Pull) resonant and the quasi-resonant hybrid high-frequency inverter has 
unique features, such as simple configuration, high efficiency, and wide soft commutation range [27-34]. The 
proposed inverter is configured by IGBTs and evaluated by simulation diagrams [19, 35]. 

This paper presents a new conceptual energy-saving type electromagnetic eddy current-based induction 
heater, which is more suitable and acceptable for induction heated hot water producer, boiler and steamer. On 
the other hand, active voltage-clamped type zero voltage soft switching PWM high-frequency inverter 
connected to utility AC 200V-RMS for consumer power applications is developed and demonstrated from a 
practical point of view [36-38]. In this paper, a new style compact induction heated hot water producer and 
steamer using soft-switching PWM high-frequency inverter is also discussed and evaluated from the 
experimental and simulation points of view. 

This paper is organized as follows: In Section 2, induction eddy current-based heated hot water producer. In 
Section 3, new conceptual induction heater. In Section 4, active clamping quasi-resonant ZVS PWM high-
frequency inverter. In Section 5, experimental results, and discussions and finally, the conclusion is in Section 6. 

 

2. INDUCTION EDDY CURRENT-BASED HEATED HOT WATER PRODUCER 

2.1. Induction Heated Load Technology and Circuit Modeling 

A prototype of the induction eddy current-based heated hot water producer and steamer is schematically 
illustrated in Fig. 1. This energy conversion device based on an electromagnetic induction-heated type heat 
exchanger composed of the dual pack's heater is made of a new conceptual induction heater which is built and 
tested by spiral stainless-steel assembly, working coil (Litz wire), nonmetal heating vessel made of the 
polycarbonate, high-frequency soft-switching inverter using IGBTs and diode rectifying converter.  
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Fig. 1.  Induction heating water producer. 

An electromagnetic induction heater for compact hot water producer and steamer using high-frequency 
inverter driven by the diode rectifier with a non-smoothing filter has to be designed for the following 
requirements: (a) uniform temperature distribution, (b) wide eddy current heating surface, (c) no erosion, (d) no 
thermal deformation for power injection or rejection, (e) small heat capacity. In this paper, a new conceptual 
induction heater made of non-magnetic stainless steel SUS316 plate is demonstrated that has a spiral assembly 
with a short circuit called copper bar end ring for quick temperature response in specified temperature setting. It 
is composed of the spiral assembly and its outside edge point is connected to the inside edge point by connecting 
the low resistance copper bar between two edge points. In this technique, it is possible to achieve a uniform 
temperature distribution of an electromagnetic induction eddy current-based joule’s induction heated type heat 
exchanger. 

In general, it is difficult to form the spiral structure toward its center. In the case of rolling toward its center, 
effective increment of the heating surface could not expect actually. But if no obstacle is inserted in the center of 
the spiral plate structure, the heat exchange efficiency of this induction heater decreases because a large majority 
of the heated liquid flows through the center. To improve reduced heat exchange efficiency, the cylindrical 



Kassem et. al: Active Clamp Soft-Switching PWM High-Frequency Inverter for Induction Heated Hot Water  17 
 
polycarbonate material is inserted toward the center of this vessel. The geometric size and shape of this 
induction heater are designed as illustrated in Fig. 2. 

 

Fig. 2. Top view appearance of electromagnetic induction eddy current-based heater. 

 

3. ACTIVE CLAMPING QUASI-RESONANT ZVS PWM HIGH-FREQUENCY INVERTER 

3.1. Circuit Description 

Fig. 3 shows an active clamp high-frequency inverter circuit topology that can operate under a condition of 
zero voltage soft switching (ZVS) and constant frequency duty factor regulated mode asymmetrical pulse width 
modulation (PWM) control strategy for power regulation. This active voltage clamps high-frequency inverter 
using IGBTs, which has some advantageous points such as wide soft-switching operation range, low peak 
voltage stress for power switching devices and high efficiency, which is developed and implemented for 
electromagnetic induction eddy current-based heated hot water producer and steamer and boiler. Introducing the 
voltage-clamped capacitor (CS) in series with an auxiliary active power switch, this high-frequency inverter can 
effectively clamp an excessive peak voltage applied to the main active power switch (SW1). Besides introducing 
an auxiliary switch (SWS), this high-frequency inverter can operate under a constant frequency asymmetrical 
pulse width modulation (PWM) control strategy. In Fig. 3 this induction heated hot water producer driven by 
this inverter is represented as the transformer type equivalent circuit model. 
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Fig. 3. Active voltage-clamped edge-resonant high-frequency inverter. 
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3.2. Gate Pulse Control Implementation 

Fig. 4 illustrates timing asymmetrical PWM pulse sequences for the high-frequency inverter shown in Fig. 3. 
These voltages pulses are supplied to the power semiconductor switching block; Q1 (SW1&D1) and QS 
(SWS&DS). Duty Factor defined as D=ton/T serves as a control variable for the continuous power regulation for 
this edge-resonant soft-switching PWM inverter using IGBTs. Duty Factor is designed as a ratio of the 
conduction time including a dead time of the main active power switches during one period. 

 

Fig. 4. Asymmetrical PWM gate voltage pulse signal sequences. 

 

When the full power is delivered to the load, the conduction time of the main active power switch during one 
cycle is lengthened as indicated in Fig. 4 (a). On the other hand, when full power is not required for load, the 
conduction interval is shortened as indicated in Fig. 4 (b). 

 

4. SIMULATION RESULTS  

4.1. PWM Control Technique 

The most commonly used pulses with modulation [41] are applied to the IH system to control the output 
power. For variable loads, the power semiconductor switches enter into the hard-switching mode, which 
increases the switching stresses. To overcome this problem, dual-loop controls were developed using a phase-
locked loop (PLL) and a PI controller [39, 40, 41, 42]. The PLL, the first loop control, is used to track the 
resonant frequency to maintain the soft switching in the inverter and the outer loop controls the output power. 
The general block diagram of the PLL-assisted PI control is shown in Fig. 5. The dual-loop controls make the 
system more complex and slower down the dynamic response. This problem required a solution to develop a 
suitable modulation technique that would be good for both the soft-switching action and the power control. The 
flowchart of the PLL-assisted PWM control technique is shown in Fig. 6. 

 

Fig. 5. A general block diagram of PLL-assisted PI control. 

 

Fig 4 Asymmetrical PWM gate 
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Fig. 6. Flow chart of PLL-assisted PWM control technique. 

4.2. Switching Voltage and Current Waveforms 

Fig. 7 shows the steady state switching voltage and current simulation waveforms of Q1 (SW1&D1) and QS 
(SWS&DS) under the zero-voltage soft switching condition with 𝐷𝐷 = 0.5. In Fig. 7 both the main active power 
switch and the auxiliary active power switch can achieve soft switching completely. Besides, this active voltage 
clamp high-frequency load resonant inverter can suppress an excessive peak voltage applied to the main active 
power switch for Modes 3 and 4. This high-frequency inverter in steady-state includes periodically repeated 
operation with 6 modes. Figure 8(a) shows the input AC voltage at 50 Hz and output voltage at 20 kHz. At the 
same time Fig. 8(b) shows the output voltage and current of the inverter. 
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Fig. 7. Steady state switching waveforms. 

 
(a) 

 
(b) 

Fig. 8. (a) Input 50 Hz AC voltage and output voltage at 20 kHz, (b) Output voltage and current of the inverter, (Simulation Results). 
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Fig. 9 represents duty factor versus input power regulation characteristics and duty factor vs. peak voltage 
characteristics for a new prototype of induction heating energy conversion device under a constant frequency 
asymmetrical PWM control strategy. Observing this Fig. 9 it is proved that the inverter output power can be 
continuously adjusted in the accordance with duty factor or duty cycle 𝐷𝐷 as a control variable. 
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Fig. 9. Duty factor vs. input power and peak voltage characteristics. 

5. EXPERIMENTAL RESULTS AND DISCUSSIONS 

5.1. Design of Experimentally produced Hot Water Producer 

An experimental prototype was developed to supply an induction heating load of 100W. Commercially 
available 50 Hz AC was rectified using four 1N4007 diodes and two IRF840 MOSFETs used to convert DC to 
HFAC. Hardware layout of IH power supply system is shown in Fig. 10. A PIC16F877A microcontroller is used 
to validate the used topology. Table 1 indicates the practical design specifications and circuit parameters of the 
feasible electromagnetic induction-based heated hot water producer and steamer using edge-resonant ZVS-
PWM soft-switching high-frequency load resonant inverter using the IGBT modules. 

 

Fig. 10. Test setup of IH power supply system. 
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TABLE 1. DESIGN SPECIFICATION AND CIRCUIT PARAMETERS 
Item Symbol Value 

DC Source Voltage E 200 V 
Switching Frequency 𝑓𝑓𝑠𝑠𝑠𝑠 20 kHz 

Edge-Resonant lossless Capacitor C1 0.18 µF 
Active Voltage Clamped Capacitor Cs 3.96 µF 

Working Coil L1 50.9 µH 
Electromagnetic Coupling Coefficient k 0.693 

Load Time Constant 𝜏𝜏 9.63 µS  
 

5.2. Temperature Characteristics 

Fig. 11 illustrates the temperature response characteristics of the induction heated hot water producer and 
steamer composed of specially designed spiral type induction heater using active voltage clamp high-frequency 
inverter which is built and tested in the experiment. It is noted that this inverter type compact induction heated 
hot water producer and steamer using new conceptual electromagnetic induction eddy current-based heater in 
pipeline systems can heat rapidly than conventional gas combustion type or sheathed wired heating type. 
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Fig. 11. Fluid temperature response characteristics of IH hot water producer and steamer. 

5.3. Observed Waveforms 

Fig. 12 illustrates the steady state observed switching voltage and current waveforms of 𝑄𝑄1 (𝑆𝑆𝑊𝑊1&𝐷𝐷1 ), 
𝑄𝑄𝑆𝑆  (𝑆𝑆𝑊𝑊𝑆𝑆&𝐷𝐷𝑆𝑆), 𝐿𝐿1 and 𝐶𝐶1 under the specified condition of duty cycle 𝐷𝐷 = 0.5. Besides, it is proved that this 
active clamp edge-resonant ZVS-PWM high-frequency inverter using IGBTs can completely work under the 
operating principle of zero voltage soft switching commutation for a wide duty factor control scheme. This 
active clamped edge-resonant high-frequency inverter can limit an excessive peak voltage applied to the main 
active power switch. Accordingly, the conduction power losses as well as voltage and current peak or dynamic 
derivative stresses of switching power semiconductor devices; IGBTs can be considerably reduced in this high-
frequency inverter circuit topology. 
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Fig. 12. Experimental voltage and current waveforms (Duty Factor 𝐷𝐷 = 0.5). 

 

6. CONCLUSION 

In this paper, the novel prototype of electromagnetic induction eddy current-based hot water producer and 
steamer using active clamp high-frequency quasi-resonant inverter has been successfully proposed and 
demonstrated from a practical point of view. In addition, an active voltage-clamped edge-resonant ZVS-PWM 
high-frequency load resonant inverter using the latest trench IGBT module, which can efficiently operate under 
a zero-voltage soft commutation based on asymmetrical PWM (Duty Ratio Control) strategy. These induction 
heated appliances for pipeline fluid heating using active voltage clamp edge-resonant high-frequency inverter 
could be more cost-effective than the conventional gas combustion heating type or sheathed wired heating type. 
In the future, the power loss analysis of this soft-switching high-frequency inverter using the CSTBTs in new 
generation should be done for consumer induction-heated hot water producer and boiler, and steamer as well as 
super-heated steamer in pipeline systems. 
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