ISOLATION AND IDENTIFICATION OF BIOLOGICALLY ACTIVE COMPOUNDS FROM THE WILD PLANT, SUADEA VERMICULATA AGAINST APHIS CRACCIVORA KOCH

Badawy, H.M.A¹.; A.A Barakat¹; F.A Mansour²; Samira A.Abdallah³ and M.M.M Solimann^{2*}

- 1 Economic Entomology and pesticides Dept. Fac. of Agric. Cairo Univ.
- 2 Flavour and Aromatic Chemistry Dept., National Research Center, Cairo, Egypt.
- 3 Pests and Plant Protection Dept. National Research Center, Cairo, Egypt.

ABSTRACT

Biological and phytochemical studies were conducted on Suadea vermiculata to investigate the biologically active compounds of this plant against Aphis caraccivora Koch. Results showed that, fraction C with LC50 0.081 mg/cm² and LC95 0.226 mg/cm² was the most effective compared with the crude extract LC₅₀ 0.104 mg/cm² and LC95 1.338 mg/cm² followed by fraction A (LC₅₀ 0.103 mg/cm² and LC₉₅ 0.352 mg/cm²) and then fraction B which had the lowest LC95 value (0.709) than those of crude extract (1.338). Data also indicated that these fractions composed mainly of fatty acids, fatty acids methyl esters in addition to hydrocarbons. The main active component of fraction A, fatty acids methyl esters with percent area 70.698 % followed by 22.452 % monoterpenes, lenoleic acid with percent area 2.692 and low amount of hydrocabons with area percent 0.745. As regarding fraction B hydrocarbons represented the main components with percent area 56.425 %. The other compounds identified in this fraction were fatty acids 14.066 %, methyl anthranilate 15.706 % and methyl salicylate 7.650 %. Fraction C was the highest toxic fraction against A. craccivora, its chemical constituents were fatty acids methyl esters with 15.717 %, fatty acids 10.063 % and monoterpens 7.991 %. Methyl salicylate identified in this fraction with area percent 4.539 in addition to 15.470 % hydrocarbons.

Keywords: Identification, Biological activity, Suadea vermiculata, Aphis caraccivora.

INTRODUCTION

Use of botanical pesticides (natural plant products) in an agroecosystem is now emerging as one of the primes means to product crop production free environment from pesticidal pollution, which is a global problem. Pervious screening tests were carried out in order to evaluate the toxicity of different plant extracts using different solvents against *Aphis craccivora* (Abdallah et al., 2004). Comparison among the toxicity of the 29 plant extracts using different solvents, showed that the ethyl acetate extracts of *Atriplex Semibaccata*, *Suadea vermiculata* and *Halocenemon strobilacium* were the most toxic against *A. craccivora*. Barakat et al., (2005) isolated and identified some of biological active compounds of *Atriplex Semibaccata* against *Aphis craccivora*. *Suadea vermiculata* belongs to family Chenopodiaceae that contains a large number of plants considered as having high biological activity. Some of them were used in the traditional medicine in some countries (Mahasneh *et al.*, 1996). Therefore, the present study was conducted to investigate:

- 1-Fractionation of the ethyl acetate crude extract of S. vermiculata.
- 2-Biological activity of the promising fractions against A. craccivora.
- 3-Isolation and identification of insecticidal components of the crude extract and their fractions by using GC/MS.

MATERIALS AND METHODS

1-Plant material

The wild plant *Suadea vermiculata* (fam:Chenopodiaceae) was collected from different areas in Sinai. Sample of the collected plant was left to dry under laboratory conditions. Dried parts of plant were ground using an electric mill, sieved and kept for extraction.

The chemical constituents of S. *vermiculata* were extracted with ethyl acetate and steam distillation. The ethyl acetate extract was further fractionated by column chromatography using solvent mixtures with different polarity.

2-Preparation of the essential oil and crude extract

Samples of the plant were hydrodistilled for 3 hours using a Clevenger type apparatus. The oils were separated and dried over anhydrous sodium sulphate and kept in freezer at -80 °C until analysis. Crude extract was prepared according to the method described by Freedman et al., (1979).

3-Fractionation of the ethyl acetate crude extracts

Fractionation of the crude extract, *S.vermiculata* was performed on 50 cm length X 2.5cm diameter column packed with a slurry of silica gel 60 (particle size 0.063-0.2 mm, 70-230 mesh ASTM), purified in pentane/diethyl ether (95/5 v/v). The ethyl acetate crude extract was applied directly on the top of the column then eluted with the following solvents:

No. of phase	Phase	Ratio	Amounts	Fractions
١	Benzene	1	۲۰۰ ml	1-20
٢	Benzene / Diethyl ether	80 : 20	200 ml	21-40
٣	Benzene / Diethyl ether	60 : 40	200 ml	41-60
٤	Benzene / Diethyl ether	50 : 50	200 ml	61-80 A
0	Benzene / Diethyl ether	20:80	200 ml	81-100 B
٦	Diethyl ether	100	200 ml	10 I-120 C
٧	Acetone	100	200 ml	121-140
٨	Ethanol	100	200 ml	141-160

These fractions were collected and the solvent was evaporated till dryness. Then they were examined for biological activity against *A. craccivora* using residual film technique. All percent mortalities were corrected for the natural mortality according to Abbott's formula (1925) Mortality curves were drawn on probit logarithmic graph paper according to the method developed by Finney (1971).

4-Identification and determination of essential oil and ethyl acetate crude extract and their fractions by GC/MS analysis

The obtained essential oil, ethyl acetate crude extracts and their fractions of the wild plant, Suadea vermiculata were analyzed using GC-MS apparatus. GC-MS Finnigan mat SSQ 7000 Digital DEC 3000. Work station: Digital DEC 3000. Ionization mode Eleven 70. Column: DB-5 capillary column 30-m length, 0.32-mm i.d and 0.25 µm thicknesses. Carrier gas: Helium at 13 psi. Temperature-programming initial column temperature was set at 50°C for 3 min then the temp. was increased by 7 °C/min to reach 250°C, and held for 10 min. at 250 °C. Injector temperature was 200°C and the injected volume was 1 µL. Transition-line and ion source temperatures were 250°C and 150 °C, respectively. The mass spectrometer had a delay of 3 min to avoid the solvent peak and then scanned from m/z 40 to m/z 350. Ionization energy was set at 70 eV. Identification was based on the comparison with the MS computer library (NIST -Software Package, Finnigan) and on the respective retention indices. The separated components were identified by matching them with the National Institute of Standards and Tech (NIST) mass spectral library data.

RESULTS AND DISCUSSION

1- Biological studies

Ethyl acetate extracts of *S.vermiculata* showed superior toxicity with LC₅₀ 0.104 in comparisons with petroleum ether, chloroform and ethanol extracts (Abdallah et al.,2004). So , ethyl acetate crude extract of *S.vermiculata* was further fractionated by column chromatography using different solvent mixtures possess different polarity. Fractions which eluted with benzene/diethyl ether (1:1) (fraction A), Benzene/diethyl ether (1:4) (fraction B) and diethyl ether (Fraction C) were the most effective against *Aphis craccivora*.

The results in Table (1) showed that fraction C with LC₅₀ 0.081 mg/cm² and LC₉₅ 0.226 mg/cm² was the most effective against *Aphis craccivora* compared with the crude extract LC₅₀ 0.104 mg/cm² and LC₉₅ 1.338 mg/cm² followed by fraction A LC₅₀ 0.103 mg/cm² and LC₉₅ 0.352 mg/cm². In addition to the previous fractions another one fraction namely B had the lowest LC₉₅ value (0.709 mg/cm²) than those of crude extract (1.338 mg/cm²).

extract and its unrerent fractions against Aprils cractivora.				
Treatments	LC ₅₀ mg/cm2	LC₀₅ mg/cm²	Slope	
Crude extract	0.104	1.338	2.42	
Fraction A	0.103	0.352	3.09	
Fraction B	0.245	0.709	3.57	
Fraction C	0.081	0.266	3.17	

Table (1): LC₅₀, LC₉₅ and Slope values of *Suadea vermiculata* crude extract and its different fractions against *Aphis craccivora*.

2-Identification of essential oil constituents

The chemical name and area % for the nineteen identified compounds in the essential oil are shown in Table (2). The oil is rich in monoterpenes (68.23 %) and sesquiterpene (8.59 %). The main components in this class being α -Terpinene (21.12 %), 2- Carene (17.10 %) followed by α -Phellandrene (8.26 %), α -Pinene (7.02 %), Myrcene (6.02 %) and Camphene (4.64 %), in addition to small amounts of lower and higher homologes. The oil is poor in hydrocarbons, which constitute only 4.86 % of the oil, comprising mainly Pentadecane (2.49 %), Tridecane (0.91 %), Tetradecane (0.73 %) and Hexadecane (0.72 %). The oil contains also 4.82 % of Tetradecanoic acid, the only fatty acid identified, in addition to Lumiflavine 4.67 % and others.

Table (2): Chemical constituents of the main compounds of the
essential oil extracted from the wild plant Suadea
vermiculata.

Peak no.	Name of compounds	Area %
1	α -pinene	7.023
2	Camphene	4.641
3	β-pinene	0.662
4	2-Carene	17.009
5	Myrcene	6.017
6	α -Phellandrene	8.263
7	α -Terpinene	21.122
8	D-Limonene	2.462
9	β -Phellandrene	0.940
10	Propionic acid	1.226
11	Tridecane	0.913
12	Tetradecane	0.732
13	Cis-alpha-copaene-8-ol	8.589
14	Pentadecane	2.493
15	Hexadecane	0.719
16	Agarospirol	5.647
17	α -amyrin	1.923
18	Tetradecanoic acid	4.822
19	Lumiflavine	4.667

3- Identification of the crude extract constituents

The components detected, their area % and formula are compiled in Table (3) Twenty-nine compounds were identified. Fatty acids and their esters constituted 72.70 % of the crude extract, with Hexadecanoic acid (39.65 %), Octadecanoic acid methyl ester- (14.21 %) and Tetradecanoic acid (6.49 %) as the main components. Other members in the same class were identified but in a lower quantities; the methyl ester of Pentadecanoic acid (5.63 %), Hexadecanoic acid, methyl ester (4.08 %) and Dodecanoic acid (2.64 %). Long-chain hydrocarbons amounted to 19.912 %. The main hydrocarbons identified were Heptadecane (6.04 %), Hexadecane (5.62 %) and higher homologes Pentacosane 2.301 %, Hexacosane 1.010 % and Heptacosane 1.121 %. The percentage of ketonic compounds was 10.81 %; trimethyl Pentadecanone (4.30 %) was the main components. The crude extract contained also, Phytol as diterpene alcohol (2.60 %).

Peak	Name of compounds	Area %
no.	Name of compounds	
1	Acetic acid, 2-methyl-propyl ester	1.320
2	2,2-Dimethyl valeric acid	0.319
3	2-Pentanone 4-Hydroxy-4- methyl	2.710
	Carbamic acid, acetyl-, ethylester	0.575
5	Acetic acid, octyl ester	0.473
6	Benzene, 1, 3, 5 - trimethyl	1.460
7	1,5-Heptadiene, 3, 3, 5- trimethyl	1.112
8	1, 2, 3- Propanetriol, monoacetate	1.636
9	Decane, 3, 6- dimethyl	0.690
10	Tetradecane	1.562
	5, 9-Undecadien-2-one,6, 10- dimethyl-(Z)-	1.498
	2, 6,10-Dodecatrien-1-ol, 3, 7, 11- trimethyl- (Z,E)	1.086
13	2H-Pyran-2-carboxylic acid,5-ethyltetrahydro-2,3- dimethyl-6-oxo-	0.473
14	2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4, 7a- trimethyl	1.383
	Dodecanoic acid	2.639
16	3,5-Heptanedione, 2,2,6,6-tetramethyl	0.920
17	Hexadecane	5.620
	Heptadecane	6.042
19	Tetradecanoic acid	6.492
	Octadecane	3.818
	Phytol	2.601
	2-Pentadecane, 6,10,14-trimethyl	4.300
	2- Pentadecanoic acid, 13- methyl-, methyl ester	5.626
	Hexadecanoic acid	39.655
	Hexadecanoic acid, 2- methyl-, methyl ester	4.077
	8-Octadecanoic acid, methyl ester, (E)	14.210
	Pentacosane	2.301
	Hexacosane	1.010
29	Heptacosane	1.121

 Table (3): Chemical constituents of the main compounds of the ethyl acetate crude extract for the wild plant Suadea vermiculata.

4- Identification of fraction A constituents

This fraction showed high toxic effect against *Aphis craccivora* especially at LC_{95} level 0.352 mg/cm² with the toxicity of crude extract (Table 1).

The GC - MS chromatogram of fraction A showed the presence of 16 identified compounds (Table 4). The main component in this fraction identified as 8-Octadecanoic acid, methyl ester with area percent 70.70 followed by Phytol with percent area 11.31. d-Limonene and Linoleic acid, ethyl ester with percent area 4.80 and 2.69 were detected. The fraction includes the following classes: monoterpene (11.14 %), sesquiterpene (1.36 %), hydrocarbon (0.75 %), alcohols (12.35%) and fatty acid esters (73.39 %). Among the major components of the fraction, d-Limonene has a pleasant orange -like odour and it is classified as one of the most widely distributed terpenes, occurring in many plant extracts and essential oils.

Peak no.	Name of compounds	Area %
1	α -pinene	0.736
2	Camphene	0.540
3	β -pinene	0.851
4	2-Carene	0.516
5	Myrcene	0.818
6	α -Phellandrene	0.859
7	α -Terpinene	0.671
8	d-Limonene	4.795
9	β -Phellandrene	1.358
10	2(4H)-Benzofuranone, 5, 6, 7a-tetrahydro-4, 4, 7a-trimethyl	0.998
11	Tridecanol	1.047
12	Tridecane	0.745
13	α -Bisabolol	1.367
14	Phytol	11.308
15	8-Octadecanoic acid, methyl ester, (E)	70.698
16	Linoleic acid ethyl ester.	2.692

 Table (4): Chemical constituents of the main components in fraction A from the ethyl acetate crude extract of Suadea vermiculata.

5- Identification of fraction B constituents.

This Fraction showed higher LC_{50} value (0.245 mg/cm^2) than those of crude extract (0.104 mg/cm^2) (Table1), and LC_{95} (0.709 mg/cm^2) lower than those of the crude extract (1.338 mg/cm^2).

The components of the Fraction B and the area percentages are compiled in Table (5). Fourteen components were separated on a 30-m DB-5 fused silica capillary column. The fraction contains 56.435 % hydrocarbon, the main of which are Heptacosane (9.89 %), Pentacosane (13.55 %) and Octadecane (8.01 %). It contains also about 39.50 % of carbonyl compounds, mainly Benzoic acid, 2-(methylamino)-, Methyl ester (15.706 %) and Methyl salicylate (7.650 %). Alcohols (4.09 %) and fatty acid: Hexadecanoic acid (14.07 %).

Table (5): Chemical constituents of the main components in fraction B
from the ethyl acetate crude extract of Suadea vermiculata.

Peak no.	Name of compounds	Area %
1	2-Pentanone, 4-Hydroxy-4- methyl	2.080
2	Methyl salicylate	7.650
3	Tridecane	4.801
4	Tetradecane	6.640
5	Benzoic acid, 2-(methylamino)-, methyl ester	15.706
6	Hexadecane	7.238
7	Heptadecane, 3- methyl	6.297
8	Octadecane	8.011
9	Hexadecanoic acid	14.066
10	Pentacosane	13.549
11	carissanol	4.089
12	Heptacosane	9.889

7718

6- Identification of fraction C constituents.

In comparison with the toxicity of crude extract and the other two fractions A and B. This fraction showed the highest toxic effect at LC_{50} and LC_{95} (LC_{50} 0.081 mg/cm² and LC_{95} 0.226 mg/cm²) (Table 1).

The components found in fraction C altogether with their percentages are shown in Table (6). Twenty-three compounds were identified. Fatty acid and their esters amounted to 29.50 % of the fraction. The main fatty acids were Hexadecanoic acid (13.05 %) and the methyl ester and Octadecanoic acid (8.00 %). The percentage of alcoholic compounds was 28.13 %; Phytol (6.28 %), Patchoul alcohol (4.97 %) and Stigmasterol (5.73 %) being the main compounds. In addition, the fraction contained 6.70 % ketone, 4.54 % Methyl salicylate and 5.16 % α -Amyrin. Hydrocarbons constituted 15.47 % of the fraction with Heptadecane (5.65 %) and Hexadecane (4.12 %) as the main component.

Table (6): Chemical	constituents of	of the main	components	in fraction C
from the	ethyl acetate o	crude extrac	t of Suadea v	ermiculata.

Peak	Name of compounds	Area
no.		%
1	2-Pentanone 4-hydroxy-4- methyl	3.034
2	R-(-)-2,2-dimethyl -1,3-dixolane-4-methanol	1.211
3	Butanedionic acid, methyl-, dimethyl ester	3.602
4	1, 5-Heptadiene, 3,3,6- trimethyl	2.232
5	1,4-Anhydro-d-mannitol	1.437
6	2-Cyclopentene-1-one-3,4,4- trimethyl	1.867
7	Mannitol	2.098
8	Methyl salicylate	4.539
9	D- mannitol, 1,2:5,6-bis-O-(1- methyl ethylidene)-	2.054
10	Pentadecane	3.471
11	Hexadecane	4.117
12	Heptadecane	5.648
13	Tetradecanoic acid	4.042
14	3-Eicosyne	3.561
15	2-Pentadecanone, 6,10,14- trimethyl	2.665
16	Pentadecanoic acid – 13- methyl-, methylester	4.415
17	Hexadecanoic acid	13.052
18	8-Octadecanoic acid, methyl ester	7.991
19	Phytol	6.276
20	Patchoul alcohol	4.967
21	Stigmasta-7,16-dien-3-ol, (3-beta,5-alpha,)	5.730
22	1-Dotriacontanol	6.886
23	α -Amyrin	5.160

Table (7) summarizes the active components in the ethyl acetate crude extract and their fractions of *S. vermiculata*. Crude extract composed mainly Fatty acids with area percent 46.147 %, Fatty acids methyl esters with percent area 23.913%, in addition to Hydrocarbons with total percent area 22.164%. The main active component of fraction A, Fatty acids methyl esters with percent area 70.698% followed by 22.452 % Monoterpenes, Lenoleic

Badawy, H.M.A. et al.

acid with percent area 2.692% and low amount of Hydrocabons with area percent 0.745%. As regarding fraction B Hydrocarbons represented the main components with percent area 56.425%. The other compounds identified in this fraction were Fatty acids (14.066 %), Methyl anthranilate 15.706 % and Methyl salicylate 7.650 %. Fraction C was the highest toxic fraction against *A. craccivora*, its chemical constituents were Fatty acids methyl esters with 15.717 %, Fatty acids 10.063 % and Monoterpens 7.991 %. Methyl salicylate identified in this fraction with area percent 4.539% in addition to 15.470 % Hydrocarbons.

extract and their fractions of S. vermiculata.				
Compounds	% Area of the compounds in fractions:			
compounds	Crude extract	Fraction A	Fraction B	Fraction C
*-Monoterpenes				
-Monocyclic	-	8.501	-	-
-Bicyclic α -pinene	-	2.643	-	-
*- Diterpenes				
- Phytol		11.308		7.991
Total	-	22.452	-	7.991
**-Fatty acids				
Tetradecanoic acid	6.492	-		5.648
Hexadecanoic acid	39.655	-	14.066	4.415
Total	46.147	-	14.066	10.063
*-Fatty acids esters				
*- Methyl esters				
-Pentadecanoic acid	5.626	-	-	2.665
-Octadecanoic acid	14.210	70.698	-	13.052
-Others	4.077			
Total	23.913	70.698		15.717
*-Ethyl esters				
-Linoleic acid	-	2.692	-	-
Total	-	2.692	-	-
*-Hydpocarbons	22.164	0.745	56.425	15.470
• •				
*- Methyl anthranilate	-	-	15.706	-
*- Methyl salicylate	-		7.650	4.539
LC50 0.081 mg/cm2	0.104	0.103	0.245	0.081

Table (7):	percent area of active components of the ethyl acetate crude
	extract and their fractions of S. vermiculata.

Obviously, crude extract and its biologically active fractions contain active constituents e.g. the presence of Methyl salicylate is in close agreement with the data obtained by Mahasneh *et al.* (1996). They reported that, the petroleum ether extract of *Suadea vermiculata* used in the traditional medicine of Bahrain have an antimicrobial activity, however they were not discussed the reasons, but obviously through the GC - MS analyses, the antimicrobial effect of such extract is due to the presence of Methyl salicylate.

Methyl salicylate is a repellent for black bean aphid (Hardie, et al., 1994). It stimulates specific olfactory cells in the primary rhinaria on the sixth and fifth antenna segments, respectively, of the black bean aphid, *Aphis fabae*. It also inhibited attraction to volatiles from its host, broad bean (*Vicia faba*). Methyl salicylate is widely distributed as a component of certain plants,

e.g., in the Rosaceae and Salicaceae. It is also a volatile metabolite of salicylic acid, a plant phenolic that is a known allelopathic agent (Balke et al., 1987) and a compound capable of inducing various secondary metabolite - based defense mechanisms, such as production of phenolics by the inducible phenylalanine ammonia - lyase (PAL) system Ward *et al.*, (1991).

Sauvion et al. (1996)) reported that mannose - binding lectins assayed in artificial diets for their toxic and growth - inhibitory effects on nymphal development of the peach - potato aphid *Myzus persicae*.

More than 20 compounds were identified in benzene/ether (1:1) (Fraction A). Monoterpenes and unsaturated fatty acid esters characterize this fraction in comparison to the others (Tables 4, 5 and 6).

Hardie *et al.* (1994) showed the repellent effect of Monoterpenoid myrtenal, which is metabolically, related to one of the identified component in fraction A, α -Pinene.

 α -Pinene is an abundant component of defensive resins produced by gymnosperms. Ment, *Mentha virdis* L. and peppermint, *Mentha pipertia* L. was reported to have deterrent and toxicity effects on *Tetranychus urticae*. Qualitative and quantitative analysis of mint and peppermint essential oils showed that both oils were mainly characterized by high concentration of total Terpene compounds 88.53 and 92.67% respectively (Momen *et al.* 2001).

In addition to Methyl salicylate, long - chain hydrocarbons constitute 56.43 % of the fraction B, 22.16 % in the crude and 15.47 % in fraction C. These hydrocarbons e.g. Hexadecane, Heptadecane and Octadecane in addition to Hexadecanoic acid may explain the biological activity of this fraction. In a similar experiment performed by Peterson *et al.*, (1989), hexane extract of *Chenopodium ambroioides* contain mainly long-chain Hydrocarbons and Fatty acid esters, that was toxic against *Tribolium castaneum* and *Sitophilus granarius*.

REFERENCES

- Abbot, W.S.(1925): A method for computing the effectiveness of an insecticide. J.Econ. Entomol. 18:265-267.
- Abdallah Samira A., Barakat, A.A, Badawy, H.M.A. and Solimann, M.M.M. (2004): Insecticidal activity of different wild plant extracts against *Aphis craccivora* Koch. Egypt. J. Biol. Pest Control, 14(1): 165-173.
- Balke, N.E.; Davis, M.P. and Lee, C.C. (1987): Conjugation of allelochemicals by plants: Enzymatic glucosylation of salicylic acid by plants. pp. 214 -227, in G.R. Waller (eds.). Allelochemicals: Role in Agriculture & Forestry. American Chemical Society. Washington, D.C.
- Barakat, A.A, Badawy, H.M.A., Abdallah Samira A., Solimann, M.M.M and Mansour F.A (2005): Separation and Identification of biologically active compounds of the wild plant *Atriplex Semibaccata* against *Aphis caraccivora* Koch. Bull NRC, Egypt pt,30 (4): 391-403.

Finney, D.J.(1971): Probit analysis . Cambridge Univ. press.

Freedman, B., Nowak, L.J. and Kwolek, W.F. (1979): A bioassy for plantderived pest control agent using the European corn borer. J. Econ. Entomol., 72: 541-545.

- Hardie, J.; Isaacs, R.; Pickett, A.J.; Wadhams, J.L. and Woodcock, M.C. (1994): Methyl salicyate and (IR,5S)-myretenal are plant-derived repellents for black bean aphid *Aphis faba* Scop. (Homoptera: Aphididae). J. Chem. Ecology 20 (11): 2847 2855.
- Mahasneh, A. M.; Abbas, J. A. and El-Oqlah, A. A. (1996): Antimicrobial activity of extracts of herbal plants used in the traditional medicine of Bahrain. Phytherapy Res. 10 (3): 251-253.
- Momen, F. M.; Amer, S.A.A. and Refaat, A.M. (2001): Influence of mint and peppermint on *Tetranychus urticae* and some predacious mites of the Family Phytoseiidae (Acari:Tetranychidae: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica, 36 (1-2): 143 -153.
- Peterson, G.S.; Kandil, M.A.; Abdallah, M.D. and Farag, A.A.A (1989): Isolation and characterization of biologically active compounds from some plant extracts. Pestic. Sci. 25 (4): 337-342.
- Sauvion, N.; Yvan, R.; Willy, J.P.; Els, J.M. Van Damme; John, A.G. and Angharad, M. RG. (1996): Effect of GNA and other mannose binding *lectines* on development and fecundity of the peach-potato aphid *Myzus* pers;cae. Entomologica Experimentalis et Applicata 79: 285 -293.
- Ward, E.R.; Ulmes, S.J.; Williams, S.C.; Dincher, S.S.; Wiederhold, D.L.; Alexander, D.C.; Ahl-Goy, P.; Metraux, J.P. and Ryals, J. A. (1991): Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085 - 1094.

فصل وتعريف المكونات النشطة بيولوجياً من نبات السويده البرى Suadea vermiculata ضد حشرة من البقوليات Aphis craccivora

هانی محمود عاشور بدوی^۱، أحمد عبد السلام برکات^۱، عمرو فاروق منصور^۲، سمیرة أحمد حسن عبد الله^۲ ومحمود محمد محمود سلیمان^۲*

١ - قسم الحشرات الإقتصادية والمبيدات-كلية الزراعة - جامعة القاهرة.

٢- قسم الكيمياء العطرية- المركز القومي للبحوث - القاهرة.

٢ *- قسم الآفات ووقاية النبات- المركز القومي للبحوث - القاهرة.

أجريت دراسات بيولوجية وكيميائية لفصل وتعريف المكونات الفعالة بيولوجياً لنبات السويده البري ضد حشرة من البقوليات.

أظهرت النتائج أن الجزء المفصول C، كان الأكثر فاعلية ضد الحشرة المختبرة، وكانت قبم LC₅₀ ، LC₉₅ كالأتى : ٨, ٩، ، ٢٢٦، ٩، ملليجرام/سم٢ مقارنة مع ١٠, ٩، ، ١٣٣٨ ملليجرام/سم٢ للمستخلص الخام، يليه الجزء المفصول A (٣، ١، ٢٥٢، ٩ ملليجرام/سم٢)، لنفس القيم المذكورة ، ثم الجزء B الذى أعطى قيمة LC₉₅ ، ٧٩٩ ، الأقل من مثيلتها للمستخلص الخام (١,٣٣٨) وقد بينت النتائج أيضا أن المكونات الرئيسية الفعالة لهذه الأجزاء المفصولة هى أحماض دهنية، أحماض دهنية وإستراتها بالإضافة إلى اليبير وكربونات. ووجد أن المركبات النشطة للجزء A هى الأحماض الدهنية وإستراتها بالإضافة إلى يليها التربينات الأحادية ٢٠,٤٥٢%، حمض اللينوليك بنسبة ٢,٦٩٢ مع وجود نسبة ضئيلة من بلهيدروكربونات (٥٤٠,٠%). وبالنسبة للجزء B تمثل الهيدروكربونات المكونات الرئيسية بنسبة ٢٠,٤٦ %، الأحماض الدهنية ٢، ١٤,٠٤٦%، حمض اللينوليك بنسبة ٢,٦٩٢ مع وجود نسبة ضئيلة من %، الأحماض الدهنية ٢، ١٤,٠٤٦%، حمض اللينوليك بنسبة ٢,٦٩٢ مع وجود نسبة ٢٠,٤٥ %، الأحماض الدهنية ٢، ١٤,٠٤٦%، حمض اللينوليك بنسبة ٢,٦٩٢ مع وجود نسبة منيلة من الميدروكربونات (٢٤٥). وبالنسبة للجزء B تمثل الهيدروكربونات المكونات الرئيسية بنسبة ٢٠,٤٥ بلجزء عالم الدهنية ٢، ١٤,٠٤٥%، حمض اللينوليك بنسبة ٢، ١٩ مع وجود نسبة ٢٠,٤٥ %، الأحماض الدهنية ٢، ١٤,٠٤٥ ، ميثيل انثر انيلات ٢٠٥,٠٠٢ مع وجود نسبة ٢٠,٤٥ %، الأحماض الدهنية ٢، ١٤,٠٤%، حمض اللينوليك بنسبة ١٥,٠٠٢ مع وجود نسبة ٢٠,٤٥ %، الأحماض الدهنية ٢، ١٤,٠٤%، حمض اللينوليك ٢، ١٠,٠٥ %، ميثيل سلسلات ٢، ١٠,٤٥ %، الأحماض الدهنية ٤، ١٠,٤٥% ، ميثيل انثر انيلات ١٠٥,٠٠ %، ميثيل سلسلات ٢، ١٩ هزا بنسبة ٢٠,١٠٢ %، ميثيل سلسلات ١٠,٠٤ % ثمان موضع الإختبار فهو يحتوى على إسترات أحماض دهنية % بالإضافة إلى هيدروكربونات ١٠,٤٥ % مادي ٢٠ % ثمان كام ألكرينات الأحادية ١٩،٠ % ، ميثيل سلسلات ٢٠٥. % ٢٠ %